/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex_file_loader.h" #include <sys/stat.h> #include <memory> #include <optional> #include "android-base/stringprintf.h" #include "base/bit_utils.h" #include "base/file_magic.h" #include "base/mem_map.h" #include "base/os.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/unix_file/fd_file.h" #include "base/zip_archive.h" #include "compact_dex_file.h" #include "dex_file.h" #include "dex_file_verifier.h" #include "standard_dex_file.h" namespace art { #if defined(STATIC_LIB) #define DEXFILE_SCOPED_TRACE(name) #else #define DEXFILE_SCOPED_TRACE(name) ScopedTrace trace(name) #endif namespace { // Technically we do not have a limitation with respect to the number of dex files that can be in a // multidex APK. However, it's bad practice, as each dex file requires its own tables for symbols // (types, classes, methods, ...) and dex caches. So warn the user that we open a zip with what // seems an excessive number. static constexpr size_t kWarnOnManyDexFilesThreshold = 100; using android::base::StringPrintf; class VectorContainer : public DexFileContainer { public: explicit VectorContainer(std::vector<uint8_t>&& vector) : vector_(std::move(vector)) { } ~VectorContainer() override { } bool IsReadOnly() const override { return true; } bool EnableWrite() override { return true; } bool DisableWrite() override { return false; } const uint8_t* Begin() const override { return vector_.data(); } const uint8_t* End() const override { return vector_.data() + vector_.size(); } private: std::vector<uint8_t> vector_; DISALLOW_COPY_AND_ASSIGN(VectorContainer); }; class MemMapContainer : public DexFileContainer { public: explicit MemMapContainer(MemMap&& mem_map, bool is_file_map = false) : mem_map_(std::move(mem_map)), is_file_map_(is_file_map) {} int GetPermissions() const { if (!mem_map_.IsValid()) { return 0; } else { return mem_map_.GetProtect(); } } bool IsReadOnly() const override { return GetPermissions() == PROT_READ; } bool EnableWrite() override { if (!IsReadOnly()) { // We can already write to the container. // This method may be called multiple times by tests if DexFiles share container. return true; } if (!mem_map_.IsValid()) { return false; } else { return mem_map_.Protect(PROT_READ | PROT_WRITE); } } bool DisableWrite() override { CHECK(!IsReadOnly()); if (!mem_map_.IsValid()) { return false; } else { return mem_map_.Protect(PROT_READ); } } const uint8_t* Begin() const override { return mem_map_.Begin(); } const uint8_t* End() const override { return mem_map_.End(); } bool IsFileMap() const override { return is_file_map_; } protected: MemMap mem_map_; bool is_file_map_; DISALLOW_COPY_AND_ASSIGN(MemMapContainer); }; } // namespace const File DexFileLoader::kInvalidFile; bool DexFileLoader::IsMagicValid(uint32_t magic) { return IsMagicValid(reinterpret_cast<uint8_t*>(&magic)); } bool DexFileLoader::IsMagicValid(const uint8_t* magic) { return StandardDexFile::IsMagicValid(magic) || CompactDexFile::IsMagicValid(magic); } bool DexFileLoader::IsVersionAndMagicValid(const uint8_t* magic) { if (StandardDexFile::IsMagicValid(magic)) { return StandardDexFile::IsVersionValid(magic); } if (CompactDexFile::IsMagicValid(magic)) { return CompactDexFile::IsVersionValid(magic); } return false; } bool DexFileLoader::IsMultiDexLocation(std::string_view location) { return location.find(kMultiDexSeparator) != std::string_view::npos; } std::string DexFileLoader::GetMultiDexClassesDexName(size_t index) { return (index == 0) ? "classes.dex" : StringPrintf("classes%zu.dex", index + 1); } std::string DexFileLoader::GetMultiDexLocation(size_t index, const char* dex_location) { DCHECK(!IsMultiDexLocation(dex_location)); if (index == 0) { return dex_location; } return StringPrintf("%s%cclasses%zu.dex", dex_location, kMultiDexSeparator, index + 1); } bool