/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "compiler_driver.h" #include <unistd.h> #ifndef __APPLE__ #include <malloc.h> // For mallinfo #endif #include <string_view> #include <vector> #include "android-base/logging.h" #include "android-base/strings.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/arena_allocator.h" #include "base/array_ref.h" #include "base/bit_vector.h" #include "base/hash_set.h" #include "base/logging.h" // For VLOG #include "base/pointer_size.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/time_utils.h" #include "base/timing_logger.h" #include "class_linker-inl.h" #include "class_root-inl.h" #include "common_throws.h" #include "compiled_method-inl.h" #include "compiler.h" #include "compiler_callbacks.h" #include "compiler_driver-inl.h" #include "dex/class_accessor-inl.h" #include "dex/descriptors_names.h" #include "dex/dex_file-inl.h" #include "dex/dex_file_annotations.h" #include "dex/dex_file_exception_helpers.h" #include "dex/dex_instruction-inl.h" #include "dex/verification_results.h" #include "driver/compiler_options.h" #include "driver/dex_compilation_unit.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap.h" #include "gc/space/image_space.h" #include "gc/space/space.h" #include "handle_scope-inl.h" #include "intrinsics_enum.h" #include "intrinsics_list.h" #include "jni/jni_internal.h" #include "linker/linker_patch.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/dex_cache-inl.h" #include "mirror/object-inl.h" #include "mirror/object-refvisitor-inl.h" #include "mirror/object_array-inl.h" #include "mirror/throwable.h" #include "oat/aot_class_linker.h" #include "object_lock.h" #include "profile/profile_compilation_info.h" #include "runtime.h" #include "runtime_intrinsics.h" #include "scoped_thread_state_change-inl.h" #include "thread.h" #include "thread_list.h" #include "thread_pool.h" #include "trampolines/trampoline_compiler.h" #include "utils/atomic_dex_ref_map-inl.h" #include "utils/swap_space.h" #include "vdex_file.h" #include "verifier/class_verifier.h" #include "verifier/verifier_deps.h" #include "verifier/verifier_enums.h" #include "well_known_classes-inl.h" namespace art { static constexpr bool kTimeCompileMethod = !kIsDebugBuild; // Print additional info during profile guided compilation. static constexpr bool kDebugProfileGuidedCompilation = false; // Max encoded fields allowed for initializing app image. Hardcode the number for now // because 5000 should be large enough. static constexpr uint32_t kMaxEncodedFields = 5000; static double Percentage(size_t x, size_t y) { return 100.0 * (static_cast<double>(x)) / (static_cast<double>(x + y)); } static void DumpStat(size_t x, size_t y, const char* str) { if (x == 0 && y == 0) { return; } LOG(INFO) << Percentage(x, y) << "% of " << str << " for " << (x + y) << " cases"; } class CompilerDriver::AOTCompilationStats { public: AOTCompilationStats() : stats_lock_("AOT compilation statistics lock") {} void Dump() { DumpStat(resolved_instance_fields_, unresolved_instance_fields_, "instance fields resolved"); DumpStat(resolved_local_static_fields_ + resolved_static_fields_, unresolved_static_fields_, "static fields resolved"); DumpStat(resolved_local_static_fields_, resolved_static_fields_ + unresolved_static_fields_, "static fields local to a class"); DumpStat(safe_casts_, not_safe_casts_, "check-casts removed based on type information"); // Note, the code below subtracts the stat value so that when added to the stat value we have // 100% of samples. TODO: clean this up. DumpStat(type_based_devirtualization_, resolved_methods_[kVirtual] + unresolved_methods_[kVirtual] + resolved_methods_[kInterface] + unresolved_methods_[kInterface] - type_based_devirtualization_, "virtual/interface calls made direct based on type information"); const size_t total = std::accumulate( class_status_count_, class_status_count_ + static_cast<size_t>(ClassStatus::kLast) + 1, 0u); for (size_t i = 0; i <= static_cast<size_t>(ClassStatus::kLast); ++i) { std::ostringstream oss; oss << "classes with status " << static_cast<ClassStatus>(i); DumpStat(class_status_count_[i], total - class_status_count_[i], oss.str().c_str()); } for (size_t i = 0; i <= kMaxInvokeType; i++) { std::ostringstream oss; oss << static_cast<InvokeType>(i) << " methods were AOT resolved"; DumpStat(resolved_methods_[i], unresolved_methods_[i], oss.str().c_str()); if (virtual_made_direct_[i] > 0) { std::ostringstream oss2; oss2 << static_cast<InvokeType>(i) << " methods made direct"; DumpStat(virtual_made_direct_[i], resolved_methods_[i] + unresolved_methods_[i] - virtual_made_direct_[i], oss2.str().c_str()); } if (direct_calls_to_boot_[i] > 0) { std::ostringstream oss2; oss2 << static_cast<InvokeType>(i) << " method calls are direct into boot"; DumpStat(direct_calls_to_boot_[i], resolved_methods_[i] + unresolved_methods_[i] - direct_calls_to_boot_[i], oss2.str().c_str()); } if (direct_methods_to_boot_[i] > 0) { std::ostringstream oss2; oss2 << static_cast<InvokeType>(i) << " method calls have methods in boot"; DumpStat(direct_methods_to_boot_[i], resolved_methods_[i] + unresolved_methods_[i] - direct_methods_to_boot_[i], oss2.str().c_str()); } } } // Allow lossy statistics in non-debug builds. #ifndef NDEBUG #define STATS_LOCK() MutexLock mu(Thread::Current(), stats_lock_) #else #define STATS_LOCK() #endif void ResolvedInstanceField() REQUIRES(!stats_lock_) { STATS_LOCK(); resolved_instance_fields_++; } void UnresolvedInstanceField() REQUIRES(!stats_lock_) { STATS_LOCK(); unresolved_instance_fields_++; } void ResolvedLocalStaticField() REQUIRES(!stats_lock_) { STATS_LOCK(); resolved_local_static_fields_++; } void ResolvedStaticField() REQUIRES(!stats_lock_) { STATS_LOCK(); resolved_static_fields_++; } void UnresolvedStaticField() REQUIRES(!stats_lock_) { STATS_LOCK(); unresolved_static_fields_++; } // Indicate that type information from the verifier led to devirtualization. void PreciseTypeDevirtualization() REQUIRES(!stats_lock_) { STATS_LOCK(); type_based_devirtualization_++; } // A check-cast could be eliminated due to verifier type analysis. void SafeCast() REQUIRES(!stats_lock_) { STATS_LOCK(); safe_casts_++; } // A check-cast couldn't be eliminated due to verifier type analysis. void NotASafeCast() REQUIRES(!stats_lock_) { STATS_LOCK(); not_safe_casts_++; } // Register a class status. void AddClassStatus(ClassStatus status) REQUIRES(!stats_lock_) { STATS_LOCK(); ++class_status_count_[static_cast<size_t>(status)]; } private: Mutex stats_lock_; size_t resolved_instance_fields_ = 0u; size_t unresolved_instance_fields_ = 0u; size_t resolved_local_static_fields_ = 0u; size_t resolved_static_fields_ = 0u; size_t unresolved_static_fields_ = 0u; // Type based devirtualization for invoke interface and virtual. size_t type_based_devirtualization_ = 0u; size_t resolved_methods_[kMaxInvokeType + 1] = {}; size_t unresolved_methods_[kMaxInvokeType + 1] = {}; size_t virtual_made_direct_[kMaxInvokeType + 1] = {}; size_t direct_calls_to_boot_[kMaxInvokeType + 1] = {}; size_t direct_methods_to_boot_[kMaxInvokeType + 1] = {}; size_t safe_casts_ = 0u; size_t not_safe_casts_ = 0u; size_t class_status_count_[static_cast<size_t>(ClassStatus::kLast) + 1] = {}; DISALLOW_COPY_AND_ASSIGN(AOTCompilationStats); }; CompilerDriver::CompilerDriver( const CompilerOptions* compiler_options, const VerificationResults* verification_results, size_t thread_count, int swap_fd) : compiler_options_(compiler_options), verification_results_(verification_results), compiler_(), number_of_soft_verifier_failures_(0), had_hard_verifier_failure_(false), parallel_thread_count_(thread_count), stats_(new AOTCompilationStats), compiled_method_storage_(swap_fd), max_arena_alloc_(0) { DCHECK(compiler_options_ != nullptr); compiled_method_storage_.SetDedupeEnabled(compiler_options_->DeduplicateCode()); compiler_.reset(Compiler::Create(*compiler_options, &compiled_method_storage_)); } CompilerDriver::~CompilerDriver() { compiled_methods_.Visit( [this]([[maybe_unused]] const DexFileReference& ref, CompiledMethod* method) { if (method != nullptr) { CompiledMethod::ReleaseSwapAllocatedCompiledMethod(GetCompiledMethodStorage(), method); } }); } #define CREATE_TRAMPOLINE(type, abi, offset) \ if (Is64BitInstructionSet(GetCompilerOptions().GetInstructionSet())) { \ return CreateTrampoline64(GetCompilerOptions().GetInstructionSet(), \ abi, \ type ## _ENTRYPOINT_OFFSET(PointerSize::k64, offset)); \ } else { \ return CreateTrampoline32(GetCompilerOptions().GetInstructionSet(), \ abi, \ type ## _ENTRYPOINT_OFFSET(PointerSize::k32, offset)); \ } std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateJniDlsymLookupTrampoline() const { CREATE_TRAMPOLINE(JNI, kJniAbi, pDlsymLookup) } std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateJniDlsymLookupCriticalTrampoline() const { // @CriticalNative calls do not have the `JNIEnv*` parameter, so this trampoline uses the // architecture-dependent access to `Thread*` using the managed code ABI, i.e. `kQuickAbi`. CREATE_TRAMPOLINE(JNI, kQuickAbi, pDlsymLookupCritical) } std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateQuickGenericJniTrampoline() const { CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickGenericJniTrampoline) } std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateQuickImtConflictTrampoline() const { CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickImtConflictTrampoline) } std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateQuickResolutionTrampoline() const { CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickResolutionTrampoline) } std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateQuickToInterpreterBridge() const { CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickToInterpreterBridge) } std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateNterpTrampoline() const { // We use QuickToInterpreterBridge to not waste one word in the Thread object. // The Nterp trampoline gets replaced with the nterp entrypoint when loading // an image. CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickToInterpreterBridge) } #undef CREATE_TRAMPOLINE void CompilerDriver::CompileAll(jobject class_loader, const std::vector<const DexFile*>& dex_files, TimingLogger* timings) { DCHECK(!Runtime::Current()->IsStarted()); CheckThreadPools(); // Compile: // 1) Compile all classes and methods enabled for compilation. May fall back to dex-to-dex // compilation. if (GetCompilerOptions().IsAnyCompilationEnabled()) { Compile(class_loader, dex_files, timings); } if (GetCompilerOptions().GetDumpStats()) { stats_->Dump(); } } // Does the runtime for the InstructionSet provide an implementation returned by // GetQuickGenericJniStub allowing down calls that aren't compiled using a JNI compiler? static bool InstructionSetHasGenericJniStub(InstructionSet isa) { switch (isa) { case InstructionSet::kArm: case InstructionSet::kArm64: case InstructionSet::kThumb2: case InstructionSet::kX86: case InstructionSet::kX86_64: return true; default: return false; } } template <typename CompileFn> static void CompileMethodHarness( Thread* self, CompilerDriver* driver, const dex::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, Handle<mirror::ClassLoader> class_loader, const DexFile& dex_file, Handle<mirror::DexCache> dex_cache, CompileFn compile_fn) { DCHECK(driver != nullptr); CompiledMethod* compiled_method; uint64_t start_ns = kTimeCompileMethod ? NanoTime() : 0; MethodReference method_ref(&dex_file, method_idx); compiled_method = compile_fn(self, driver, code_item, access_flags, invoke_type, class_def_idx, method_idx, class_loader, dex_file, dex_cache); if (kTimeCompileMethod) { uint64_t duration_ns = NanoTime() - start_ns; if (duration_ns > MsToNs(driver->GetCompiler()->GetMaximumCompilationTimeBeforeWarning())) { LOG(WARNING) << "Compilation of " << dex_file.PrettyMethod(method_idx) << " took " << PrettyDuration(duration_ns); } } if (compiled_method != nullptr) { driver->AddCompiledMethod(method_ref, compiled_method); } if (self->IsExceptionPending()) { ScopedObjectAccess soa(self); LOG(FATAL) << "Unexpected exception compiling: " << dex_file.PrettyMethod(method_idx) << "\n" << self->GetException()->Dump(); } } // Checks whether profile guided compilation is enabled and if the method should be compiled // according to the profile file. static bool ShouldCompileBasedOnProfile(const CompilerOptions& compiler_options, ProfileCompilationInfo::ProfileIndexType profile_index, MethodReference method_ref) { if (profile_index == ProfileCompilationInfo::MaxProfileIndex()) { // No profile for this dex file. Check if we're actually compiling based on a profile. if (!CompilerFilter::DependsOnProfile(compiler_options.GetCompilerFilter())) { return true; } // Profile-based compilation without profile for this dex file. Do not compile the method. DCHECK(compiler_options.GetProfileCompilationInfo() == nullptr || compiler_options.GetProfileCompilationInfo()->FindDexFile(*method_ref.dex_file) == ProfileCompilationInfo::MaxProfileIndex()); return false; } else { DCHECK(CompilerFilter::DependsOnProfile(compiler_options.GetCompilerFilter())); const ProfileCompilationInfo* profile_compilation_info = compiler_options.GetProfileCompilationInfo(); DCHECK(profile_compilation_info != nullptr); bool result = profile_compilation_info->IsHotMethod(profile_index, method_ref.index); // On non-low RAM devices, compile startup methods to potentially speed up // startup. if (!result && Runtime::Current()->GetHeap()->IsLowMemoryMode()) { result = profile_compilation_info->IsStartupMethod(profile_index, method_ref.index); } if (kDebugProfileGuidedCompilation) { LOG(INFO) << "[ProfileGuidedCompilation] " << (result ? "Compiled" : "Skipped") << " method:" << method_ref.PrettyMethod(true); } return result; } } static void CompileMethodQuick( Thread* self, CompilerDriver* driver, const dex::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, Handle<mirror::ClassLoader> class_loader, const DexFile& dex_file, Handle<mirror::DexCache> dex_cache, ProfileCompilationInfo::ProfileIndexType profile_index) { auto quick_fn = [profile_index]([[maybe_unused]] Thread* self, CompilerDriver* driver, const dex::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, Handle<mirror::ClassLoader> class_loader, const DexFile& dex_file, Handle<mirror::DexCache> dex_cache) { DCHECK(driver != nullptr); const VerificationResults* results = driver->GetVerificationResults(); DCHECK(results != nullptr); MethodReference method_ref(&dex_file, method_idx); CompiledMethod* compiled_method = nullptr; if (results->IsUncompilableMethod(method_ref)) { return compiled_method; } if ((access_flags & kAccNative) != 0) { // Are we extracting only and have support for generic JNI down calls? const CompilerOptions& compiler_options = driver->GetCompilerOptions(); if (!compiler_options.IsJniCompilationEnabled() && InstructionSetHasGenericJniStub(compiler_options.GetInstructionSet())) { // Leaving this empty will trigger the generic JNI version } else { // Query any JNI optimization annotations such as @FastNative or @CriticalNative. access_flags |= annotations::GetNativeMethodAnnotationAccessFlags( dex_file, dex_file.GetClassDef(class_def_idx), method_idx); const void* boot_jni_stub = nullptr; if (!Runtime::Current()->GetHeap()->GetBootImageSpaces().empty()) { // Skip the compilation for native method if found an usable boot JNI stub. ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); std::string_view shorty = dex_file.GetMethodShortyView(dex_file.GetMethodId(method_idx)); boot_jni_stub = class_linker->FindBootJniStub(access_flags, shorty); } if (boot_jni_stub == nullptr) { compiled_method = driver->GetCompiler()->JniCompile(access_flags, method_idx, dex_file, dex_cache); CHECK(compiled_method != nullptr); } } } else if ((access_flags & kAccAbstract) != 0) { // Abstract methods don't have code. } else if (annotations::MethodIsNeverCompile(dex_file, dex_file.GetClassDef(class_def_idx), method_idx)) { // Method is annotated with @NeverCompile and should not be compiled. } else { const CompilerOptions& compiler_options = driver->GetCompilerOptions(); // Don't compile class initializers unless kEverything. bool compile = (compiler_options.GetCompilerFilter() == CompilerFilter::kEverything) || ((access_flags & kAccConstructor) == 0) || ((access_flags & kAccStatic) == 0); // Check if we should compile based on the profile. compile = compile && ShouldCompileBasedOnProfile(compiler_options, profile_index, method_ref); if (compile) { // NOTE: if compiler declines to compile this method, it will return null. compiled_method = driver->GetCompiler()->Compile(code_item, access_flags, invoke_type, class_def_idx, method_idx, class_loader, dex_file, dex_cache); ProfileMethodsCheck check_type = compiler_options.CheckProfiledMethodsCompiled(); if (UNLIKELY(check_type != ProfileMethodsCheck::kNone)) { DCHECK(ShouldCompileBasedOnProfile(compiler_options, profile_index, method_ref)); bool violation = (compiled_method == nullptr); if (violation) { std::ostringstream oss; oss << "Failed to compile " << method_ref.dex_file->PrettyMethod(method_ref.index) << "[" << method_ref.dex_file->GetLocation() << "]" << " as expected by profile"; switch (check_type) { case ProfileMethodsCheck::kNone: break; case ProfileMethodsCheck::kLog: LOG(ERROR) << oss.str(); break; case ProfileMethodsCheck::kAbort: LOG(FATAL_WITHOUT_ABORT) << oss.str(); _exit(1); } } } } } return compiled_method; }; CompileMethodHarness(self, driver, code_item, access_flags, invoke_type, class_def_idx, method_idx, class_loader, dex_file, dex_cache, quick_fn); } void CompilerDriver::Resolve(jobject class_loader, const std::vector<const DexFile*>& dex_files, TimingLogger* timings) { // Resolution allocates classes and needs to run single-threaded to be deterministic. bool force_determinism = GetCompilerOptions().IsForceDeterminism(); ThreadPool* resolve_thread_pool = force_determinism ? single_thread_pool_.get() : parallel_thread_pool_.get(); size_t resolve_thread_count = force_determinism ? 1U : parallel_thread_count_; for (size_t i = 0; i != dex_files.size(); ++i) { const DexFile* dex_file = dex_files[i]; CHECK(dex_file != nullptr); ResolveDexFile(class_loader, *dex_file, resolve_thread_pool, resolve_thread_count, timings); } } void CompilerDriver::ResolveConstStrings(const std::vector<const DexFile*>& dex_files, bool only_startup_strings, TimingLogger* timings) { const ProfileCompilationInfo* profile_compilation_info = GetCompilerOptions().GetProfileCompilationInfo(); if (only_startup_strings && profile_compilation_info == nullptr) { // If there is no profile, don't resolve any strings. Resolving all of the strings in the image // will cause a bloated app image and slow down startup. return; } ScopedObjectAccess soa(Thread::Current()); StackHandleScope<1> hs(soa.Self()); ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); MutableHandle<mirror::DexCache> dex_cache(hs.NewHandle<mirror::DexCache>(nullptr)); size_t num_instructions = 0u; for (const DexFile* dex_file : dex_files) { dex_cache.Assign(class_linker->FindDexCache(soa.Self(), *dex_file)); TimingLogger::ScopedTiming t("Resolve const-string Strings", timings); ProfileCompilationInfo::ProfileIndexType profile_index = ProfileCompilationInfo::MaxProfileIndex(); if (profile_compilation_info != nullptr) { profile_index = profile_compilation_info->FindDexFile(*dex_file); if (profile_index == ProfileCompilationInfo::MaxProfileIndex()) { // We have a `ProfileCompilationInfo` but no data for this dex file. // The code below would not find any method to process. continue; } } // TODO: Implement a profile-based filter for the boot image. See b/76145463. for (ClassAccessor accessor : dex_file->GetClasses()) { // Skip methods that failed to verify since they may contain invalid Dex code. if (GetClassStatus(ClassReference(dex_file, accessor.GetClassDefIndex())) < ClassStatus::kRetryVerificationAtRuntime) { continue; } for (const ClassAccessor::Method& method : accessor.GetMethods()) { if (profile_compilation_info != nullptr) { DCHECK_NE(profile_index, ProfileCompilationInfo::MaxProfileIndex()); // There can be at most one class initializer in a class, so we shall not // call `ProfileCompilationInfo::ContainsClass()` more than once per class. constexpr uint32_t kMask = kAccConstructor | kAccStatic; const bool is_startup_clinit = (method.GetAccessFlags() & kMask) == kMask && profile_compilation_info->ContainsClass(profile_index, accessor.GetClassIdx()); if (!is_startup_clinit) { uint32_t method_index = method.GetIndex(); bool process_method = only_startup_strings ? profile_compilation_info->IsStartupMethod(profile_index, method_index) : profile_compilation_info->IsMethodInProfile(profile_index, method_index); if (!process_method) { continue; } } } // Resolve const-strings in the code. Done to have deterministic allocation behavior. Right // now this is single-threaded for simplicity. // TODO: Collect the relevant string indices in parallel, then allocate them sequentially // in a stable order. for (const DexInstructionPcPair& inst : method.GetInstructions()) { switch (inst->Opcode()) { case Instruction::CONST_STRING: case Instruction::CONST_STRING_JUMBO: { dex::StringIndex string_index((inst->Opcode() == Instruction::CONST_STRING) ? inst->VRegB_21c() : inst->VRegB_31c()); ObjPtr<mirror::String> string = class_linker->ResolveString(string_index, dex_cache); CHECK(string != nullptr) << "Could not allocate a string when forcing determinism"; ++num_instructions; break; } default: break; } } } } } VLOG(compiler) << "Resolved " << num_instructions << " const string instructions"; } // Initialize type check bit strings for check-cast and instance-of in the code. Done to have // deterministic allocation behavior. Right now this is single-threaded for simplicity. // TODO: Collect the relevant type indices in parallel, then process them sequentially in a // stable order. static void InitializeTypeCheckBitstrings(CompilerDriver* driver, ClassLinker* class_linker, Handle<mirror::DexCache> dex_cache, const DexFile& dex_file, const ClassAccessor::Method& method) REQUIRES_SHARED(Locks::mutator_lock_) { for (const DexInstructionPcPair& inst : method.GetInstructions()) { switch (inst->Opcode()) { case Instruction::CHECK_CAST: case Instruction::INSTANCE_OF: { dex::TypeIndex type_index( (inst->Opcode() == Instruction::CHECK_CAST) ? inst->VRegB_21c() : inst->VRegC_22c()); const char* descriptor = dex_file.GetTypeDescriptor(type_index); // We currently do not use the bitstring type check for array or final (including // primitive) classes. We may reconsider this in future if it's deemed to be beneficial. // And we cannot use it for classes outside the boot image as we do not know the runtime // value of their bitstring when compiling (it may not even get assigned at runtime). if (descriptor[0] == 'L' && driver->GetCompilerOptions().IsImageClass(descriptor)) { ObjPtr<mirror::Class> klass = class_linker->LookupResolvedType(type_index, dex_cache.Get(), /* class_loader= */ nullptr); CHECK(klass != nullptr) << descriptor << " should have been previously resolved."; // Now assign the bitstring if the class is not final. Keep this in sync with sharpening. if (!klass->IsFinal()) { MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_); SubtypeCheck<ObjPtr<mirror::Class>>::EnsureAssigned(klass); } } break; } default: break; } } } static void InitializeTypeCheckBitstrings(CompilerDriver* driver, const std::vector<const DexFile*>& dex_files, TimingLogger* timings) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<1> hs(soa.Self()); ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); MutableHandle<mirror::DexCache> dex_cache(hs.NewHandle<mirror::DexCache>(nullptr)); for (const DexFile* dex_file : dex_files) { dex_cache.Assign(class_linker->FindDexCache(soa.Self(), *dex_file)); TimingLogger::ScopedTiming t("Initialize type check bitstrings", timings); for (ClassAccessor accessor : dex_file->GetClasses()) { // Direct and virtual methods. for (const ClassAccessor::Method& method : accessor.GetMethods()) { InitializeTypeCheckBitstrings(driver, class_linker, dex_cache, *dex_file, method); } } } } inline void CompilerDriver::CheckThreadPools() { DCHECK(parallel_thread_pool_ != nullptr); DCHECK(single_thread_pool_ != nullptr); } static void EnsureVerifiedOrVerifyAtRuntime(jobject jclass_loader, const std::vector<const DexFile*>& dex_files) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<2> hs(soa.Self()); Handle<mirror::ClassLoader> class_loader( hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader))); MutableHandle<mirror::Class> cls(hs.NewHandle<mirror::Class>(nullptr)); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); for (const DexFile* dex_file : dex_files) { for (ClassAccessor accessor : dex_file->GetClasses()) { cls.Assign(class_linker->FindClass(soa.Self(), accessor.GetDescriptor(), class_loader)); if (cls == nullptr) { soa.Self()->ClearException(); } else if (&cls->GetDexFile() == dex_file) { DCHECK(cls->IsErroneous() || cls->IsVerified() || cls->ShouldVerifyAtRuntime() || cls->IsVerifiedNeedsAccessChecks()) << cls->PrettyClass() << " " << cls->GetStatus(); } } } } void CompilerDriver::PrepareDexFilesForOatFile([[maybe_unused]] TimingLogger* timings) { compiled_classes_.AddDexFiles(GetCompilerOptions().GetDexFilesForOatFile()); } class CreateConflictTablesVisitor : public ClassVisitor { public: explicit CreateConflictTablesVisitor(VariableSizedHandleScope& hs) : hs_(hs) {} bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) { if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) { return true; } // Collect handles since there may be thread suspension in future EnsureInitialized. to_visit_.push_back(hs_.NewHandle(klass)); return true; } void FillAllIMTAndConflictTables() REQUIRES_SHARED(Locks::mutator_lock_) { ScopedAssertNoThreadSuspension ants(__FUNCTION__); for (Handle<mirror::Class> c : to_visit_) { // Create the conflict tables. FillIMTAndConflictTables(c.Get()); } } private: void FillIMTAndConflictTables(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) { if (!klass->ShouldHaveImt()) { return; } if (visited_classes_.find(klass.Ptr()) != visited_classes_.end()) { return; } if (klass->HasSuperClass()) { FillIMTAndConflictTables(klass->GetSuperClass()); } if (!klass->IsTemp()) { Runtime::Current()->GetClassLinker()->FillIMTAndConflictTables(klass); } visited_classes_.insert(klass.Ptr()); } VariableSizedHandleScope& hs_; std::vector<Handle<mirror::Class>> to_visit_; HashSet<mirror::Class*> visited_classes_; }; void CompilerDriver::PreCompile(jobject class_loader, const std::vector<const DexFile*>& dex_files, TimingLogger* timings, /*inout*/ HashSet<std::string>* image_classes) { CheckThreadPools(); VLOG(compiler) << "Before precompile " << GetMemoryUsageString(false); // Precompile: // 1) Load image classes. // 2) Resolve all classes. // 3) For deterministic boot image, resolve strings for const-string instructions. // 4) Attempt to verify all classes. // 5) Attempt to initialize image classes, and trivially initialized classes. // 6) Update the set of image classes. // 7) For deterministic boot image, initialize bitstrings for type checking. LoadImageClasses(timings, class_loader, image_classes); VLOG(compiler) << "LoadImageClasses: " << GetMemoryUsageString(false); if (compiler_options_->AssumeClassesAreVerified()) { VLOG(compiler) << "Verify none mode specified, skipping verification."; SetVerified(class_loader, dex_files, timings); } else { DCHECK(compiler_options_->IsVerificationEnabled()); if (compiler_options_->IsAnyCompilationEnabled()) { // Avoid adding the dex files in the case where we aren't going to add compiled methods. // This reduces RAM usage for this case. for (const DexFile* dex_file : dex_files) { // Can be already inserted. This happens for gtests. if (!compiled_methods_.HaveDexFile(dex_file)) { compiled_methods_.AddDexFile(dex_file); } } } // Resolve eagerly for compilations always, and for verifications only if we are running with // multiple threads. const bool should_resolve_eagerly = compiler_options_->IsAnyCompilationEnabled() || (!GetCompilerOptions().IsForceDeterminism() && parallel_thread_count_ > 1); if (should_resolve_eagerly) { Resolve(class_loader, dex_files, timings); VLOG(compiler) << "Resolve: " << GetMemoryUsageString(false); } Verify(class_loader, dex_files, timings); VLOG(compiler) << "Verify: " << GetMemoryUsageString(false); if (GetCompilerOptions().IsForceDeterminism() && (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension())) { // Resolve strings from const-string. Do this now to have a deterministic image. ResolveConstStrings(dex_files, /*only_startup_strings=*/ false, timings); VLOG(compiler) << "Resolve const-strings: " << GetMemoryUsageString(false); } else if (GetCompilerOptions().ResolveStartupConstStrings()) { ResolveConstStrings(dex_files, /*only_startup_strings=*/ true, timings); } if (had_hard_verifier_failure_ && GetCompilerOptions().AbortOnHardVerifierFailure()) { // Avoid dumping threads. Even if we shut down the thread pools, there will still be three // instances of this thread's stack. LOG(FATAL_WITHOUT_ABORT) << "Had a hard failure verifying all classes, and was asked to abort " << "in such situations. Please check the log."; _exit(1); } else if (number_of_soft_verifier_failures_ > 0 && GetCompilerOptions().AbortOnSoftVerifierFailure()) { LOG(FATAL_WITHOUT_ABORT) << "Had " << number_of_soft_verifier_failures_ << " soft failure(s) " << "verifying all classes, and was asked to abort in such situations. " << "Please check the log."; _exit(1); } if (GetCompilerOptions().IsAppImage() && had_hard_verifier_failure_) { // Prune erroneous classes and classes that depend on them. UpdateImageClasses(timings, image_classes); VLOG(compiler) << "verify/UpdateImageClasses: " << GetMemoryUsageString(false); } } if (GetCompilerOptions().IsGeneratingImage()) { // We can only initialize classes when their verification bit is set. if (compiler_options_->AssumeClassesAreVerified() || compiler_options_->IsVerificationEnabled()) { if (kIsDebugBuild) { EnsureVerifiedOrVerifyAtRuntime(class_loader, dex_files); } InitializeClasses(class_loader, dex_files, timings); VLOG(compiler) << "InitializeClasses: " << GetMemoryUsageString(false); } { // Create conflict tables, as the runtime expects boot image classes to // always have their conflict tables filled. ScopedObjectAccess soa(Thread::Current()); VariableSizedHandleScope hs(soa.Self()); CreateConflictTablesVisitor visitor(hs); Runtime::Current()->GetClassLinker()->VisitClassesWithoutClassesLock(&visitor); visitor.FillAllIMTAndConflictTables(); } if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) { UpdateImageClasses(timings, image_classes); VLOG(compiler) << "UpdateImageClasses: " << GetMemoryUsageString(false); } if (kBitstringSubtypeCheckEnabled && GetCompilerOptions().IsForceDeterminism() && GetCompilerOptions().IsBootImage()) { // Initialize type check bit string used by check-cast and instanceof. // Do this now to have a deterministic image. // Note: This is done after UpdateImageClasses() at it relies on the image // classes to be final. InitializeTypeCheckBitstrings(this, dex_files, timings); } } } class ResolveCatchBlockExceptionsClassVisitor : public ClassVisitor { public: explicit ResolveCatchBlockExceptionsClassVisitor(Thread* self) : hs_(self), dex_file_records_(), unprocessed_classes_(), exception_types_to_resolve_(), boot_images_start_(Runtime::Current()->GetHeap()->GetBootImagesStartAddress()), boot_images_size_(Runtime::Current()->GetHeap()->GetBootImagesSize()) {} bool operator()(ObjPtr<mirror::Class> c) override REQUIRES_SHARED(Locks::mutator_lock_) { // Filter out classes from boot images we're compiling against. // These have been processed when we compiled those boot images. if (reinterpret_cast32<uint32_t>(c.Ptr()) - boot_images_start_ < boot_images_size_) { DCHECK(Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(c)); return true; } // Filter out classes without methods. // These include primitive types and array types which have no dex file. if (c->GetMethodsPtr() == nullptr) { return true; } auto it = dex_file_records_.find(&c->GetDexFile()); if (it != dex_file_records_.end()) { DexFileRecord& record = it->second; DCHECK_EQ(c->GetDexCache(), record.GetDexCache().Get()); DCHECK_EQ(c->GetClassLoader(), record.GetClassLoader().Get()); if (record.IsProcessedClass(c)) { return true; } } unprocessed_classes_.push_back(c); return true; } void FindAndResolveExceptionTypes(Thread* self, ClassLinker* class_linker) REQUIRES_SHARED(Locks::mutator_lock_) { // If we try to resolve any exception types, we need to repeat the process. // Even if we failed to resolve an exception type, we could have resolved its supertype // or some implemented interfaces as a side-effect (the exception type could implement // another unresolved interface) and we need to visit methods of such new resolved // classes as they shall be recorded as image classes. while (FindExceptionTypesToResolve(class_linker)) { ResolveExceptionTypes(self, class_linker); } } private: class DexFileRecord { public: DexFileRecord(Handle<mirror::DexCache> dex_cache, Handle<mirror::ClassLoader> class_loader) REQUIRES_SHARED(Locks::mutator_lock_) : dex_cache_(dex_cache), class_loader_(class_loader), processed_classes_(/*start_bits=*/ dex_cache->GetDexFile()->NumClassDefs(), /*expandable=*/ false, Allocator::GetCallocAllocator()), processed_exception_types_(/*start_bits=*/ dex_cache->GetDexFile()->NumTypeIds(), /*expandable=*/ false, Allocator::GetCallocAllocator()) {} Handle<mirror::DexCache> GetDexCache() { return dex_cache_; } Handle<mirror::ClassLoader> GetClassLoader() { return class_loader_; } bool IsProcessedClass(ObjPtr<mirror::Class> c) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_LT(c->GetDexClassDefIndex(), dex_cache_->GetDexFile()->NumClassDefs()); return processed_classes_.IsBitSet(c->GetDexClassDefIndex()); } void MarkProcessedClass(ObjPtr<mirror::Class> c) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_LT(c->GetDexClassDefIndex(), dex_cache_->GetDexFile()->NumClassDefs()); processed_classes_.SetBit(c->GetDexClassDefIndex()); } bool IsProcessedExceptionType(dex::TypeIndex type_idx) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_LT(type_idx.index_, dex_cache_->GetDexFile()->NumTypeIds()); return processed_exception_types_.IsBitSet(type_idx.index_); } void MarkProcessedExceptionType(dex::TypeIndex type_idx) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_LT(type_idx.index_, dex_cache_->GetDexFile()->NumTypeIds()); processed_exception_types_.SetBit(type_idx.index_); } private: Handle<mirror::DexCache> dex_cache_; Handle<mirror::ClassLoader> class_loader_; BitVector processed_classes_; BitVector processed_exception_types_; }; struct ExceptionTypeReference { dex::TypeIndex exception_type_idx; Handle<mirror::DexCache> dex_cache; Handle<mirror::ClassLoader> class_loader; }; bool FindExceptionTypesToResolve(ClassLinker* class_linker) REQUIRES_SHARED(Locks::mutator_lock_); void ResolveExceptionTypes(Thread* self, ClassLinker* class_linker) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!exception_types_to_resolve_.empty()); for (auto [exception_type_idx, dex_cache, class_loader] : exception_types_to_resolve_) { ObjPtr<mirror::Class> exception_class = class_linker->ResolveType(exception_type_idx, dex_cache, class_loader); if (exception_class == nullptr) { VLOG(compiler) << "Failed to resolve exception class " << dex_cache->GetDexFile()->GetTypeDescriptorView(exception_type_idx); self->ClearException(); } else { DCHECK(GetClassRoot<mirror::Throwable>(class_linker)->IsAssignableFrom(exception_class)); } } exception_types_to_resolve_.clear(); } VariableSizedHandleScope hs_; SafeMap<const DexFile*, DexFileRecord> dex_file_records_; std::vector<ObjPtr<mirror::Class>> unprocessed_classes_; std::vector<ExceptionTypeReference> exception_types_to_resolve_; const uint32_t boot_images_start_; const uint32_t boot_images_size_; }; bool ResolveCatchBlockExceptionsClassVisitor::FindExceptionTypesToResolve( ClassLinker* class_linker) { // Thread suspension is not allowed while the `ResolveCatchBlockExceptionsClassVisitor` // is using a `std::vector<ObjPtr<mirror::Class>>`. ScopedAssertNoThreadSuspension ants(__FUNCTION__); DCHECK(unprocessed_classes_.empty()); class_linker->VisitClasses(this); if (unprocessed_classes_.empty()) { return false; } DCHECK(exception_types_to_resolve_.empty()); const PointerSize pointer_size = class_linker->GetImagePointerSize(); for (ObjPtr<mirror::Class> klass : unprocessed_classes_) { const DexFile* dex_file = &klass->GetDexFile(); DexFileRecord& record = dex_file_records_.GetOrCreate( dex_file, // NO_THREAD_SAFETY_ANALYSIS: Called from unannotated `SafeMap<>::GetOrCreate()`. [&]() NO_THREAD_SAFETY_ANALYSIS { return DexFileRecord(hs_.NewHandle(klass->GetDexCache()), hs_.NewHandle(klass->GetClassLoader())); }); DCHECK_EQ(klass->GetDexCache(), record.GetDexCache().Get()); DCHECK_EQ(klass->GetClassLoader(), record.GetClassLoader().Get()); DCHECK(!record.IsProcessedClass(klass)); record.MarkProcessedClass(klass); for (ArtMethod& method : klass->GetDeclaredMethods(pointer_size)) { if (method.GetCodeItem() == nullptr) { continue; // native or abstract method } CodeItemDataAccessor accessor(method.DexInstructionData()); if (accessor.TriesSize() == 0) { continue; // nothing to process } const uint8_t* handlers_ptr = accessor.GetCatchHandlerData(); size_t num_encoded_catch_handlers = DecodeUnsignedLeb128(&handlers_ptr); for (size_t i = 0; i < num_encoded_catch_handlers; i++) { CatchHandlerIterator iterator(handlers_ptr); for (; iterator.HasNext(); iterator.Next()) { dex::TypeIndex exception_type_idx = iterator.GetHandlerTypeIndex(); if (exception_type_idx.IsValid() && !record.IsProcessedExceptionType(exception_type_idx)) { record.MarkProcessedExceptionType(exception_type_idx); // Add to set of types to resolve if not resolved yet. ObjPtr<mirror::Class> type = class_linker->LookupResolvedType( exception_type_idx, record.GetDexCache().Get(), record.GetClassLoader().Get()); if (type == nullptr) { exception_types_to_resolve_.push_back( {exception_type_idx, record.GetDexCache(), record.GetClassLoader()}); } } } handlers_ptr = iterator.EndDataPointer(); } } } unprocessed_classes_.clear(); return !exception_types_to_resolve_.empty(); } static inline bool CanIncludeInCurrentImage(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(klass != nullptr); gc::Heap* heap = Runtime::Current()->GetHeap(); if (heap->GetBootImageSpaces().empty()) { return true; // We can include any class when compiling the primary boot image. } if (heap->ObjectIsInBootImageSpace(klass)) { return false; // Already included in the boot image we're compiling against. } return AotClassLinker::CanReferenceInBootImageExtensionOrAppImage(klass, heap); } class RecordImageClassesVisitor : public ClassVisitor { public: explicit RecordImageClassesVisitor(HashSet<std::string>* image_classes) : image_classes_(image_classes) {} bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) { bool resolved = klass->IsResolved(); DCHECK(resolved || klass->IsErroneousUnresolved()); bool