/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex_file_verifier.h" #include #include #include #include #include #include "android-base/logging.h" #include "android-base/macros.h" #include "android-base/stringprintf.h" #include "base/hash_map.h" #include "base/leb128.h" #include "base/safe_map.h" #include "class_accessor-inl.h" #include "code_item_accessors-inl.h" #include "descriptors_names.h" #include "dex_file-inl.h" #include "dex_file_types.h" #include "modifiers.h" #include "utf-inl.h" namespace art { namespace dex { using android::base::StringAppendV; using android::base::StringPrintf; namespace { constexpr uint32_t kTypeIdLimit = std::numeric_limits::max(); constexpr bool IsValidOrNoTypeId(uint16_t low, uint16_t high) { return (high == 0) || ((high == 0xffffU) && (low == 0xffffU)); } constexpr bool IsValidTypeId([[maybe_unused]] uint16_t low, uint16_t high) { return (high == 0); } constexpr uint32_t MapTypeToBitMask(DexFile::MapItemType map_item_type) { switch (map_item_type) { case DexFile::kDexTypeHeaderItem: return 1 << 0; case DexFile::kDexTypeStringIdItem: return 1 << 1; case DexFile::kDexTypeTypeIdItem: return 1 << 2; case DexFile::kDexTypeProtoIdItem: return 1 << 3; case DexFile::kDexTypeFieldIdItem: return 1 << 4; case DexFile::kDexTypeMethodIdItem: return 1 << 5; case DexFile::kDexTypeClassDefItem: return 1 << 6; case DexFile::kDexTypeCallSiteIdItem: return 1 << 7; case DexFile::kDexTypeMethodHandleItem: return 1 << 8; case DexFile::kDexTypeMapList: return 1 << 9; case DexFile::kDexTypeTypeList: return 1 << 10; case DexFile::kDexTypeAnnotationSetRefList: return 1 << 11; case DexFile::kDexTypeAnnotationSetItem: return 1 << 12; case DexFile::kDexTypeClassDataItem: return 1 << 13; case DexFile::kDexTypeCodeItem: return 1 << 14; case DexFile::kDexTypeStringDataItem: return 1 << 15; case DexFile::kDexTypeDebugInfoItem: return 1 << 16; case DexFile::kDexTypeAnnotationItem: return 1 << 17; case DexFile::kDexTypeEncodedArrayItem: return 1 << 18; case DexFile::kDexTypeAnnotationsDirectoryItem: return 1 << 19; case DexFile::kDexTypeHiddenapiClassData: return 1 << 20; } return 0; } constexpr bool IsDataSectionType(DexFile::MapItemType map_item_type) { switch (map_item_type) { case DexFile::kDexTypeHeaderItem: case DexFile::kDexTypeStringIdItem: case DexFile::kDexTypeTypeIdItem: case DexFile::kDexTypeProtoIdItem: case DexFile::kDexTypeFieldIdItem: case DexFile::kDexTypeMethodIdItem: case DexFile::kDexTypeClassDefItem: return false; case DexFile::kDexTypeCallSiteIdItem: case DexFile::kDexTypeMethodHandleItem: case DexFile::kDexTypeMapList: case DexFile::kDexTypeTypeList: case DexFile::kDexTypeAnnotationSetRefList: case DexFile::kDexTypeAnnotationSetItem: case DexFile::kDexTypeClassDataItem: case DexFile::kDexTypeCodeItem: case DexFile::kDexTypeStringDataItem: case DexFile::kDexTypeDebugInfoItem: case DexFile::kDexTypeAnnotationItem: case DexFile::kDexTypeEncodedArrayItem: case DexFile::kDexTypeAnnotationsDirectoryItem: case DexFile::kDexTypeHiddenapiClassData: return true; } return true; } // Fields and methods may have only one of public/protected/private. ALWAYS_INLINE constexpr bool CheckAtMostOneOfPublicProtectedPrivate(uint32_t flags) { // Semantically we want 'return POPCOUNT(flags & kAcc) <= 1;'. static_assert(IsPowerOfTwo(0), "0 not marked as power of two"); static_assert(IsPowerOfTwo(kAccPublic), "kAccPublic not marked as power of two"); static_assert(IsPowerOfTwo(kAccProtected), "kAccProtected not marked as power of two"); static_assert(IsPowerOfTwo(kAccPrivate), "kAccPrivate not marked as power of two"); return IsPowerOfTwo(flags & (kAccPublic | kAccProtected | kAccPrivate)); } } // namespace // Note: the anonymous namespace would be nice, but we need friend access into accessors. class DexFileVerifier { public: DexFileVerifier(const DexFile* dex_file, const char* location, bool