DexFileLoader::GetMultiDexChecksum(std::optional<uint32_t>* checksum, std::string* error_msg, bool* only_contains_uncompressed_dex) { CHECK(checksum != nullptr); checksum->reset(); // Return nullopt for an empty zip archive. uint32_t magic; if (!InitAndReadMagic(/*header_offset=*/0, &magic, error_msg)) { return false; } if (IsZipMagic(magic)) { std::unique_ptr<ZipArchive> zip_archive( file_->IsValid() ? ZipArchive::OpenFromOwnedFd(file_->Fd(), location_.c_str(), error_msg) : ZipArchive::OpenFromMemory( root_container_->Begin(), root_container_->Size(), location_.c_str(), error_msg)); if (zip_archive.get() == nullptr) { DCHECK(!error_msg->empty()); return false; } if (only_contains_uncompressed_dex != nullptr) { *only_contains_uncompressed_dex = true; } for (size_t i = 0;; ++i) { std::string name = GetMultiDexClassesDexName(i); std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(name.c_str(), error_msg)); if (zip_entry == nullptr) { break; } if (only_contains_uncompressed_dex != nullptr) { if (!(zip_entry->IsUncompressed() && zip_entry->IsAlignedTo(alignof(DexFile::Header)))) { *only_contains_uncompressed_dex = false; } } *checksum = checksum->value_or(kEmptyMultiDexChecksum) ^ zip_entry->GetCrc32(); } return true; } if (!MapRootContainer(error_msg)) { return false; } const uint8_t* begin = root_container_->Begin(); const uint8_t* end = root_container_->End(); for (const uint8_t* ptr = begin; ptr < end;) { const auto* header = reinterpret_cast<const DexFile::Header*>(ptr); size_t size = dchecked_integral_cast<size_t>(end - ptr); if (size < sizeof(*header) || !IsMagicValid(ptr)) { *error_msg = StringPrintf("Invalid dex header: '%s'", filename_.c_str()); return false; } if (size < header->file_size_) { *error_msg = StringPrintf("Truncated dex file: '%s'", filename_.c_str()); return false; } *checksum = checksum->value_or(kEmptyMultiDexChecksum) ^ header->checksum_; ptr += header->file_size_; } return true; } std::string DexFileLoader::GetDexCanonicalLocation(const char* dex_location) { CHECK_NE(dex_location, static_cast<const char*>(nullptr)); std::string base_location = GetBaseLocation(dex_location); const char* suffix = dex_location + base_location.size(); DCHECK(suffix[0] == 0 || suffix[0] == kMultiDexSeparator); #ifdef _WIN32 // Warning: No symbolic link processing here. PLOG(WARNING) << "realpath is unsupported on Windows."; #else // Warning: Bionic implementation of realpath() allocates > 12KB on the stack. // Do not run this code on a small stack, e.g. in signal handler. UniqueCPtr<const char[]> path(realpath(base_location.c_str(), nullptr)); if (path != nullptr && path.get() != base_location) { return std::string(path.get()) + suffix; } #endif if (suffix[0] == 0) { return base_location; } else { return dex_location; } } // All of the implementations here should be independent of the runtime. DexFileLoader::DexFileLoader(const uint8_t* base, size_t size, const std::string& location) : DexFileLoader(std::make_shared<MemoryDexFileContainer>(base, base + size), location) {} DexFileLoader::DexFileLoader(std::vector<uint8_t>&& memory, const std::string& location) : DexFileLoader(std::make_shared<VectorContainer>(std::move(memory)), location) {} DexFileLoader::DexFileLoader(MemMap&& mem_map, const std::string& location) : DexFileLoader(std::make_shared<MemMapContainer>(std::move(mem_map)), location) {} std::unique_ptr<const DexFile> DexFileLoader::OpenOne(size_t header_offset, uint32_t location_checksum, const OatDexFile* oat_dex_file, bool verify, bool verify_checksum, std::string* error_msg) { DEXFILE_SCOPED_TRACE(std::string("Open dex file ") + location_); uint32_t magic; if (!InitAndReadMagic(header_offset, &magic, error_msg) || !MapRootContainer(error_msg)) { DCHECK(!error_msg->empty()); return {}; } DCHECK(root_container_ != nullptr); DCHECK_LE(header_offset, root_container_->Size()); std::unique_ptr<const