can_include_in_image = LIKELY(resolved) && CanIncludeInCurrentImage(klass); std::string temp; std::string_view descriptor(klass->GetDescriptor(&temp)); if (can_include_in_image) { image_classes_->insert(std::string(descriptor)); // Does nothing if already present. } else { auto it = image_classes_->find(descriptor); if (it != image_classes_->end()) { VLOG(compiler) << "Removing " << (resolved ? "unsuitable" : "unresolved") << " class from image classes: " << descriptor; image_classes_->erase(it); } } return true; } private: HashSet<std::string>* const image_classes_; }; // Verify that classes which contain intrinsics methods are in the list of image classes. static void VerifyClassesContainingIntrinsicsAreImageClasses(HashSet<std::string>* image_classes) { #define CHECK_INTRINSIC_OWNER_CLASS(_, __, ___, ____, _____, ClassName, ______, _______) \ CHECK(image_classes->find(std::string_view(ClassName)) != image_classes->end()); ART_INTRINSICS_LIST(CHECK_INTRINSIC_OWNER_CLASS) #undef CHECK_INTRINSIC_OWNER_CLASS } // We need to put classes required by app class loaders to the boot image, // otherwise we would not be able to store app class loaders in app images. static void AddClassLoaderClasses(/* out */ HashSet<std::string>* image_classes) { ScopedObjectAccess soa(Thread::Current()); // Well known classes have been loaded and shall be added to image classes // by the `RecordImageClassesVisitor`. However, there are fields with array // types which we need to add to the image classes explicitly. ArtField* class_loader_array_fields[] = { WellKnownClasses::dalvik_system_BaseDexClassLoader_sharedLibraryLoaders, // BaseDexClassLoader.sharedLibraryLoadersAfter has the same array type as above. WellKnownClasses::dalvik_system_DexPathList_dexElements, }; for (ArtField* field : class_loader_array_fields) { const char* field_type_descriptor = field->GetTypeDescriptor(); DCHECK_EQ(field_type_descriptor[0], '['); image_classes->insert(field_type_descriptor); } } static void VerifyClassLoaderClassesAreImageClasses(/* out */ HashSet<std::string>* image_classes) { ScopedObjectAccess soa(Thread::Current()); ScopedAssertNoThreadSuspension sants(__FUNCTION__); ObjPtr<mirror::Class> class_loader_classes[] = { WellKnownClasses::dalvik_system_BaseDexClassLoader.Get(), WellKnownClasses::dalvik_system_DelegateLastClassLoader.Get(), WellKnownClasses::dalvik_system_DexClassLoader.Get(), WellKnownClasses::dalvik_system_DexFile.Get(), WellKnownClasses::dalvik_system_DexPathList.Get(), WellKnownClasses::dalvik_system_DexPathList__Element.Get(), WellKnownClasses::dalvik_system_InMemoryDexClassLoader.Get(), WellKnownClasses::dalvik_system_PathClassLoader.Get(), WellKnownClasses::java_lang_BootClassLoader.Get(), WellKnownClasses::java_lang_ClassLoader.Get(), }; for (ObjPtr<mirror::Class> klass : class_loader_classes) { std::string temp; std::string_view descriptor = klass->GetDescriptor(&temp); CHECK(image_classes->find(descriptor) != image_classes->end()); } ArtField* class_loader_fields[] = { WellKnownClasses::dalvik_system_BaseDexClassLoader_pathList, WellKnownClasses::dalvik_system_BaseDexClassLoader_sharedLibraryLoaders, WellKnownClasses::dalvik_system_BaseDexClassLoader_sharedLibraryLoadersAfter, WellKnownClasses::dalvik_system_DexFile_cookie, WellKnownClasses::dalvik_system_DexFile_fileName, WellKnownClasses::dalvik_system_DexPathList_dexElements, WellKnownClasses::dalvik_system_DexPathList__Element_dexFile, WellKnownClasses::java_lang_ClassLoader_parent, }; for (ArtField* field : class_loader_fields) { std::string_view field_type_descriptor = field->GetTypeDescriptor(); CHECK(image_classes->find(field_type_descriptor) != image_classes->end()); } } // Make a list of descriptors for classes to include in the image void CompilerDriver::LoadImageClasses(TimingLogger* timings, jobject class_loader, /*inout*/ HashSet<std::string>* image_classes) { CHECK(timings != nullptr); if (!GetCompilerOptions().IsGeneratingImage()) { return; } TimingLogger::ScopedTiming t("LoadImageClasses", timings); if (GetCompilerOptions().IsBootImage()) { // Image classes of intrinsics are loaded and shall be added // to image classes by the `RecordImageClassesVisitor`. // Add classes needed for storing class loaders in app images. AddClassLoaderClasses(image_classes); } // Make a first pass to load all classes explicitly listed in the profile. Thread* self = Thread::Current(); ScopedObjectAccess soa(self); StackHandleScope<2u> hs(self); Handle<mirror::ClassLoader> loader = hs.NewHandle(soa.Decode<mirror::ClassLoader>(class_loader)); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); CHECK(image_classes != nullptr); for (auto it = image_classes->begin(), end = image_classes->end(); it != end;) { const std::string& descriptor(*it); ObjPtr<mirror::Class> klass = class_linker->FindClass(self, descriptor.c_str(), loader); if (klass == nullptr) { VLOG(compiler) << "Failed to find class " << descriptor; it = image_classes->erase(it); // May cause some descriptors to be revisited. self->ClearException(); } else { ++it; } } // Resolve exception classes referenced by the loaded classes. The catch logic assumes // exceptions are resolved by the verifier when there is a catch block in an interested method. // Do this here so that exception classes appear to have been specified image classes. ResolveCatchBlockExceptionsClassVisitor resolve_exception_classes_visitor(self); resolve_exception_classes_visitor.FindAndResolveExceptionTypes(self, class_linker); // We walk the roots looking for classes so that we'll pick up the // above classes plus any classes they depend on such super // classes, interfaces, and the required ClassLinker roots. RecordImageClassesVisitor visitor(image_classes); class_linker->VisitClasses(&visitor); if (kIsDebugBuild && GetCompilerOptions().IsBootImage()) { VerifyClassesContainingIntrinsicsAreImageClasses(image_classes); VerifyClassLoaderClassesAreImageClasses(image_classes); } if (GetCompilerOptions().IsBootImage()) { CHECK(!image_classes->empty()); } } static void MaybeAddToImageClasses(Thread* self, ObjPtr<mirror::Class> klass, HashSet<std::string>* image_classes) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_EQ(self, Thread::Current()); DCHECK(klass->IsResolved()); Runtime* runtime = Runtime::Current(); gc::Heap* heap = runtime->GetHeap(); if (heap->ObjectIsInBootImageSpace(klass)) { // We're compiling a boot image extension and the class is already // in the boot image we're compiling against. return; } const PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize(); std::string temp; while (!klass->IsObjectClass()) { const char* descriptor = klass->GetDescriptor(&temp); if (image_classes->find(std::string_view(descriptor)) != image_classes->end()) { break; // Previously inserted. } image_classes->insert(descriptor); VLOG(compiler) << "Adding " << descriptor << " to image classes"; for (size_t i = 0, num_interfaces = klass->NumDirectInterfaces(); i != num_interfaces; ++i) { ObjPtr<mirror::Class> interface = klass->GetDirectInterface(i); DCHECK(interface != nullptr); MaybeAddToImageClasses(self, interface, image_classes); } for (auto& m : klass->GetVirtualMethods(pointer_size)) { MaybeAddToImageClasses(self, m.GetDeclaringClass(), image_classes); } if (klass->IsArrayClass()) { MaybeAddToImageClasses(self, klass->GetComponentType(), image_classes); } klass = klass->GetSuperClass(); } } // Keeps all the data for the update together. Also doubles as the reference visitor. // Note: we can use object pointers because we suspend all threads. class ClinitImageUpdate { public: ClinitImageUpdate(HashSet<std::string>* image_class_descriptors, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) : hs_(self), image_class_descriptors_(image_class_descriptors), self_(self) { CHECK(image_class_descriptors != nullptr); // Make sure nobody interferes with us. old_cause_ = self->StartAssertNoThreadSuspension("Boot image closure"); } ~ClinitImageUpdate() { // Allow others to suspend again. self_->EndAssertNoThreadSuspension(old_cause_); } // Visitor for VisitReferences. void operator()(ObjPtr<mirror::Object> object, MemberOffset field_offset, [[maybe_unused]] bool is_static) const REQUIRES_SHARED(Locks::mutator_lock_) { mirror::Object* ref = object->GetFieldObject<mirror::Object>(field_offset); if (ref != nullptr) { VisitClinitClassesObject(ref); } } // java.lang.ref.Reference visitor for VisitReferences. void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, [[maybe_unused]] ObjPtr<mirror::Reference> ref) const {} // Ignore class native roots. void VisitRootIfNonNull( [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {} void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {} void Walk() REQUIRES_SHARED(Locks::mutator_lock_) { // Find all the already-marked classes. WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_); FindImageClassesVisitor visitor(this); Runtime::Current()->GetClassLinker()->VisitClasses(&visitor); // Use the initial classes as roots for a search. for (Handle<mirror::Class> klass_root : image_classes_) { VisitClinitClassesObject(klass_root.Get()); } ScopedAssertNoThreadSuspension ants(__FUNCTION__); for (Handle<mirror::Class> h_klass : to_insert_) { MaybeAddToImageClasses(self_, h_klass.Get(), image_class_descriptors_); } } private: class FindImageClassesVisitor : public ClassVisitor { public: explicit FindImageClassesVisitor(ClinitImageUpdate* data) : data_(data) {} bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) { bool resolved = klass->IsResolved(); DCHECK(resolved || klass->IsErroneousUnresolved()); bool can_include_in_image = LIKELY(resolved) && LIKELY(!klass->IsErroneous()) && CanIncludeInCurrentImage(klass); std::string temp; std::string_view descriptor(klass->GetDescriptor(&temp)); auto it = data_->image_class_descriptors_->find(descriptor); if (it != data_->image_class_descriptors_->end()) { if (can_include_in_image) { data_->image_classes_.push_back(data_->hs_.NewHandle(klass)); } else { VLOG(compiler) << "Removing " << (resolved ? "unsuitable" : "unresolved") << " class from image classes: " << descriptor; data_->image_class_descriptors_->erase(it); } } else if (can_include_in_image) { // Check whether the class is initialized and has a clinit or static fields. // Such classes must be kept too. if (klass->IsInitialized()) { PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); if (klass->FindClassInitializer(pointer_size) != nullptr || klass->NumStaticFields() != 0) { DCHECK(!Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass->GetDexCache())) << klass->PrettyDescriptor(); data_->image_classes_.push_back(data_->hs_.NewHandle(klass)); } } } return true; } private: ClinitImageUpdate* const data_; }; void VisitClinitClassesObject(mirror::Object* object) const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(object != nullptr); if (marked_objects_.find(object) != marked_objects_.end()) { // Already processed. return; } // Mark it. marked_objects_.insert(object); if (object->IsClass()) { // Add to the TODO list since MaybeAddToImageClasses may cause thread suspension. Thread // suspensionb is not safe to do in VisitObjects or VisitReferences. to_insert_.push_back(hs_.NewHandle(object->AsClass())); } else { // Else visit the object's class. VisitClinitClassesObject(object->GetClass()); } // If it is not a DexCache, visit all references. if (!object->IsDexCache()) { object->VisitReferences(*this, *this); } } mutable VariableSizedHandleScope hs_; mutable std::vector<Handle<mirror::Class>> to_insert_; mutable HashSet<mirror::Object*> marked_objects_; HashSet<std::string>* const image_class_descriptors_; std::vector<Handle<mirror::Class>> image_classes_; Thread* const self_; const char* old_cause_; DISALLOW_COPY_AND_ASSIGN(ClinitImageUpdate); }; void CompilerDriver::UpdateImageClasses(TimingLogger* timings, /*inout*/ HashSet<std::string>* image_classes) { DCHECK(GetCompilerOptions().IsGeneratingImage()); TimingLogger::ScopedTiming t("UpdateImageClasses", timings); // Suspend all threads. ScopedSuspendAll ssa(__FUNCTION__); ClinitImageUpdate update(image_classes, Thread::Current()); // Do the marking. update.Walk(); } void CompilerDriver::ProcessedInstanceField(bool resolved) { if (!resolved) { stats_->UnresolvedInstanceField(); } else { stats_->ResolvedInstanceField(); } } void CompilerDriver::ProcessedStaticField(bool resolved, bool local) { if (!resolved) { stats_->UnresolvedStaticField(); } else if (local) { stats_->ResolvedLocalStaticField(); } else { stats_->ResolvedStaticField(); } } ArtField* CompilerDriver::ComputeInstanceFieldInfo(uint32_t field_idx, const DexCompilationUnit* mUnit, bool is_put, const ScopedObjectAccess& soa) { // Try to resolve the field and compiling method's class. ArtField* resolved_field; ObjPtr<mirror::Class> referrer_class; Handle<mirror::DexCache> dex_cache(mUnit->GetDexCache()); { Handle<mirror::ClassLoader> class_loader = mUnit->GetClassLoader(); resolved_field = ResolveField(soa, dex_cache, class_loader, field_idx, /* is_static= */ false); referrer_class = resolved_field != nullptr ? ResolveCompilingMethodsClass(soa, dex_cache, class_loader, mUnit) : nullptr; } bool can_link = false; if (resolved_field != nullptr && referrer_class != nullptr) { std::pair<bool, bool> fast_path = IsFastInstanceField( dex_cache.Get(), referrer_class, resolved_field, field_idx); can_link = is_put ? fast_path.second : fast_path.first; } ProcessedInstanceField(can_link); return can_link ? resolved_field : nullptr; } bool CompilerDriver::ComputeInstanceFieldInfo(uint32_t field_idx, const DexCompilationUnit* mUnit, bool is_put, MemberOffset* field_offset, bool* is_volatile) { ScopedObjectAccess soa(Thread::Current()); ArtField* resolved_field = ComputeInstanceFieldInfo(field_idx, mUnit, is_put, soa); if (resolved_field == nullptr) { // Conservative defaults. *is_volatile = true; *field_offset = MemberOffset(static_cast<size_t>(-1)); return false; } else { *is_volatile = resolved_field->IsVolatile(); *field_offset = resolved_field->GetOffset(); return true; } } class CompilationVisitor { public: virtual ~CompilationVisitor() {} virtual void Visit(size_t index) = 0; }; class ParallelCompilationManager { public: ParallelCompilationManager(ClassLinker* class_linker, jobject class_loader, CompilerDriver* compiler, const DexFile* dex_file, ThreadPool* thread_pool) : index_(0), class_linker_(class_linker), class_loader_(class_loader), compiler_(compiler), dex_file_(dex_file), thread_pool_(thread_pool) {} ClassLinker* GetClassLinker() const { CHECK(class_linker_ != nullptr); return class_linker_; } jobject GetClassLoader() const { return class_loader_; } CompilerDriver* GetCompiler() const { CHECK(compiler_ != nullptr); return compiler_; } const DexFile* GetDexFile() const { CHECK(dex_file_ != nullptr); return dex_file_; } void ForAll(size_t begin, size_t end, CompilationVisitor* visitor, size_t work_units) REQUIRES(!