verify_checksum) : dex_file_(dex_file), offset_base_address_(dex_file->DataBegin()), size_(dex_file->DataSize()), location_(location), verify_checksum_(verify_checksum), header_(&dex_file->GetHeader()), ptr_(nullptr), previous_item_(nullptr), init_indices_{std::numeric_limits::max(), std::numeric_limits::max(), std::numeric_limits::max(), std::numeric_limits::max()} { CHECK(!dex_file->IsCompactDexFile()) << "Not supported"; } bool Verify(); const std::string& FailureReason() const { return failure_reason_; } private: template ALWAYS_INLINE const T* OffsetToPtr(size_t offset) { DCHECK_GE(offset, static_cast(dex_file_->Begin() - offset_base_address_)); DCHECK_LE(offset, size_); return reinterpret_cast(offset_base_address_ + offset); } ALWAYS_INLINE size_t PtrToOffset(const void* ptr) { DCHECK_GE(ptr, dex_file_->Begin()); DCHECK_LE(ptr, EndOfFile()); return reinterpret_cast(ptr) - offset_base_address_; } // Converts the pointer `ptr` into `offset`. // Returns `true` if the offset is within the bounds of the container. // TODO: Try to remove this overload. Avoid creating invalid pointers. ALWAYS_INLINE WARN_UNUSED bool PtrToOffset(const void* ptr, /*out*/ size_t* offset) { *offset = reinterpret_cast(ptr) - offset_base_address_; return *offset <= size_; } ALWAYS_INLINE const uint8_t* EndOfFile() { return OffsetToPtr(size_); } // Helper functions to retrieve names from the dex file. We do not want to rely on DexFile // functionality, as we're still verifying the dex file. std::string GetString(dex::StringIndex string_idx) { // All sources of the `string_idx` have already been checked in CheckIntraSection(). DCHECK_LT(string_idx.index_, header_->string_ids_size_); const dex::StringId& string_id = OffsetToPtr(header_->string_ids_off_)[string_idx.index_]; // The string offset has been checked at the start of `CheckInterSection()` // to point to a string data item checked by `CheckIntraSection()`. const uint8_t* ptr = OffsetToPtr(string_id.string_data_off_); DecodeUnsignedLeb128(&ptr); // Ignore the result. return reinterpret_cast(ptr); } std::string GetClass(dex::TypeIndex class_idx) { // All sources of `class_idx` have already been checked in CheckIntraSection(). CHECK_LT(class_idx.index_, header_->type_ids_size_); const dex::TypeId& type_id = OffsetToPtr(header_->type_ids_off_)[class_idx.index_]; // The `type_id->descriptor_idx_` has already been checked in CheckIntraTypeIdItem(). // However, it may not have been checked to be a valid descriptor, so return the raw // string without converting with `PrettyDescriptor()`. return GetString(type_id.descriptor_idx_); } std::string GetFieldDescription(uint32_t idx) { // The `idx` has already been checked in `DexFileVerifier::CheckIntraClassDataItemFields()`. CHECK_LT(idx, header_->field_ids_size_); const dex::FieldId& field_id = OffsetToPtr(header_->field_ids_off_)[idx]; // Indexes in `*field_id` have already been checked in CheckIntraFieldIdItem(). std::string class_name = GetClass(field_id.class_idx_); std::string field_name = GetString(field_id.name_idx_); return class_name + "." + field_name; } std::string GetMethodDescription(uint32_t idx) { // The `idx` has already been checked in `DexFileVerifier::CheckIntraClassDataItemMethods()`. CHECK_LT(idx, header_->method_ids_size_); const dex::MethodId& method_id = OffsetToPtr(header_->method_ids_off_)[idx]; // Indexes in `method_id` have already been checked in CheckIntraMethodIdItem(). std::string class_name = GetClass(method_id.class_idx_); std::string method_name = GetString(method_id.name_idx_); return class_name + "." + method_name; } bool CheckShortyDescriptorMatch(char shorty_char, const char* descriptor, bool is_return_type); bool CheckListSize(const void* start, size_t count, size_t element_size, const char* label); // Check a list. The head is assumed to be at *ptr, and elements to be of size element_size. If // successful, the ptr will be moved forward the amount covered by the list. bool CheckList(size_t element_size, const