/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "linker/arm64/relative_patcher_arm64.h" #include "arch/arm64/asm_support_arm64.h" #include "arch/arm64/instruction_set_features_arm64.h" #include "art_method.h" #include "base/bit_utils.h" #include "base/malloc_arena_pool.h" #include "driver/compiled_method-inl.h" #include "driver/compiler_driver.h" #include "entrypoints/quick/quick_entrypoints_enum.h" #include "heap_poisoning.h" #include "linker/linker_patch.h" #include "lock_word.h" #include "mirror/array-inl.h" #include "mirror/object.h" #include "oat/oat.h" #include "oat/oat_quick_method_header.h" #include "read_barrier.h" #include "stream/output_stream.h" namespace art { namespace linker { namespace { // Maximum positive and negative displacement for method call measured from the patch location. // (Signed 28 bit displacement with the last two bits 0 has range [-2^27, 2^27-4] measured from // the ARM64 PC pointing to the BL.) constexpr uint32_t kMaxMethodCallPositiveDisplacement = (1u << 27) - 4u; constexpr uint32_t kMaxMethodCallNegativeDisplacement = (1u << 27); // Maximum positive and negative displacement for a conditional branch measured from the patch // location. (Signed 21 bit displacement with the last two bits 0 has range [-2^20, 2^20-4] // measured from the ARM64 PC pointing to the B.cond.) constexpr uint32_t kMaxBcondPositiveDisplacement = (1u << 20) - 4u; constexpr uint32_t kMaxBcondNegativeDisplacement = (1u << 20); // The ADRP thunk for erratum 843419 is 2 instructions, i.e. 8 bytes. constexpr uint32_t kAdrpThunkSize = 8u; inline bool IsAdrpPatch(const LinkerPatch& patch) { switch (patch.GetType()) { case LinkerPatch::Type::kCallRelative: case LinkerPatch::Type::kCallEntrypoint: case LinkerPatch::Type::kBakerReadBarrierBranch: return false; case LinkerPatch::Type::kIntrinsicReference: case LinkerPatch::Type::kBootImageRelRo: case LinkerPatch::Type::kMethodRelative: case LinkerPatch::Type::kMethodBssEntry: case LinkerPatch::Type::kJniEntrypointRelative: case LinkerPatch::Type::kTypeRelative: case LinkerPatch::Type::kTypeAppImageRelRo: case LinkerPatch::Type::kTypeBssEntry: case LinkerPatch::Type::kPublicTypeBssEntry: case LinkerPatch::Type::kPackageTypeBssEntry: case LinkerPatch::Type::kStringRelative: case LinkerPatch::Type::kStringBssEntry: case LinkerPatch::Type::kMethodTypeBssEntry: return patch.LiteralOffset() == patch.PcInsnOffset(); } } inline uint32_t MaxExtraSpace(size_t num_adrp, size_t code_size) { if (num_adrp == 0u) { return 0u; } uint32_t alignment_bytes = CompiledMethod::AlignCode(code_size, InstructionSet::kArm64) - code_size; return kAdrpThunkSize * num_adrp + alignment_bytes; } } // anonymous namespace Arm64RelativePatcher::Arm64RelativePatcher(RelativePatcherThunkProvider* thunk_provider, RelativePatcherTargetProvider* target_provider, const Arm64InstructionSetFeatures* features) : ArmBaseRelativePatcher(thunk_provider, target_provider, InstructionSet::kArm64), fix_cortex_a53_843419_(features->NeedFixCortexA53_843419()), reserved_adrp_thunks_(0u), processed_adrp_thunks_(0u) { if (fix_cortex_a53_843419_) { adrp_thunk_locations_.reserve(16u); current_method_thunks_.reserve(16u * kAdrpThunkSize); } } uint32_t Arm64RelativePatcher::ReserveSpace(uint32_t offset, const CompiledMethod* compiled_method, MethodReference method_ref) { if (!fix_cortex_a53_843419_) { DCHECK(adrp_thunk_locations_.empty()); return ReserveSpaceInternal(offset, compiled_method, method_ref, 0u); } // Add thunks for previous method if any. if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) { size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_; offset = CompiledMethod::AlignCode(offset, InstructionSet::kArm64) + kAdrpThunkSize * num_adrp_thunks; reserved_adrp_thunks_ = adrp_thunk_locations_.size(); } // Count the number of ADRP insns as the upper bound on the number of thunks needed // and use it to reserve space for other