*Locks::mutator_lock_) { ForAllLambda(begin, end, [visitor](size_t index) { visitor->Visit(index); }, work_units); } template <typename Fn> void ForAllLambda(size_t begin, size_t end, Fn fn, size_t work_units) REQUIRES(!*Locks::mutator_lock_) { Thread* self = Thread::Current(); self->AssertNoPendingException(); CHECK_GT(work_units, 0U); index_.store(begin, std::memory_order_relaxed); for (size_t i = 0; i < work_units; ++i) { thread_pool_->AddTask(self, new ForAllClosureLambda<Fn>(this, end, fn)); } thread_pool_->StartWorkers(self); // Ensure we're suspended while we're blocked waiting for the other threads to finish (worker // thread destructor's called below perform join). CHECK_NE(self->GetState(), ThreadState::kRunnable); // Wait for all the worker threads to finish. thread_pool_->Wait(self, true, false); // And stop the workers accepting jobs. thread_pool_->StopWorkers(self); } size_t NextIndex() { return index_.fetch_add(1, std::memory_order_seq_cst); } private: template <typename Fn> class ForAllClosureLambda : public Task { public: ForAllClosureLambda(ParallelCompilationManager* manager, size_t end, Fn fn) : manager_(manager), end_(end), fn_(fn) {} void Run(Thread* self) override { while (true) { const size_t index = manager_->NextIndex(); if (UNLIKELY(index >= end_)) { break; } fn_(index); self->AssertNoPendingException(); } } void Finalize() override { delete this; } private: ParallelCompilationManager* const manager_; const size_t end_; Fn fn_; }; AtomicInteger index_; ClassLinker* const class_linker_; const jobject class_loader_; CompilerDriver* const compiler_; const DexFile* const dex_file_; ThreadPool* const thread_pool_; DISALLOW_COPY_AND_ASSIGN(ParallelCompilationManager); }; // A fast version of SkipClass above if the class pointer is available // that avoids the expensive FindInClassPath search. static bool SkipClass(jobject class_loader, const DexFile& dex_file, ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(klass != nullptr); const DexFile& original_dex_file = klass->GetDexFile(); if (&dex_file != &original_dex_file) { if (class_loader == nullptr) { LOG(WARNING) << "Skipping class " << klass->PrettyDescriptor() << " from " << dex_file.GetLocation() << " previously found in " << original_dex_file.GetLocation(); } return true; } return false; } static void DCheckResolveException(mirror::Throwable* exception) REQUIRES_SHARED(Locks::mutator_lock_) { if (!kIsDebugBuild) { return; } std::string temp; const char* descriptor = exception->GetClass()->GetDescriptor(&temp); const char* expected_exceptions[] = { "Ljava/lang/ClassFormatError;", "Ljava/lang/ClassCircularityError;", "Ljava/lang/IllegalAccessError;", "Ljava/lang/IncompatibleClassChangeError;", "Ljava/lang/InstantiationError;", "Ljava/lang/LinkageError;", "Ljava/lang/NoClassDefFoundError;", "Ljava/lang/VerifyError;", }; bool found = false; for (size_t i = 0; (found == false) && (i < arraysize(expected_exceptions)); ++i) { if (strcmp(descriptor, expected_exceptions[i]) == 0) { found = true; } } if (!found) { LOG(FATAL) << "Unexpected exception " << exception->Dump(); } } template <bool kApp> class ResolveTypeVisitor : public CompilationVisitor { public: explicit ResolveTypeVisitor(const ParallelCompilationManager* manager) : manager_(manager) { } void Visit(size_t index) override REQUIRES(!Locks::mutator_lock_) { const DexFile& dex_file = *manager_->GetDexFile(); // For boot images we resolve all referenced types, such as arrays, // whereas for applications just those with classdefs. dex::TypeIndex type_idx = kApp ? dex_file.GetClassDef(index).class_idx_ : dex::TypeIndex(index); ClassLinker* class_linker = manager_->GetClassLinker(); ScopedObjectAccess soa(Thread::Current()); StackHandleScope<kApp ? 4u : 2u> hs(soa.Self()); Handle<mirror::ClassLoader> class_loader( hs.NewHandle(soa.Decode<mirror::ClassLoader>(manager_->GetClassLoader()))); // TODO: Fix tests that require `RegisterDexFile()` and use `FindDexCache()` in all cases. Handle<mirror::DexCache> dex_cache = hs.NewHandle( kApp ? class_linker->FindDexCache(soa.Self(), dex_file) : class_linker->RegisterDexFile(dex_file, class_loader.Get())); DCHECK(dex_cache != nullptr); // Resolve the class. ObjPtr<mirror::Class> klass = class_linker->ResolveType(type_idx, dex_cache, class_loader); if (klass == nullptr) { mirror::Throwable* exception = soa.Self()->GetException(); DCHECK(exception != nullptr); VLOG(compiler) << "Exception during type resolution: " << exception->Dump(); if (exception->GetClass() == WellKnownClasses::java_lang_OutOfMemoryError.Get()) { // There's little point continuing compilation if the heap is exhausted. // Trying to do so would also introduce non-deterministic compilation results. LOG(FATAL) << "Out of memory during type resolution for compilation"; } DCheckResolveException(exception); soa.Self()->ClearException(); } else { if (kApp && manager_->GetCompiler()->GetCompilerOptions().IsCheckLinkageConditions()) { Handle<mirror::Class> hklass = hs.NewHandle(klass); bool is_fatal = manager_->GetCompiler()->GetCompilerOptions().IsCrashOnLinkageViolation(); Handle<mirror::ClassLoader> defining_class_loader = hs.NewHandle(hklass->GetClassLoader()); if (defining_class_loader.Get() != class_loader.Get()) { // Redefinition via different ClassLoaders. // This OptStat stuff is to enable logging from the APK scanner. if (is_fatal) LOG(FATAL) << "OptStat#" << hklass->PrettyClassAndClassLoader() << ": 1"; else LOG(ERROR) << "LINKAGE VIOLATION: " << hklass->PrettyClassAndClassLoader() << " was redefined"; } // Check that the current class is not a subclass of java.lang.ClassLoader. if (!hklass->IsInterface() && hklass->IsSubClass(class_linker->FindClass(soa.Self(), "Ljava/lang/ClassLoader;", defining_class_loader))) { // Subclassing of java.lang.ClassLoader. // This OptStat stuff is to enable logging from the APK scanner. if (is_fatal) { LOG(FATAL) << "OptStat#" << hklass->PrettyClassAndClassLoader() << ": 1"; } else { LOG(ERROR) << "LINKAGE VIOLATION: " << hklass->PrettyClassAndClassLoader() << " is a subclass of java.lang.ClassLoader"; } } CHECK(hklass->IsResolved()) << hklass->PrettyClass(); } } } private: const ParallelCompilationManager* const manager_; }; void CompilerDriver::ResolveDexFile(jobject class_loader, const DexFile& dex_file, ThreadPool* thread_pool, size_t thread_count, TimingLogger* timings) { ScopedTrace trace(__FUNCTION__); TimingLogger::ScopedTiming t("Resolve Types", timings); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); // TODO: we could resolve strings here, although the string table is largely filled with class // and method names. ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, thread_pool); // For boot images we resolve all referenced types, such as arrays, // whereas for applications just those with classdefs. if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) { ResolveTypeVisitor</*kApp=*/ false> visitor(&context); context.ForAll(0, dex_file.NumTypeIds(), &visitor, thread_count); } else { ResolveTypeVisitor</*kApp=*/ true> visitor(&context); context.ForAll(0, dex_file.NumClassDefs(), &visitor, thread_count); } } void CompilerDriver::SetVerified(jobject class_loader, const std::vector<const DexFile*>& dex_files, TimingLogger* timings) { // This can be run in parallel. for (const DexFile* dex_file : dex_files) { CHECK(dex_file != nullptr); SetVerifiedDexFile(class_loader, *dex_file, parallel_thread_pool_.get(), parallel_thread_count_, timings); } } static void LoadAndUpdateStatus(const ClassAccessor& accessor, ClassStatus status, Handle<mirror::ClassLoader> class_loader, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<1> hs(self); const char* descriptor = accessor.GetDescriptor(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); Handle<mirror::Class> cls(hs.NewHandle<mirror::Class>( class_linker->FindClass(self, descriptor, class_loader))); if (cls != nullptr) { // Check that the class is resolved with the current dex file. We might get // a boot image class, or a class in a different dex file for multidex, and // we should not update the status in that case. if (&cls->GetDexFile() == &accessor.GetDexFile()) { VLOG(compiler) << "Updating class status of " << std::string(descriptor) << " to " << status; ObjectLock<mirror::Class> lock(self, cls); mirror::Class::SetStatus(cls, status, self); } } else { DCHECK(self->IsExceptionPending()); self->ClearException(); } } bool CompilerDriver::FastVerify(jobject jclass_loader, const std::vector<const DexFile*>& dex_files, TimingLogger* timings) { CompilerCallbacks* callbacks = Runtime::Current()->GetCompilerCallbacks(); verifier::VerifierDeps* verifier_deps = callbacks->GetVerifierDeps(); // If there exist VerifierDeps that aren't the ones we just created to output, use them to verify. if (verifier_deps == nullptr || verifier_deps->OutputOnly()) { return false; } TimingLogger::ScopedTiming t("Fast Verify", timings); ScopedObjectAccess soa(Thread::Current()); StackHandleScope<2> hs(soa.Self()); Handle<mirror::ClassLoader> class_loader( hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader))); std::string error_msg; verifier_deps->ValidateDependenciesAndUpdateStatus( soa.Self(), class_loader, dex_files); bool compiler_only_verifies = !GetCompilerOptions().IsAnyCompilationEnabled() && !GetCompilerOptions().IsGeneratingImage(); const bool is_generating_image = GetCompilerOptions().IsGeneratingImage(); // We successfully validated the dependencies, now update class status // of verified classes. Note that the dependencies also record which classes // could not be fully verified; we could try again, but that would hurt verification // time. So instead we assume these classes still need to be verified at // runtime. for (const DexFile* dex_file : dex_files) { // Fetch the list of verified classes. const std::vector<bool>& verified_classes = verifier_deps->GetVerifiedClasses(*dex_file); DCHECK_EQ(verified_classes.size(), dex_file->NumClassDefs()); for (ClassAccessor accessor : dex_file->GetClasses()) { ClassStatus status = verified_classes[accessor.GetClassDefIndex()] ? ClassStatus::kVerifiedNeedsAccessChecks : ClassStatus::kRetryVerificationAtRuntime; if (compiler_only_verifies) { // Just update the compiled_classes_ map. The compiler doesn't need to resolve // the type. ClassReference ref(dex_file, accessor.GetClassDefIndex()); const ClassStatus existing = ClassStatus::kNotReady; // Note: when dex files are compiled inidividually, the class may have // been verified in a previous stage. This means this insertion can // fail, but that's OK. compiled_classes_.Insert(ref, existing, status); } else { if (is_generating_image && status == ClassStatus::kVerifiedNeedsAccessChecks && GetCompilerOptions().IsImageClass(accessor.GetDescriptor())) { // If the class will be in the image, we can rely on the ArtMethods // telling that they need access checks. VLOG(compiler) << "Promoting " << std::string(accessor.GetDescriptor()) << " from needs access checks to verified given it is an image class"; status = ClassStatus::kVerified; } // Update the class status, so later compilation stages know they don't need to verify // the class. LoadAndUpdateStatus(accessor, status, class_loader, soa.Self()); } // Vdex marks class as unverified for two reasons only: // 1. It has a hard failure, or // 2. One of its method needs lock counting. // // The optimizing compiler expects a method to not have a hard failure before // compiling it, so for simplicity just disable any compilation of methods // of these classes. if (status == ClassStatus::kRetryVerificationAtRuntime) { ClassReference ref(dex_file, accessor.GetClassDefIndex()); callbacks->AddUncompilableClass(ref); } } } return true; } void CompilerDriver::Verify(jobject jclass_loader, const std::vector<const DexFile*>& dex_files, TimingLogger* timings) { if (FastVerify(jclass_loader, dex_files, timings)) { return; } // If there is no existing `verifier_deps` (because of non-existing vdex), or // the existing `verifier_deps` is not valid anymore, create a new one. The // verifier will need it to record the new dependencies. Then dex2oat can update // the vdex file with these new dependencies. // Dex2oat creates the verifier deps. // Create the main VerifierDeps, and set it to this thread. verifier::VerifierDeps* main_verifier_deps = Runtime::Current()->GetCompilerCallbacks()->GetVerifierDeps(); // Verifier deps can be null when unit testing. if (main_verifier_deps != nullptr) { Thread::Current()->SetVerifierDeps(main_verifier_deps); // Create per-thread VerifierDeps to avoid contention on the main one. // We will merge them after verification. for (ThreadPoolWorker* worker : parallel_thread_pool_->GetWorkers()) { worker->GetThread()->SetVerifierDeps( new verifier::VerifierDeps(GetCompilerOptions().GetDexFilesForOatFile())); } } // Verification updates VerifierDeps and needs to run single-threaded to be deterministic. bool force_determinism = GetCompilerOptions().IsForceDeterminism(); ThreadPool* verify_thread_pool = force_determinism ? single_thread_pool_.get() : parallel_thread_pool_.get(); size_t verify_thread_count = force_determinism ? 