DexFile> dex_file = OpenCommon(root_container_, root_container_->Begin() + header_offset, root_container_->Size() - header_offset, location_, location_checksum, oat_dex_file, verify, verify_checksum, error_msg, nullptr); return dex_file; } bool DexFileLoader::InitAndReadMagic(size_t header_offset, uint32_t* magic, std::string* error_msg) { if (root_container_ != nullptr) { if (root_container_->Size() < header_offset || root_container_->Size() - header_offset < sizeof(uint32_t)) { *error_msg = StringPrintf("Unable to open '%s' : Size is too small", location_.c_str()); return false; } *magic = *reinterpret_cast<const uint32_t*>(root_container_->Begin() + header_offset); } else { // Open the file if we have not been given the file-descriptor directly before. if (!file_->IsValid()) { CHECK(!filename_.empty()); owned_file_ = File(filename_, O_RDONLY, /* check_usage= */ false); if (!owned_file_->IsValid()) { *error_msg = StringPrintf("Unable to open '%s' : %s", filename_.c_str(), strerror(errno)); return false; } file_ = &owned_file_.value(); } CHECK_EQ(header_offset, 0u); // We always expect to read from the start of physical file. if (!ReadMagicAndReset(file_->Fd(), magic, error_msg)) { return false; } } return true; } bool DexFileLoader::MapRootContainer(std::string* error_msg) { if (root_container_ != nullptr) { return true; } CHECK(MemMap::IsInitialized()); CHECK(file_->IsValid()); struct stat sbuf; memset(&sbuf, 0, sizeof(sbuf)); if (fstat(file_->Fd(), &sbuf) == -1) { *error_msg = StringPrintf("DexFile: fstat '%s' failed: %s", filename_.c_str(), strerror(errno)); return false; } if (S_ISDIR(sbuf.st_mode)) { *error_msg = StringPrintf("Attempt to mmap directory '%s'", filename_.c_str()); return false; } MemMap map = MemMap::MapFile(sbuf.st_size, PROT_READ, MAP_PRIVATE, file_->Fd(), 0, /*low_4gb=*/false, filename_.c_str(), error_msg); if (!map.IsValid()) { DCHECK(!error_msg->empty()); return false; } root_container_ = std::make_shared<MemMapContainer>(std::move(map), /*is_file_map=*/true); return true; } bool DexFileLoader::Open(bool verify, bool verify_checksum, bool allow_no_dex_files, DexFileLoaderErrorCode* error_code, std::string* error_msg, std::vector<std::unique_ptr<const DexFile>>* dex_files) { DEXFILE_SCOPED_TRACE(std::string("Open dex file ") + location_); DCHECK(dex_files != nullptr) << "DexFile::Open: out-param is nullptr"; uint32_t magic; if (!InitAndReadMagic(/*header_offset=*/0, &magic, error_msg)) { return false; } if (IsZipMagic(magic)) { std::unique_ptr<ZipArchive> zip_archive( file_->IsValid() ? ZipArchive::OpenFromOwnedFd(file_->Fd(), location_.c_str(), error_msg) : ZipArchive::OpenFromMemory( root_container_->Begin(), root_container_->Size(), location_.c_str(), error_msg)); if (zip_archive.get() == nullptr) { DCHECK(!error_msg->empty()); return false; } size_t multidex_count = 0; for (size_t i = 0;; ++i) { std::string name = GetMultiDexClassesDexName(i); bool ok = OpenFromZipEntry(*zip_archive, name.c_str(), location_, verify, verify_checksum, &multidex_count, error_code, error_msg, dex_files); if (!ok) { // We keep opening consecutive dex entries as long as we can (until entry is not found). if (*error_code == DexFileLoaderErrorCode::kEntryNotFound) { // Success if we loaded at least one entry, or if empty zip is explicitly allowed. return i > 0 || allow_no_dex_files; } return false; } if (i == kWarnOnManyDexFilesThreshold) { LOG(WARNING) << location_ << " has in excess of " << kWarnOnManyDexFilesThreshold << " dex files. Please consider coalescing and shrinking the number to " " avoid runtime overhead."; } } } if (IsMagicValid(magic)) { if (!MapRootContainer(error_msg)) { return false; } DCHECK(root_container_ != nullptr); size_t header_offset = 0; for (size_t i = 0;; i++) { std::string multidex_location = GetMultiDexLocation(i, location_.c_str()); std::unique_ptr<const