linker patches. size_t num_adrp = 0u; DCHECK(compiled_method != nullptr); for (const LinkerPatch& patch : compiled_method->GetPatches()) { if (IsAdrpPatch(patch)) { ++num_adrp; } } ArrayRef code = compiled_method->GetQuickCode(); uint32_t max_extra_space = MaxExtraSpace(num_adrp, code.size()); offset = ReserveSpaceInternal(offset, compiled_method, method_ref, max_extra_space); if (num_adrp == 0u) { return offset; } // Now that we have the actual offset where the code will be placed, locate the ADRP insns // that actually require the thunk. uint32_t quick_code_offset = compiled_method->AlignCode(offset + sizeof(OatQuickMethodHeader)); uint32_t thunk_offset = compiled_method->AlignCode(quick_code_offset + code.size()); DCHECK(compiled_method != nullptr); for (const LinkerPatch& patch : compiled_method->GetPatches()) { if (IsAdrpPatch(patch)) { uint32_t patch_offset = quick_code_offset + patch.LiteralOffset(); if (NeedsErratum843419Thunk(code, patch.LiteralOffset(), patch_offset)) { adrp_thunk_locations_.emplace_back(patch_offset, thunk_offset); thunk_offset += kAdrpThunkSize; } } } return offset; } uint32_t Arm64RelativePatcher::ReserveSpaceEnd(uint32_t offset) { if (!fix_cortex_a53_843419_) { DCHECK(adrp_thunk_locations_.empty()); } else { // Add thunks for the last method if any. if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) { size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_; offset = CompiledMethod::AlignCode(offset, InstructionSet::kArm64) + kAdrpThunkSize * num_adrp_thunks; reserved_adrp_thunks_ = adrp_thunk_locations_.size(); } } return ArmBaseRelativePatcher::ReserveSpaceEnd(offset); } uint32_t Arm64RelativePatcher::WriteThunks(OutputStream* out, uint32_t offset) { if (fix_cortex_a53_843419_) { if (!current_method_thunks_.empty()) { uint32_t aligned_offset = CompiledMethod::AlignCode(offset, InstructionSet::kArm64); if (kIsDebugBuild) { CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize); size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize; CHECK_LE(num_thunks, processed_adrp_thunks_); for (size_t i = 0u; i != num_thunks; ++i) { const auto& entry = adrp_thunk_locations_[processed_adrp_thunks_ - num_thunks + i]; CHECK_EQ(entry.second, aligned_offset + i * kAdrpThunkSize); } } uint32_t aligned_code_delta = aligned_offset - offset; if (aligned_code_delta != 0u && !WriteCodeAlignment(out, aligned_code_delta)) { return 0u; } if (!WriteMiscThunk(out, ArrayRef(current_method_thunks_))) { return 0u; } offset = aligned_offset + current_method_thunks_.size(); current_method_thunks_.clear(); } } return ArmBaseRelativePatcher::WriteThunks(out, offset); } void Arm64RelativePatcher::PatchCall(std::vector* code, uint32_t literal_offset, uint32_t patch_offset, uint32_t target_offset) { DCHECK_ALIGNED(literal_offset, 4u); DCHECK_ALIGNED(patch_offset, 4u); DCHECK_ALIGNED(target_offset, 4u); uint32_t displacement = CalculateMethodCallDisplacement(patch_offset, target_offset & ~1u); PatchBl(code, literal_offset, displacement); } void Arm64RelativePatcher::PatchPcRelativeReference(std::vector* code, const LinkerPatch& patch, uint32_t patch_offset, uint32_t target_offset) { DCHECK_ALIGNED(patch_offset, 4u); DCHECK_ALIGNED(target_offset, 4u); uint32_t literal_offset = patch.LiteralOffset(); uint32_t insn = GetInsn(code, literal_offset); uint32_t pc_insn_offset = patch.PcInsnOffset(); uint32_t disp = target_offset - ((patch_offset - literal_offset + pc_insn_offset) & ~0xfffu); bool wide = (insn & 0x40000000) != 0; uint32_t shift = wide ? 