1U : parallel_thread_count_; for (const DexFile* dex_file : dex_files) { CHECK(dex_file != nullptr); VerifyDexFile(jclass_loader, *dex_file, verify_thread_pool, verify_thread_count, timings); } if (main_verifier_deps != nullptr) { // Merge all VerifierDeps into the main one. for (ThreadPoolWorker* worker : parallel_thread_pool_->GetWorkers()) { std::unique_ptr<verifier::VerifierDeps> thread_deps(worker->GetThread()->GetVerifierDeps()); worker->GetThread()->SetVerifierDeps(nullptr); // We just took ownership. main_verifier_deps->MergeWith(std::move(thread_deps), GetCompilerOptions().GetDexFilesForOatFile()); } Thread::Current()->SetVerifierDeps(nullptr); } } class VerifyClassVisitor : public CompilationVisitor { public: VerifyClassVisitor(const ParallelCompilationManager* manager, verifier::HardFailLogMode log_level) : manager_(manager), log_level_(log_level), sdk_version_(Runtime::Current()->GetTargetSdkVersion()) {} void Visit(size_t class_def_index) REQUIRES(!Locks::mutator_lock_) override { ScopedTrace trace(__FUNCTION__); ScopedObjectAccess soa(Thread::Current()); const DexFile& dex_file = *manager_->GetDexFile(); const dex::ClassDef& class_def = dex_file.GetClassDef(class_def_index); const char* descriptor = dex_file.GetClassDescriptor(class_def); ClassLinker* class_linker = manager_->GetClassLinker(); jobject jclass_loader = manager_->GetClassLoader(); StackHandleScope<3> hs(soa.Self()); Handle<mirror::ClassLoader> class_loader( hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader))); Handle<mirror::Class> klass( hs.NewHandle(class_linker->FindClass(soa.Self(), descriptor, class_loader))); ClassReference ref(manager_->GetDexFile(), class_def_index); verifier::FailureKind failure_kind; if (klass == nullptr) { CHECK(soa.Self()->IsExceptionPending()); soa.Self()->ClearException(); /* * At compile time, we can still structurally verify the class even if FindClass fails. * This is to ensure the class is structurally sound for compilation. An unsound class * will be rejected by the verifier and later skipped during compilation in the compiler. */ Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache( soa.Self(), dex_file))); std::string error_msg; failure_kind = verifier::ClassVerifier::VerifyClass(soa.Self(), soa.Self()->GetVerifierDeps(), &dex_file, klass, dex_cache, class_loader, class_def, Runtime::Current()->GetCompilerCallbacks(), log_level_, sdk_version_, &error_msg); switch (failure_kind) { case verifier::FailureKind::kHardFailure: { manager_->GetCompiler()->SetHadHardVerifierFailure(); break; } case verifier::FailureKind::kSoftFailure: { manager_->GetCompiler()->AddSoftVerifierFailure(); break; } case verifier::FailureKind::kTypeChecksFailure: { // Don't record anything, we will do the type checks from the vdex // file at runtime. break; } case verifier::FailureKind::kAccessChecksFailure: { manager_->GetCompiler()->RecordClassStatus(ref, ClassStatus::kVerifiedNeedsAccessChecks); break; } case verifier::FailureKind::kNoFailure: { manager_->GetCompiler()->RecordClassStatus(ref, ClassStatus::kVerified); break; } } } else if (SkipClass(jclass_loader, dex_file, klass.Get())) { // Skip a duplicate class (as the resolved class is from another, earlier dex file). return; // Do not update state. } else { CHECK(klass->IsResolved()) << klass->PrettyClass(); failure_kind = class_linker->VerifyClass(soa.Self(), soa.Self()->GetVerifierDeps(), klass, log_level_); DCHECK_EQ(klass->IsErroneous(), failure_kind == verifier::FailureKind::kHardFailure); if (failure_kind == verifier::FailureKind::kHardFailure) { // ClassLinker::VerifyClass throws, which isn't useful in the compiler. CHECK(soa.Self()->IsExceptionPending()); soa.Self()->ClearException(); manager_->GetCompiler()->SetHadHardVerifierFailure(); } else if (failure_kind == verifier::FailureKind::kSoftFailure) { manager_->GetCompiler()->AddSoftVerifierFailure(); } CHECK(klass->ShouldVerifyAtRuntime() || klass->IsVerifiedNeedsAccessChecks() || klass->IsVerified() || klass->IsErroneous()) << klass->PrettyDescriptor() << ": state=" << klass->GetStatus(); // Class has a meaningful status for the compiler now, record it. ClassStatus status = klass->GetStatus(); if (status == ClassStatus::kInitialized) { // Initialized classes shall be visibly initialized when loaded from the image. status = ClassStatus::kVisiblyInitialized; } manager_->GetCompiler()->RecordClassStatus(ref, status); // It is *very* problematic if there are resolution errors in the boot classpath. // // It is also bad if classes fail verification. For example, we rely on things working // OK without verification when the decryption dialog is brought up. It is thus highly // recommended to compile the boot classpath with // --abort-on-hard-verifier-error --abort-on-soft-verifier-error // which is the default build system configuration. if (kIsDebugBuild) { if (manager_->GetCompiler()->GetCompilerOptions().IsBootImage() || manager_->GetCompiler()->GetCompilerOptions().IsBootImageExtension()) { if (!klass->IsResolved() || klass->IsErroneous()) { LOG(FATAL) << "Boot classpath class " << klass->PrettyClass() << " failed to resolve/is erroneous: state= " << klass->GetStatus(); UNREACHABLE(); } } if (klass->IsVerified()) { DCHECK_EQ(failure_kind, verifier::FailureKind::kNoFailure); } else if (klass->IsVerifiedNeedsAccessChecks()) { DCHECK_EQ(failure_kind, verifier::FailureKind::kAccessChecksFailure); } else if (klass->ShouldVerifyAtRuntime()) { DCHECK_NE(failure_kind, verifier::FailureKind::kHardFailure); // This could either be due to: // - kTypeChecksFailure, or // - kSoftFailure, or // - the superclass or interfaces not being verified. } else { DCHECK_EQ(failure_kind, verifier::FailureKind::kHardFailure); } } } verifier::VerifierDeps::MaybeRecordVerificationStatus(soa.Self()->GetVerifierDeps(), dex_file, class_def, failure_kind); soa.Self()->AssertNoPendingException(); } private: const ParallelCompilationManager* const manager_; const verifier::HardFailLogMode log_level_; const uint32_t sdk_version_; }; void CompilerDriver::VerifyDexFile(jobject class_loader, const DexFile& dex_file, ThreadPool* thread_pool, size_t thread_count, TimingLogger* timings) { TimingLogger::ScopedTiming t("Verify Dex File", timings); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, thread_pool); bool abort_on_verifier_failures = GetCompilerOptions().AbortOnHardVerifierFailure() || GetCompilerOptions().AbortOnSoftVerifierFailure(); verifier::HardFailLogMode log_level = abort_on_verifier_failures ? verifier::HardFailLogMode::kLogInternalFatal : verifier::HardFailLogMode::kLogWarning; VerifyClassVisitor visitor(&context, log_level); context.ForAll(0, dex_file.NumClassDefs(), &visitor, thread_count); // Make initialized classes visibly initialized. class_linker->MakeInitializedClassesVisiblyInitialized(Thread::Current(), /*wait=*/ true); } class SetVerifiedClassVisitor : public CompilationVisitor { public: explicit SetVerifiedClassVisitor(const ParallelCompilationManager* manager) : manager_(manager) {} void Visit(size_t class_def_index) REQUIRES(!Locks::mutator_lock_) override { ScopedTrace trace(__FUNCTION__); ScopedObjectAccess soa(Thread::Current()); const DexFile& dex_file = *manager_->GetDexFile(); const dex::ClassDef& class_def = dex_file.GetClassDef(class_def_index); const char* descriptor = dex_file.GetClassDescriptor(class_def); ClassLinker* class_linker = manager_->GetClassLinker(); jobject jclass_loader = manager_->GetClassLoader(); StackHandleScope<3> hs(soa.Self()); Handle<mirror::ClassLoader> class_loader( hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader))); Handle<mirror::Class> klass( hs.NewHandle(class_linker->FindClass(soa.Self(), descriptor, class_loader))); // Class might have failed resolution. Then don't set it to verified. if (klass != nullptr) { // Only do this if the class is resolved. If even resolution fails, quickening will go very, // very wrong. if (klass->IsResolved() && !klass->IsErroneousResolved()) { if (klass->GetStatus() < ClassStatus::kVerified) { ObjectLock<mirror::Class> lock(soa.Self(), klass); // Set class status to verified. mirror::Class::SetStatus(klass, ClassStatus::kVerified, soa.Self()); // Mark methods as pre-verified. If we don't do this, the interpreter will run with // access checks. InstructionSet instruction_set = manager_->GetCompiler()->GetCompilerOptions().GetInstructionSet(); klass->SetSkipAccessChecksFlagOnAllMethods(GetInstructionSetPointerSize(instruction_set)); } // Record the final class status if necessary. ClassReference ref(manager_->GetDexFile(), class_def_index); manager_->GetCompiler()->RecordClassStatus(ref, klass->GetStatus()); } } else { Thread* self = soa.Self(); DCHECK(self->IsExceptionPending()); self->ClearException(); } } private: const ParallelCompilationManager* const manager_; }; void CompilerDriver::SetVerifiedDexFile(jobject class_loader, const DexFile& dex_file, ThreadPool* thread_pool, size_t thread_count, TimingLogger* timings) { TimingLogger::ScopedTiming t("Set Verified Dex File", timings); if (!compiled_classes_.HaveDexFile(&dex_file)) { compiled_classes_.AddDexFile(&dex_file); } ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, thread_pool); SetVerifiedClassVisitor visitor(&context); context.ForAll(0, dex_file.NumClassDefs(), &visitor, thread_count); } class InitializeClassVisitor : public CompilationVisitor { public: explicit InitializeClassVisitor(const ParallelCompilationManager* manager) : manager_(manager) {} void Visit(size_t class_def_index) override { ScopedTrace trace(__FUNCTION__); jobject jclass_loader = manager_->GetClassLoader(); const DexFile& dex_file = *manager_->GetDexFile(); const dex::ClassDef& class_def = dex_file.GetClassDef(class_def_index); const dex::TypeId& class_type_id = dex_file.GetTypeId(class_def.class_idx_); const char* descriptor = dex_file.GetStringData(class_type_id.descriptor_idx_); ScopedObjectAccess soa(Thread::Current()); StackHandleScope<3> hs(soa.Self()); Handle<mirror::ClassLoader> class_loader( hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader))); Handle<mirror::Class> klass( hs.NewHandle(manager_->GetClassLinker()->FindClass(soa.Self(), descriptor, class_loader))); if (klass != nullptr) { if (!SkipClass(manager_->GetClassLoader(), dex_file, klass.Get())) { TryInitializeClass(soa.Self(), klass, class_loader); } manager_->GetCompiler()->stats_->AddClassStatus(klass->GetStatus()); } // Clear any class not found or verification exceptions. soa.Self()->ClearException(); } // A helper function for initializing klass. void TryInitializeClass(Thread* self, Handle<mirror::Class> klass, Handle<mirror::ClassLoader>& class_loader) REQUIRES_SHARED(Locks::mutator_lock_) { const DexFile& dex_file = klass->GetDexFile(); const dex::ClassDef* class_def = klass->GetClassDef(); const dex::TypeId& class_type_id = dex_file.GetTypeId(class_def->class_idx_); const char* descriptor = dex_file.GetStringData(class_type_id.descriptor_idx_); StackHandleScope<3> hs(self); AotClassLinker* const class_linker = down_cast<AotClassLinker*>(manager_->GetClassLinker()); Runtime* const runtime = Runtime::Current(); const CompilerOptions& compiler_options = manager_->GetCompiler()->GetCompilerOptions(); const bool is_boot_image = compiler_options.IsBootImage(); const bool is_boot_image_extension = compiler_options.IsBootImageExtension(); const bool is_app_image = compiler_options.IsAppImage(); // For boot image extension, do not initialize classes defined // in dex files belonging to the boot image we're compiling against. if (is_boot_image_extension && runtime->GetHeap()->ObjectIsInBootImageSpace(klass->GetDexCache())) { // Also return early and don't store the class status in the recorded class status. return; } // Do not initialize classes in boot space when compiling app (with or without image). if ((!is_boot_image && !is_boot_image_extension) && klass->IsBootStrapClassLoaded()) { // Also return early and don't store the class status in the recorded class status. return; } ClassStatus old_status = klass->GetStatus(); // Only try to initialize classes that were successfully verified. if (klass->IsVerified()) { // Attempt to initialize the class but bail if we either need to initialize the super-class // or static fields. class_linker->EnsureInitialized(self, klass, false, false); DCHECK(!self->IsExceptionPending()); old_status = klass->GetStatus(); if (!klass->IsInitialized()) { // We don't want non-trivial class initialization occurring on multiple threads due to // deadlock problems. For example, a parent class is initialized (holding its lock) that // refers to a sub-class in its static/class initializer causing it to try to acquire the // sub-class' lock. While on a second thread the sub-class is initialized (holding its lock) // after first initializing its parents, whose locks are acquired. This leads to a // parent-to-child and a child-to-parent lock ordering and consequent potential deadlock. // We need to use an ObjectLock due to potential suspension in the interpreting code. Rather // than use a special Object for the purpose we use the Class of java.lang.Class. Handle<mirror::Class> h_klass(hs.NewHandle(klass->GetClass())); ObjectLock<mirror::Class> lock(self, h_klass); // Attempt to initialize allowing initialization of parent classes but still not static // fields. // Initialize dependencies first only for app or boot image extension, // to make TryInitializeClass() recursive. bool try_initialize_with_superclasses = is_boot_image ? true : InitializeDependencies(klass, class_loader, self); if (try_initialize_with_superclasses) { class_linker->EnsureInitialized(self, klass, false, true); DCHECK(!self->IsExceptionPending()); } // Otherwise it's in app image or boot image extension but superclasses // cannot be initialized, no need to proceed. old_status = klass->GetStatus(); bool too_many_encoded_fields = (!is_boot_image && !is_boot_image_extension) && klass->NumStaticFields() > kMaxEncodedFields; bool have_profile = (compiler_options.GetProfileCompilationInfo() != nullptr) && !compiler_options.GetProfileCompilationInfo()->IsEmpty(); // If the class was not initialized, we can proceed to see if we can initialize static // fields. Limit the max number of encoded fields. if (!klass->IsInitialized() && (is_app_image || is_boot_image || is_boot_image_extension) && try_initialize_with_superclasses && !too_many_encoded_fields && compiler_options.IsImageClass(descriptor) && // TODO(b/274077782): remove this test. (have_profile || !is_boot_image_extension)) { bool can_init_static_fields = false; if (is_boot_image || is_boot_image_extension) { // We need to initialize static fields, we only do this for image classes that aren't // marked with the $NoPreloadHolder (which implies this should not be initialized // early). can_init_static_fields = !std::string_view(descriptor).ends_with("$NoPreloadHolder;"); } else { CHECK(is_app_image); // The boot image case doesn't need to recursively initialize the dependencies with // special logic since the class linker already does this. // Optimization will be disabled in debuggable build, because in debuggable mode we // want the <clinit> behavior to be observable for the debugger, so we don't do the // <clinit> at compile time. can_init_static_fields = ClassLinker::kAppImageMayContainStrings && !self->IsExceptionPending() && !compiler_options.GetDebuggable() && (compiler_options.InitializeAppImageClasses() || NoClinitInDependency(klass, self, &class_loader)); // TODO The checking for clinit can be removed since it's already // checked when init superclass. Currently keep it because it contains // processing of intern strings. Will be removed later when intern strings // and clinit are both initialized. } if (can_init_static_fields) { VLOG(compiler) << "Initializing: " << descriptor; // TODO multithreading support. We should ensure the current compilation thread has // exclusive access to the runtime and the transaction. To achieve this, we could use // a ReaderWriterMutex but we're holding the mutator lock so we fail the check of mutex // validity in Thread::AssertThreadSuspensionIsAllowable. // Resolve and initialize the exception type before enabling the transaction in case // the transaction aborts and cannot resolve the type. // TransactionAbortError is not initialized ant not in boot image, needed only by // compiler and will be pruned by ImageWriter. Handle<mirror::Class> exception_class = hs.NewHandle( class_linker->FindClass(self, kTransactionAbortErrorDescriptor, class_loader)); bool exception_initialized = class_linker->EnsureInitialized(self, exception_class, true, true); DCHECK(exception_initialized); // Run the class initializer in transaction mode. class_linker->EnterTransactionMode(is_app_image, klass.Get()); bool success = class_linker->EnsureInitialized(self, klass, true, true); // TODO we detach transaction from runtime to indicate we quit the transactional // mode which prevents the GC from visiting objects modified during the transaction. // Ensure GC is not run so don't access freed objects when aborting transaction. { ScopedAssertNoThreadSuspension ants("Transaction end"); if (success) { class_linker->ExitTransactionMode(); DCHECK(!runtime->IsActiveTransaction()); if (is_boot_image || is_boot_image_extension) { // For boot image and boot image extension, we want to put the updated // status in the oat class. This is not the case for app image as we // want to keep the ability to load the oat file without the app image. old_status = klass->GetStatus(); } } else { CHECK(self->IsExceptionPending()); mirror::Throwable* exception = self->GetException(); VLOG(compiler) << "Initialization of " << descriptor << " aborted because of " << exception->Dump(); std::ostream* file_log = manager_->GetCompiler()-> GetCompilerOptions().GetInitFailureOutput(); if (file_log != nullptr) { *file_log << descriptor << "\n"; *file_log << exception->Dump() << "\n"; } self->ClearException(); class_linker->RollbackAllTransactions(); CHECK_EQ(old_status, klass->GetStatus()) << "Previous class status not restored"; } } if (!success && (is_boot_image || is_boot_image_extension)) { // On failure, still intern strings of static fields and seen in <clinit>, as these // will be created in the zygote. This is separated from the transaction code just // above as we will allocate strings, so must be allowed to suspend. // We only need to intern strings for boot image and boot image extension // because classes that failed to be initialized will not appear in app image. if (&klass->GetDexFile() == manager_->GetDexFile()) { InternStrings(klass, class_loader); } else { DCHECK(!is_boot_image) << "Boot image must have equal dex files"; } } } } // Clear exception in case EnsureInitialized has caused one in the code above. // It's OK to clear the exception here since the compiler is supposed to be fault // tolerant and will silently not initialize classes that have exceptions. self->ClearException(); // If the class still isn't initialized, at least try some checks that initialization // would do so they can be skipped at runtime. if (!klass->IsInitialized() && class_linker->ValidateSuperClassDescriptors(klass)) { old_status = ClassStatus::kSuperclassValidated; } else { self->ClearException(); } self->AssertNoPendingException(); } } if (old_status == ClassStatus::kInitialized) { // Initialized classes shall be visibly initialized when loaded from the image. old_status = ClassStatus::kVisiblyInitialized; } // Record the final class status if necessary. ClassReference ref(&dex_file, klass->GetDexClassDefIndex()); // Back up the status before doing initialization for static encoded fields, // because the static encoded branch wants to keep the status to uninitialized. manager_->GetCompiler()->RecordClassStatus(ref, old_status); if (kIsDebugBuild) { // Make sure the class initialization did not leave any local references. self->GetJniEnv()->AssertLocalsEmpty(); } if (!klass->IsInitialized() && (is_boot_image || is_boot_image_extension) && !compiler_options.IsPreloadedClass(PrettyDescriptor(descriptor))) { klass->SetInBootImageAndNotInPreloadedClasses(); } if (compiler_options.CompileArtTest()) { // For stress testing and unit-testing the clinit check in compiled code feature. if (kIsDebugBuild || std::string_view(descriptor).ends_with("$NoPreloadHolder;")) { klass->SetInBootImageAndNotInPreloadedClasses(); } } } private: void InternStrings(Handle<mirror::Class> klass, Handle<mirror::ClassLoader> class_loader) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(manager_->GetCompiler()->GetCompilerOptions().IsBootImage() || manager_->GetCompiler()->GetCompilerOptions().IsBootImageExtension()); DCHECK(klass->IsVerified()); DCHECK(!klass->IsInitialized()); StackHandleScope<1> hs(Thread::Current()); Handle<mirror::DexCache> dex_cache = hs.NewHandle(klass->GetDexCache()); const dex::ClassDef* class_def = klass->GetClassDef(); ClassLinker* class_linker = manager_->GetClassLinker(); // Check encoded final field values for strings and intern. annotations::RuntimeEncodedStaticFieldValueIterator value_it(dex_cache, class_loader, manager_->GetClassLinker(), *class_def); for ( ; value_it.HasNext(); value_it.Next()) { if (value_it.GetValueType() == annotations::RuntimeEncodedStaticFieldValueIterator::kString) { // Resolve the string. This will intern the string. art::ObjPtr<mirror::String> resolved = class_linker->ResolveString( dex::StringIndex(value_it.GetJavaValue().i), dex_cache); CHECK(resolved != nullptr); } } // Intern strings seen in <clinit>. ArtMethod* clinit = klass->FindClassInitializer(class_linker->GetImagePointerSize()); if (clinit != nullptr) { for (const DexInstructionPcPair& inst : clinit->DexInstructions()) { if (inst->Opcode() == Instruction::CONST_STRING) { ObjPtr<mirror::String> s = class_linker->ResolveString( dex::StringIndex(inst->VRegB_21c()), dex_cache); CHECK(s != nullptr); } else if (inst->Opcode() == Instruction::CONST_STRING_JUMBO) { ObjPtr<mirror::String> s = class_linker->ResolveString( dex::StringIndex(inst->VRegB_31c()), dex_cache); CHECK(s != nullptr); } } } } bool ResolveTypesOfMethods(Thread* self, ArtMethod* m) REQUIRES_SHARED(Locks::mutator_lock_) { // Return value of ResolveReturnType() is discarded because resolve will be done internally. ObjPtr<mirror::Class> rtn_type = m->ResolveReturnType(); if (rtn_type == nullptr) { self->ClearException(); return false; } const dex::TypeList* types = m->GetParameterTypeList(); if (types != nullptr) { for (uint32_t i = 0; i < types->Size(); ++i) { dex::TypeIndex param_type_idx = types->GetTypeItem(i).type_idx_; ObjPtr<mirror::Class> param_type = m->ResolveClassFromTypeIndex(param_type_idx); if (param_type == nullptr) { self->ClearException(); return false; } } } return true; } // Pre resolve types mentioned in all method signatures before start a transaction // since ResolveType doesn't work in transaction mode. bool PreResolveTypes(Thread* self, const Handle<mirror::Class>& klass) REQUIRES_SHARED(Locks::mutator_lock_) { PointerSize pointer_size = manager_->GetClassLinker()->GetImagePointerSize(); for (ArtMethod& m : klass->GetMethods(pointer_size)) { if (!ResolveTypesOfMethods(self, &m)) { return false; } } if (klass->IsInterface()) { return true; } else if (klass->HasSuperClass()) { StackHandleScope<1> hs(self); MutableHandle<mirror::Class> super_klass(hs.NewHandle<mirror::Class>(klass->GetSuperClass())); for (int i = super_klass->GetVTableLength() - 1; i >= 0; --i) { ArtMethod* m = klass->GetVTableEntry(i, pointer_size); ArtMethod* super_m = super_klass->GetVTableEntry(i, pointer_size); if (!ResolveTypesOfMethods(self, m) || !ResolveTypesOfMethods(self, super_m)) { return false; } } for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { super_klass.Assign(klass->GetIfTable()->GetInterface(i)); if (klass->GetClassLoader() != super_klass->GetClassLoader()) { uint32_t num_methods = super_klass->NumVirtualMethods(); for (uint32_t j = 0; j < num_methods; ++j) { ArtMethod* m = klass->GetIfTable()->GetMethodArray(i)->GetElementPtrSize<ArtMethod*>( j, pointer_size); ArtMethod* super_m = super_klass->GetVirtualMethod(j, pointer_size); if (!ResolveTypesOfMethods(self, m) || !ResolveTypesOfMethods(self, super_m)) { return false; } } } } } return