DexFile> dex_file = OpenCommon(root_container_, root_container_->Begin() + header_offset, root_container_->Size() - header_offset, multidex_location, /*location_checksum*/ {}, // Use default checksum from dex header. /*oat_dex_file=*/nullptr, verify, verify_checksum, error_msg, error_code); if (dex_file == nullptr) { return false; } dex_files->push_back(std::move(dex_file)); size_t file_size = dex_files->back()->GetHeader().file_size_; CHECK_LE(file_size, root_container_->Size() - header_offset); header_offset += file_size; if (dex_files->back()->IsDexContainerLastEntry()) { break; } } return true; } *error_msg = StringPrintf("Expected valid zip or dex file"); return false; } std::unique_ptr<DexFile> DexFileLoader::OpenCommon(std::shared_ptr<DexFileContainer> container, const uint8_t* base, size_t app_compat_size, const std::string& location, std::optional<uint32_t> location_checksum, const OatDexFile* oat_dex_file, bool verify, bool verify_checksum, std::string* error_msg, DexFileLoaderErrorCode* error_code) { if (container == nullptr) { // We should never pass null here, but use reasonable default for app compat anyway. container = std::make_shared<MemoryDexFileContainer>(base, app_compat_size); } CHECK_GE(base, container->Begin()); CHECK_LE(base, container->End()); const size_t size = container->End() - base; if (error_code != nullptr) { *error_code = DexFileLoaderErrorCode::kDexFileError; } std::unique_ptr<DexFile> dex_file; auto header = reinterpret_cast<const DexFile::Header*>(base); if (size >= sizeof(StandardDexFile::Header) && StandardDexFile::IsMagicValid(base)) { uint32_t checksum = location_checksum.value_or(header->checksum_); dex_file.reset(new StandardDexFile(base, location, checksum, oat_dex_file, container)); } else if (size >= sizeof(CompactDexFile::Header) && CompactDexFile::IsMagicValid(base)) { uint32_t checksum = location_checksum.value_or(header->checksum_); dex_file.reset(new CompactDexFile(base, location, checksum, oat_dex_file, container)); } else { *error_msg = StringPrintf("Invalid or truncated dex file '%s'", location.c_str()); } if (dex_file == nullptr) { *error_msg = StringPrintf("Failed to open dex file '%s': %s", location.c_str(), error_msg->c_str()); return nullptr; } if (!dex_file->Init(error_msg)) { dex_file.reset(); return nullptr; } // NB: Dex verifier does not understand the compact dex format. if (verify && !dex_file->IsCompactDexFile()) { DEXFILE_SCOPED_TRACE(std::string("Verify dex file ") + location); if (!dex::Verify(dex_file.get(), location.c_str(), verify_checksum, error_msg)) { if (error_code != nullptr) { *error_code = DexFileLoaderErrorCode::kVerifyError; } return nullptr; } } if (error_code != nullptr) { *error_code = DexFileLoaderErrorCode::kNoError; } return dex_file; } bool DexFileLoader::OpenFromZipEntry(const ZipArchive& zip_archive, const char* entry_name, const std::string& location, bool verify, bool verify_checksum, size_t* multidex_count, DexFileLoaderErrorCode* error_code, std::string* error_msg, std::vector<std::unique_ptr<const DexFile>>* dex_files) const { CHECK(!location.empty()); std::unique_ptr<ZipEntry> zip_entry(zip_archive.Find(entry_name, error_msg)); if (zip_entry == nullptr) { *error_code = DexFileLoaderErrorCode::kEntryNotFound; return false; } if (zip_entry->GetUncompressedLength() == 0) { *error_msg = StringPrintf("Dex file '%s' has zero length", location.c_str()); *error_code = DexFileLoaderErrorCode::kDexFileError; return false; } CHECK(MemMap::IsInitialized()); MemMap map; bool is_file_map = false; if (file_->IsValid() && zip_entry->IsUncompressed()) { if (!zip_entry->IsAlignedTo(alignof(DexFile::Header))) { // Do not mmap unaligned ZIP entries because // doing so would fail dex verification which requires 4 byte alignment. LOG(WARNING) << "Can't mmap dex file " << location << "!" << entry_name << " directly; " << "please zipalign to " << alignof(DexFile::Header) << " bytes. " << "Falling back to extracting file."; } else { // Map uncompressed files within zip as file-backed to avoid a dirty copy. map = zip_entry->MapDirectlyFromFile(location.c_str(), /*out*/ error_msg); if (!map.IsValid()) { LOG(WARNING) << "Can't mmap dex file " << location << "!" << entry_name << " directly; " << "is your ZIP file corrupted? Falling back to extraction."; // Try again with Extraction which still has a chance of recovery. } is_file_map = true; } } if (!map.IsValid()) { DEXFILE_SCOPED_TRACE(std::string("Extract dex file ") + location); // Default path for compressed ZIP entries, // and fallback for stored ZIP entries. map = zip_entry->ExtractToMemMap(location.c_str(), entry_name, error_msg); } if (!map.IsValid()) { *error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", entry_name, location.c_str(), error_msg->c_str()); *error_code = DexFileLoaderErrorCode::kExtractToMemoryError; return false; } auto container = std::make_shared<MemMapContainer>(std::move(map), is_file_map); container->SetIsZip(); if (!container->DisableWrite()) { *error_msg = StringPrintf("Failed to make dex file '%s' read only", location.c_str()); *error_code = DexFileLoaderErrorCode::kMakeReadOnlyError; return false; } size_t header_offset = 0; for (size_t i = 0;; i++) { std::string multidex_location = GetMultiDexLocation(*multidex_count, location.c_str()); ++(*multidex_count); uint32_t multidex_checksum = zip_entry->GetCrc32() + i; std::unique_ptr<const DexFile> dex_file = OpenCommon(container, container->Begin() + header_offset, container->Size() - header_offset, multidex_location, multidex_checksum, /*oat_dex_file=*/nullptr, verify, verify_checksum, error_msg, error_code); if (dex_file == nullptr) { return false; } if (dex_file->IsCompactDexFile()) { *error_msg = StringPrintf("Can not open compact dex file from zip '%s'", location.c_str()); return false; } CHECK(dex_file->IsReadOnly()) << multidex_location; dex_files->push_back(std::move(dex_file)); size_t file_size = dex_files->back()->GetHeader().file_size_; CHECK_LE(file_size, container->Size() - header_offset); header_offset += file_size; if (dex_files->back()->IsDexContainerLastEntry()) { break; } } return true; } std::unique_ptr<const DexFile> DexFileLoader::Open( const uint8_t* base, size_t size, const std::string& location, uint32_t location_checksum, const OatDexFile* oat_dex_file, bool verify, bool verify_checksum, std::string* error_msg, std::unique_ptr<DexFileContainer> container) const { return OpenCommon(base, size, /*data_base=*/nullptr, /*data_size=*/0, location, location_checksum, oat_dex_file, verify, verify_checksum, error_msg, std::move(container), /*verify_result=*/nullptr); } std::unique_ptr<DexFile> DexFileLoader::OpenCommon(const uint8_t* base, size_t size, const uint8_t* data_base, size_t data_size, const std::string& location, uint32_t location_checksum, const OatDexFile* oat_dex_file, bool verify, bool verify_checksum, std::string* error_msg, std::unique_ptr<DexFileContainer> old_container, VerifyResult* verify_result) { CHECK(data_base == base || data_base == nullptr); CHECK(data_size == size || data_size == 0); CHECK(verify_result == nullptr); // The provided container probably does implent the new API. // We don't use it, but let's at least call its destructor. struct NewContainer : public MemoryDexFileContainer { using MemoryDexFileContainer::MemoryDexFileContainer; // ctor. std::unique_ptr<DexFileContainer> old_container_ = nullptr; }; auto new_container = std::make_shared<NewContainer>(base, size); new_container->old_container_ = std::move(old_container); return OpenCommon(std::move(new_container), base, size, location, location_checksum, oat_dex_file, verify, verify_checksum, error_msg, /*error_code=*/nullptr); } } // namespace art