3u : 2u; if (literal_offset == pc_insn_offset) { // Check it's an ADRP with imm == 0 (unset). DCHECK_EQ((insn & 0xffffffe0u), 0x90000000u) << literal_offset << ", " << pc_insn_offset << ", 0x" << std::hex << insn; if (fix_cortex_a53_843419_ && processed_adrp_thunks_ != adrp_thunk_locations_.size() && adrp_thunk_locations_[processed_adrp_thunks_].first == patch_offset) { DCHECK(NeedsErratum843419Thunk(ArrayRef(*code), literal_offset, patch_offset)); uint32_t thunk_offset = adrp_thunk_locations_[processed_adrp_thunks_].second; uint32_t adrp_disp = target_offset - (thunk_offset & ~0xfffu); uint32_t adrp = PatchAdrp(insn, adrp_disp); uint32_t out_disp = thunk_offset - patch_offset; DCHECK_EQ(out_disp & 3u, 0u); DCHECK((out_disp >> 27) == 0u || (out_disp >> 27) == 31u); // 28-bit signed. insn = (out_disp & 0x0fffffffu) >> shift; insn |= 0x14000000; // B uint32_t back_disp = -out_disp; DCHECK_EQ(back_disp & 3u, 0u); DCHECK((back_disp >> 27) == 0u || (back_disp >> 27) == 31u); // 28-bit signed. uint32_t b_back = (back_disp & 0x0fffffffu) >> 2; b_back |= 0x14000000; // B size_t thunks_code_offset = current_method_thunks_.size(); current_method_thunks_.resize(thunks_code_offset + kAdrpThunkSize); SetInsn(¤t_method_thunks_, thunks_code_offset, adrp); SetInsn(¤t_method_thunks_, thunks_code_offset + 4u, b_back); static_assert(kAdrpThunkSize == 2 * 4u, "thunk has 2 instructions"); processed_adrp_thunks_ += 1u; } else { insn = PatchAdrp(insn, disp); } // Write the new ADRP (or B to the erratum 843419 thunk). SetInsn(code, literal_offset, insn); } else { if ((insn & 0xfffffc00) == 0x91000000) { // ADD immediate, 64-bit with imm12 == 0 (unset). if (kUseBakerReadBarrier) { DCHECK(patch.GetType() == LinkerPatch::Type::kIntrinsicReference || patch.GetType() == LinkerPatch::Type::kMethodRelative || patch.GetType() == LinkerPatch::Type::kTypeRelative || patch.GetType() == LinkerPatch::Type::kStringRelative) << patch.GetType(); } else { // With the read barrier (non-Baker) enabled, it could be kStringBssEntry or k*TypeBssEntry. DCHECK(patch.GetType() == LinkerPatch::Type::kIntrinsicReference || patch.GetType() == LinkerPatch::Type::kMethodRelative || patch.GetType() == LinkerPatch::Type::kTypeRelative || patch.GetType() == LinkerPatch::Type::kStringRelative || patch.GetType() == LinkerPatch::Type::kTypeBssEntry || patch.GetType() == LinkerPatch::Type::kPublicTypeBssEntry || patch.GetType() == LinkerPatch::Type::kPackageTypeBssEntry || patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType(); } shift = 0u; // No shift for ADD. } else { // LDR/STR 32-bit or 64-bit with imm12 == 0 (unset). DCHECK(patch.GetType() == LinkerPatch::Type::kBootImageRelRo || patch.GetType() == LinkerPatch::Type::kMethodBssEntry || patch.GetType() == LinkerPatch::Type::kJniEntrypointRelative || patch.GetType() == LinkerPatch::Type::kTypeAppImageRelRo || patch.GetType() == LinkerPatch::Type::kTypeBssEntry || patch.GetType() == LinkerPatch::Type::kPublicTypeBssEntry || patch.GetType() == LinkerPatch::Type::kPackageTypeBssEntry || patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType(); DCHECK_EQ(insn & 0xbfbffc00, 0xb9000000) << std::hex << insn; } if (kIsDebugBuild) { uint32_t adrp = GetInsn(code, pc_insn_offset); if ((adrp & 0x9f000000u) != 0x90000000u) { CHECK(fix_cortex_a53_843419_); CHECK_EQ(adrp & 0xfc000000u, 0x14000000u); // B CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize); size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize; CHECK_LE(num_thunks, processed_adrp_thunks_); uint32_t b_offset = patch_offset - literal_offset + pc_insn_offset; for (size_t i = processed_adrp_thunks_ - num_thunks; ; ++i) { CHECK_NE(i, processed_adrp_thunks_); if (adrp_thunk_locations_[i].first == b_offset) { size_t idx = num_thunks - (processed_adrp_thunks_ - i); adrp = GetInsn(¤t_method_thunks_, idx * kAdrpThunkSize); break; } } } CHECK_EQ(adrp & 0x9f00001fu, // Check that pc_insn_offset points 0x90000000 | ((insn >> 5) & 0x1fu)); // to ADRP with matching register. } uint32_t imm12 = (disp & 0xfffu) >> shift; insn = (insn & ~(0xfffu << 10)) | (imm12 << 10); SetInsn(code, literal_offset, insn); } } void Arm64RelativePatcher::PatchEntrypointCall(std::vector* code, const LinkerPatch& patch, uint32_t patch_offset) { DCHECK_ALIGNED(patch_offset, 4u); ThunkKey