true; } // Initialize the klass's dependencies recursively before initializing itself. // Checking for interfaces is also necessary since interfaces that contain // default methods must be initialized before the class. bool InitializeDependencies(const Handle<mirror::Class>& klass, Handle<mirror::ClassLoader> class_loader, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { if (klass->HasSuperClass()) { StackHandleScope<1> hs(self); Handle<mirror::Class> super_class = hs.NewHandle(klass->GetSuperClass()); if (!super_class->IsInitialized()) { this->TryInitializeClass(self, super_class, class_loader); if (!super_class->IsInitialized()) { return false; } } } if (!klass->IsInterface()) { size_t num_interfaces = klass->GetIfTableCount(); for (size_t i = 0; i < num_interfaces; ++i) { StackHandleScope<1> hs(self); Handle<mirror::Class> iface = hs.NewHandle(klass->GetIfTable()->GetInterface(i)); if (iface->HasDefaultMethods() && !iface->IsInitialized()) { TryInitializeClass(self, iface, class_loader); if (!iface->IsInitialized()) { return false; } } } } return PreResolveTypes(self, klass); } // In this phase the classes containing class initializers are ignored. Make sure no // clinit appears in klass's super class chain and interfaces. bool NoClinitInDependency(const Handle<mirror::Class>& klass, Thread* self, Handle<mirror::ClassLoader>* class_loader) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* clinit = klass->FindClassInitializer(manager_->GetClassLinker()->GetImagePointerSize()); if (clinit != nullptr) { VLOG(compiler) << klass->PrettyClass() << ' ' << clinit->PrettyMethod(true); return false; } if (klass->HasSuperClass()) { ObjPtr<mirror::Class> super_class = klass->GetSuperClass(); StackHandleScope<1> hs(self); Handle<mirror::Class> handle_scope_super(hs.NewHandle(super_class)); if (!NoClinitInDependency(handle_scope_super, self, class_loader)) { return false; } } uint32_t num_if = klass->NumDirectInterfaces(); for (size_t i = 0; i < num_if; i++) { ObjPtr<mirror::Class> interface = klass->GetDirectInterface(i); DCHECK(interface != nullptr); StackHandleScope<1> hs(self); Handle<mirror::Class> handle_interface(hs.NewHandle(interface)); if (!NoClinitInDependency(handle_interface, self, class_loader)) { return false; } } return true; } const ParallelCompilationManager* const manager_; }; void CompilerDriver::InitializeClasses(jobject jni_class_loader, const DexFile& dex_file, TimingLogger* timings) { TimingLogger::ScopedTiming t("InitializeNoClinit", timings); // Initialization allocates objects and needs to run single-threaded to be deterministic. bool force_determinism = GetCompilerOptions().IsForceDeterminism(); ThreadPool* init_thread_pool = force_determinism ? single_thread_pool_.get() : parallel_thread_pool_.get(); size_t init_thread_count = force_determinism ? 1U : parallel_thread_count_; ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ParallelCompilationManager context( class_linker, jni_class_loader, this, &dex_file, init_thread_pool); if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension() || GetCompilerOptions().IsAppImage()) { // Set the concurrency thread to 1 to support initialization for images since transaction // doesn't support multithreading now. // TODO: remove this when transactional mode supports multithreading. init_thread_count = 1U; } InitializeClassVisitor visitor(&context); context.ForAll(0, dex_file.NumClassDefs(), &visitor, init_thread_count); // Make initialized classes visibly initialized. class_linker->MakeInitializedClassesVisiblyInitialized(Thread::Current(), /*wait=*/ true); } void CompilerDriver::InitializeClasses(jobject class_loader, const std::vector<const DexFile*>& dex_files, TimingLogger* timings) { for (const DexFile* dex_file : dex_files) { CHECK(dex_file != nullptr); InitializeClasses(class_loader, *dex_file, timings); } if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) { // Prune garbage objects created during aborted transactions. Runtime::Current()->GetHeap()->CollectGarbage(/* clear_soft_references= */ true); } } template <typename CompileFn> static void CompileDexFile(CompilerDriver* driver, jobject class_loader, const DexFile& dex_file, ThreadPool* thread_pool, size_t thread_count, TimingLogger* timings, const char* timing_name, CompileFn compile_fn) { TimingLogger::ScopedTiming t(timing_name, timings); ParallelCompilationManager context(Runtime::Current()->GetClassLinker(), class_loader, driver, &dex_file, thread_pool); const CompilerOptions& compiler_options = driver->GetCompilerOptions(); bool have_profile = (compiler_options.GetProfileCompilationInfo() != nullptr); bool use_profile = CompilerFilter::DependsOnProfile(compiler_options.GetCompilerFilter()); ProfileCompilationInfo::ProfileIndexType profile_index = (have_profile && use_profile) ? compiler_options.GetProfileCompilationInfo()->FindDexFile(dex_file) : ProfileCompilationInfo::MaxProfileIndex(); auto compile = [&context, &compile_fn, profile_index](size_t class_def_index) { const DexFile& dex_file = *context.GetDexFile(); SCOPED_TRACE << "compile " << dex_file.GetLocation() << "@" << class_def_index; ClassLinker* class_linker = context.GetClassLinker(); jobject jclass_loader = context.GetClassLoader(); ClassReference ref(&dex_file, class_def_index); const dex::ClassDef& class_def = dex_file.GetClassDef(class_def_index); ClassAccessor accessor(dex_file, class_def_index); CompilerDriver* const driver = context.GetCompiler(); // Skip compiling classes with generic verifier failures since they will still fail at runtime DCHECK(driver->GetVerificationResults() != nullptr); if (driver->GetVerificationResults()->IsClassRejected(ref)) { return; } // Use a scoped object access to perform to the quick SkipClass check. ScopedObjectAccess soa(Thread::Current()); StackHandleScope<3> hs(soa.Self()); Handle<mirror::ClassLoader> class_loader( hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader))); Handle<mirror::Class> klass( hs.NewHandle(class_linker->FindClass(soa.Self(), accessor.GetDescriptor(), class_loader))); Handle<mirror::DexCache> dex_cache; if (klass == nullptr) { soa.Self()->AssertPendingException(); soa.Self()->ClearException(); dex_cache = hs.NewHandle(class_linker->FindDexCache(soa.Self(), dex_file)); } else if (SkipClass(jclass_loader, dex_file, klass.Get())) { // Skip a duplicate class (as the resolved class is from another, earlier dex file). return; // Do not update state. } else { dex_cache = hs.NewHandle(klass->GetDexCache()); } // Avoid suspension if there are no methods to compile. if (accessor.NumDirectMethods() + accessor.NumVirtualMethods() == 0) { return; } // Go to native so that we don't block GC during compilation. ScopedThreadSuspension sts(soa.Self(), ThreadState::kNative); // Compile direct and virtual methods. int64_t previous_method_idx = -1; for (const ClassAccessor::Method& method : accessor.GetMethods()) { const uint32_t method_idx = method.GetIndex(); if (method_idx == previous_method_idx) { // smali can create dex files with two encoded_methods sharing the same method_idx // http://code.google.com/p/smali/issues/detail?id=119 continue; } previous_method_idx = method_idx; compile_fn(soa.Self(), driver, method.GetCodeItem(), method.GetAccessFlags(), method.GetInvokeType(class_def.access_flags_), class_def_index, method_idx, class_loader, dex_file, dex_cache, profile_index); } }; context.ForAllLambda(0, dex_file.NumClassDefs(), compile, thread_count); } void CompilerDriver::Compile(jobject class_loader, const std::vector<const DexFile*>& dex_files, TimingLogger* timings) { if (kDebugProfileGuidedCompilation) { const ProfileCompilationInfo* profile_compilation_info = GetCompilerOptions().GetProfileCompilationInfo(); LOG(INFO) << "[ProfileGuidedCompilation] " << ((profile_compilation_info == nullptr) ? "null" : profile_compilation_info->DumpInfo(dex_files)); } for (const DexFile* dex_file : dex_files) { CHECK(dex_file != nullptr); CompileDexFile(this, class_loader, *dex_file, parallel_thread_pool_.get(), parallel_thread_count_, timings, "Compile Dex File Quick", CompileMethodQuick); const ArenaPool* const arena_pool = Runtime::Current()->GetArenaPool(); const size_t arena_alloc = arena_pool->GetBytesAllocated(); max_arena_alloc_ = std::max(arena_alloc, max_arena_alloc_); Runtime::Current()->ReclaimArenaPoolMemory(); } VLOG(compiler) << "Compile: " << GetMemoryUsageString(false); } void CompilerDriver::AddCompiledMethod(const MethodReference& method_ref, CompiledMethod* const compiled_method) { DCHECK(GetCompiledMethod(method_ref) == nullptr) << method_ref.PrettyMethod(); MethodTable::InsertResult result = compiled_methods_.Insert(method_ref, /*expected*/ nullptr, compiled_method); CHECK(result == MethodTable::kInsertResultSuccess); DCHECK(GetCompiledMethod(method_ref) != nullptr) << method_ref.PrettyMethod(); } CompiledMethod* CompilerDriver::RemoveCompiledMethod(const MethodReference& method_ref) { CompiledMethod* ret = nullptr; CHECK(compiled_methods_.Remove(method_ref, &ret)); return ret; } bool CompilerDriver::GetCompiledClass(const ClassReference& ref, ClassStatus* status) const { DCHECK(status != nullptr); // The table doesn't know if something wasn't inserted. For this case it will return // ClassStatus::kNotReady. To handle this, just assume anything we didn't try to verify // is not compiled. if (!compiled_classes_.Get(ref, status) || *status < ClassStatus::kRetryVerificationAtRuntime) { return false; } return true; } ClassStatus CompilerDriver::GetClassStatus(const ClassReference& ref) const { ClassStatus status = ClassStatus::kNotReady; if (!GetCompiledClass(ref, &status)) { classpath_classes_.Get(ref, &status); } return status; } void CompilerDriver::RecordClassStatus(const ClassReference& ref, ClassStatus status) { switch (status) { case ClassStatus::kErrorResolved: case ClassStatus::kErrorUnresolved: case ClassStatus::kNotReady: case ClassStatus::kResolved: case ClassStatus::kRetryVerificationAtRuntime: case ClassStatus::kVerifiedNeedsAccessChecks: case ClassStatus::kVerified: case ClassStatus::kSuperclassValidated: case ClassStatus::kVisiblyInitialized: break; // Expected states. default: LOG(FATAL) << "Unexpected class status for class " << PrettyDescriptor( ref.dex_file->GetClassDescriptor(ref.dex_file->GetClassDef(ref.index))) << " of " << status; } ClassStateTable::InsertResult result; ClassStateTable* table = &compiled_classes_; do { ClassStatus existing = ClassStatus::kNotReady; if (!table->Get(ref, &existing)) { // A classpath class. if (kIsDebugBuild) { // Check to make sure it's not a dex file for an oat file we are compiling since these // should always succeed. These do not include classes in for used libraries. for (const DexFile* dex_file : GetCompilerOptions().GetDexFilesForOatFile()) { CHECK_NE(ref.dex_file, dex_file) << ref.dex_file->GetLocation(); } } if (!classpath_classes_.HaveDexFile(ref.dex_file)) { // Boot classpath dex file. return; } table = &classpath_classes_; table->Get(ref, &existing); } if (existing >= status) { // Existing status is already better than we expect, break. break; } // Update the status if we now have a greater one. This happens with vdex, // which records a class is verified, but does not resolve it. result = table->Insert(ref, existing, status); CHECK(result != ClassStateTable::kInsertResultInvalidDexFile) << ref.dex_file->GetLocation(); } while (result != ClassStateTable::kInsertResultSuccess); } CompiledMethod* CompilerDriver::GetCompiledMethod(MethodReference ref) const { CompiledMethod* compiled_method = nullptr; compiled_methods_.Get(ref, &compiled_method); return compiled_method; } std::string CompilerDriver::GetMemoryUsageString(bool extended) const { std::ostringstream oss; const gc::Heap* const heap = Runtime::Current()->GetHeap(); const size_t java_alloc = heap->GetBytesAllocated(); oss << "arena alloc=" << PrettySize(max_arena_alloc_) << " (" << max_arena_alloc_ << "B)"; oss << " java alloc=" << PrettySize(java_alloc) << " (" << java_alloc << "B)"; #if defined(__BIONIC__) || defined(__GLIBC__) || defined(ANDROID_HOST_MUSL) const struct mallinfo info = mallinfo(); const size_t allocated_space = static_cast<size_t>(info.uordblks); const size_t free_space = static_cast<size_t>(info.fordblks); oss << " native alloc=" << PrettySize(allocated_space) << " (" << allocated_space << "B)" << " free=" << PrettySize(free_space) << " (" << free_space << "B)"; #endif compiled_method_storage_.DumpMemoryUsage(oss, extended); return oss.str(); } void CompilerDriver::InitializeThreadPools() { size_t parallel_count = parallel_thread_count_ > 0 ? parallel_thread_count_ - 1 : 0; parallel_thread_pool_.reset( ThreadPool::Create("Compiler driver thread pool", parallel_count)); single_thread_pool_.reset(ThreadPool::Create("Single-threaded Compiler driver thread pool", 0)); } void CompilerDriver::FreeThreadPools() { parallel_thread_pool_.reset(); single_thread_pool_.reset(); } void CompilerDriver::SetClasspathDexFiles(const std::vector<const DexFile*>& dex_files) { classpath_classes_.AddDexFiles(dex_files); } } // namespace art