char* label, const uint8_t* *ptr); // Checks: // * the offset is zero (when size is zero), // * the offset falls within the area claimed by the file, // * the offset + size also falls within the area claimed by the file, and // * the alignment of the section bool CheckValidOffsetAndSize(uint32_t offset, uint32_t size, size_t alignment, const char* label); // Checks whether the size is less than the limit. ALWAYS_INLINE bool CheckSizeLimit(uint32_t size, uint32_t limit, const char* label) { if (size > limit) { ErrorStringPrintf("Size(%u) should not exceed limit(%u) for %s.", size, limit, label); return false; } return true; } ALWAYS_INLINE bool CheckIndex(uint32_t field, uint32_t limit, const char* label) { if (UNLIKELY(field >= limit)) { ErrorStringPrintf("Bad index for %s: %x >= %x", label, field, limit); return false; } return true; } bool CheckHeader(); bool CheckMap(); ALWAYS_INLINE bool ReadUnsignedLittleEndian(uint32_t size, /*out*/ uint32_t* result) { if (!CheckListSize(ptr_, size, sizeof(uint8_t), "encoded_value")) { return false; } *result = 0; for (uint32_t i = 0; i < size; i++) { *result |= ((uint32_t) * (ptr_++)) << (i * 8); } return true; } bool CheckAndGetHandlerOffsets(const dex::CodeItem* code_item, uint32_t* handler_offsets, uint32_t handlers_size); bool CheckClassDataItemField(uint32_t idx, uint32_t access_flags, uint32_t class_access_flags, dex::TypeIndex class_type_index); bool CheckClassDataItemMethod(uint32_t idx, uint32_t access_flags, uint32_t class_access_flags, dex::TypeIndex class_type_index, uint32_t code_offset, bool expect_direct); ALWAYS_INLINE bool CheckOrder(const char* type_descr, uint32_t curr_index, uint32_t prev_index) { if (UNLIKELY(curr_index < prev_index)) { ErrorStringPrintf("out-of-order %s indexes %" PRIu32 " and %" PRIu32, type_descr, prev_index, curr_index); return false; } return true; } bool CheckStaticFieldTypes(const dex::ClassDef& class_def); bool CheckPadding(uint32_t aligned_offset, DexFile::MapItemType type); // The encoded values, arrays and annotations are allowed to be very deeply nested, // so use heap todo-list instead of stack recursion (the work is done in LIFO order). struct ToDoItem { uint32_t array_size = 0; // CheckArrayElement. uint32_t annotation_size = 0; // CheckAnnotationElement. uint32_t last_idx = kDexNoIndex; // CheckAnnotationElement. }; using ToDoList = std::stack; bool CheckEncodedValue(); bool CheckEncodedArray(); bool CheckArrayElement(); bool CheckEncodedAnnotation(); bool CheckAnnotationElement(/*inout*/ uint32_t* last_idx); bool FlushToDoList(); bool CheckIntraTypeIdItem(); bool CheckIntraProtoIdItem(); bool CheckIntraFieldIdItem(); bool CheckIntraMethodIdItem(); bool CheckIntraClassDefItem(uint32_t class_def_index); bool CheckIntraMethodHandleItem(); bool CheckIntraTypeList(); // Check all fields of the given type, reading `encoded_field` entries from `ptr_`. template bool CheckIntraClassDataItemFields(size_t count); // Check direct or virtual methods, reading `encoded_method` entries from `ptr_`. // Check virtual methods against duplicates with direct methods. bool CheckIntraClassDataItemMethods(size_t num_methods, ClassAccessor::Method* direct_methods, size_t num_direct_methods); bool CheckIntraClassDataItem(); bool CheckIntraCodeItem(); bool CheckIntraStringDataItem(); bool CheckIntraDebugInfoItem(); bool CheckIntraAnnotationItem(); bool CheckIntraAnnotationsDirectoryItem(); bool CheckIntraHiddenapiClassData(); template bool CheckIntraSectionIterate(uint32_t count); template bool CheckIntraIdSection(size_t offset, uint32_t count); template bool CheckIntraDataSection(size_t offset, uint32_t count); bool CheckIntraSection(); bool CheckOffsetToTypeMap(size_t offset, uint16_t type); // Returns kDexNoIndex if there are no fields/methods, otherwise a 16-bit type index. uint32_t FindFirstClassDataDefiner(const ClassAccessor& accessor); uint32_t FindFirstAnnotationsDirectoryDefiner(const