key = GetEntrypointCallKey(patch); uint32_t target_offset = GetThunkTargetOffset(key, patch_offset); uint32_t displacement = target_offset - patch_offset; PatchBl(code, patch.LiteralOffset(), displacement); } void Arm64RelativePatcher::PatchBakerReadBarrierBranch(std::vector* code, const LinkerPatch& patch, uint32_t patch_offset) { DCHECK_ALIGNED(patch_offset, 4u); uint32_t literal_offset = patch.LiteralOffset(); uint32_t insn = GetInsn(code, literal_offset); DCHECK_EQ(insn & 0xffffffe0u, 0xb5000000); // CBNZ Xt, +0 (unpatched) ThunkKey key = GetBakerThunkKey(patch); uint32_t target_offset = GetThunkTargetOffset(key, patch_offset); DCHECK_ALIGNED(target_offset, 4u); uint32_t disp = target_offset - patch_offset; DCHECK((disp >> 20) == 0u || (disp >> 20) == 4095u); // 21-bit signed. insn |= (disp << (5 - 2)) & 0x00ffffe0u; // Shift bits 2-20 to 5-23. SetInsn(code, literal_offset, insn); } uint32_t Arm64RelativePatcher::MaxPositiveDisplacement(const ThunkKey& key) { switch (key.GetType()) { case ThunkType::kMethodCall: case ThunkType::kEntrypointCall: return kMaxMethodCallPositiveDisplacement; case ThunkType::kBakerReadBarrier: return kMaxBcondPositiveDisplacement; } } uint32_t Arm64RelativePatcher::MaxNegativeDisplacement(const ThunkKey& key) { switch (key.GetType()) { case ThunkType::kMethodCall: case ThunkType::kEntrypointCall: return kMaxMethodCallNegativeDisplacement; case ThunkType::kBakerReadBarrier: return kMaxBcondNegativeDisplacement; } } uint32_t Arm64RelativePatcher::PatchAdrp(uint32_t adrp, uint32_t disp) { return (adrp & 0x9f00001fu) | // Clear offset bits, keep ADRP with destination reg. // Bottom 12 bits are ignored, the next 2 lowest bits are encoded in bits 29-30. ((disp & 0x00003000u) << (29 - 12)) | // The next 16 bits are encoded in bits 5-22. ((disp & 0xffffc000u) >> (12 + 2 - 5)) | // Since the target_offset is based on the beginning of the oat file and the // image space precedes the oat file, the target_offset into image space will // be negative yet passed as uint32_t. Therefore we limit the displacement // to +-2GiB (rather than the maximim +-4GiB) and determine the sign bit from // the highest bit of the displacement. This is encoded in bit 23. ((disp & 0x80000000u) >> (31 - 23)); } void Arm64RelativePatcher::PatchBl(std::vector* code, uint32_t literal_offset, uint32_t displacement) { DCHECK_ALIGNED(displacement, 4u); DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u); // 28-bit signed. uint32_t insn = (displacement & 0x0fffffffu) >> 2; insn |= 0x94000000; // BL // Check that we're just overwriting an existing BL. DCHECK_EQ(GetInsn(code, literal_offset) & 0xfc000000u, 0x94000000u); // Write the new BL. SetInsn(code, literal_offset, insn); } bool Arm64RelativePatcher::NeedsErratum843419Thunk(ArrayRef code, uint32_t literal_offset, uint32_t patch_offset) { DCHECK_EQ(patch_offset & 0x3u, 0u); if ((patch_offset & 0xff8) == 0xff8) { // ...ff8 or ...ffc uint32_t adrp = GetInsn(code, literal_offset); DCHECK_EQ(adrp & 0x9f000000, 0x90000000); uint32_t next_offset = patch_offset + 4u; uint32_t next_insn = GetInsn(code, literal_offset + 4u); // Below we avoid patching sequences where the adrp is followed by a load which can easily // be proved to be aligned. // First check if the next insn is the LDR using the result of the ADRP. // LDR , [, #pimm], where == ADRP destination reg. if ((next_insn & 0xffc00000) == 0xb9400000 && (((next_insn >> 5) ^ adrp) & 0x1f) == 0) { return false; } // And since LinkerPatch::Type::k{Method,Type,String}Relative is using the result // of the ADRP for an ADD immediate, check for that as well. We generalize a bit // to include ADD/ADDS/SUB/SUBS immediate that either uses the ADRP destination // or stores the result to a different register. if ((next_insn & 0x1f000000) == 0x11000000 && ((((next_insn >> 5) ^ adrp) & 0x1f) == 0 || ((next_insn ^ adrp) & 0x1f) != 0)) { return false; } // LDR ,