uint8_t* ptr); bool CheckInterHiddenapiClassData(); bool CheckInterStringIdItem(); bool CheckInterTypeIdItem(); bool CheckInterProtoIdItem(); bool CheckInterFieldIdItem(); bool CheckInterMethodIdItem(); bool CheckInterClassDefItem(); bool CheckInterCallSiteIdItem(); bool CheckInterAnnotationSetRefList(); bool CheckInterAnnotationSetItem(); bool CheckInterClassDataItem(); bool CheckInterAnnotationsDirectoryItem(); bool CheckInterSectionIterate(size_t offset, uint32_t count, DexFile::MapItemType type); bool CheckInterSection(); void ErrorStringPrintf(const char* fmt, ...) __attribute__((__format__(__printf__, 2, 3))) COLD_ATTR { va_list ap; va_start(ap, fmt); DCHECK(failure_reason_.empty()) << failure_reason_; failure_reason_ = StringPrintf("Failure to verify dex file '%s': ", location_); StringAppendV(&failure_reason_, fmt, ap); va_end(ap); } bool FailureReasonIsSet() const { return failure_reason_.size() != 0; } // Check validity of the given access flags, interpreted for a field in the context of a class // with the given second access flags. bool CheckFieldAccessFlags(uint32_t idx, uint32_t field_access_flags, uint32_t class_access_flags, std::string* error_message); // Check validity of the given method and access flags, in the context of a class with the given // second access flags. bool CheckMethodAccessFlags(uint32_t method_index, uint32_t method_access_flags, uint32_t class_access_flags, uint32_t constructor_flags_by_name, bool has_code, bool expect_direct, std::string* error_message); // Check validity of given method if it's a constructor or class initializer. bool CheckConstructorProperties(uint32_t method_index, uint32_t constructor_flags); void FindStringRangesForMethodNames(); template bool VerifyTypeDescriptor(dex::TypeIndex idx, const char* error_msg, ExtraCheckFn extra_check); const DexFile* const dex_file_; const uint8_t* const offset_base_address_; const size_t size_; ArrayRef data_; // The "data" section of the dex file. const char* const location_; const bool verify_checksum_; const DexFile::Header* const header_; uint32_t dex_version_ = 0; struct OffsetTypeMapEmptyFn { // Make a hash map slot empty by making the offset 0. Offset 0 is a valid dex file offset that // is in the offset of the dex file header. However, we only store data section items in the // map, and these are after the header. void MakeEmpty(std::pair& pair) const { pair.first = 0u; } // Check if a hash map slot is empty. bool IsEmpty(const std::pair& pair) const { return pair.first == 0; } }; struct OffsetTypeMapHashCompareFn { // Hash function for offset. size_t operator()(const uint32_t key) const { return key; } // std::equal function for offset. bool operator()(const uint32_t a, const uint32_t b) const { return a == b; } }; // Map from offset to dex file type, HashMap for performance reasons. HashMap offset_to_type_map_; const uint8_t* ptr_; const void* previous_item_; std::string failure_reason_; // Cached string indices for "interesting" entries wrt/ method names. Will be populated by // FindStringRangesForMethodNames (which is automatically called before verifying the // classdataitem section). // // Strings starting with '<' are in the range // [angle_bracket_start_index_,angle_bracket_end_index_). // angle_init_angle_index_ and angle_clinit_angle_index_ denote the indices of "" and // "", respectively. If any value is not found, the corresponding index will be larger // than any valid string index for this dex file. struct { size_t angle_bracket_start_index; size_t angle_bracket_end_index; size_t angle_init_angle_index; size_t angle_clinit_angle_index; } init_indices_; // A bitvector for verified type descriptors. Each bit corresponds to a type index. A set // bit denotes that the descriptor has been verified wrt/ IsValidDescriptor. std::vector verified_type_descriptors_; // Set of type ids for which there are ClassDef elements in the dex file. Using a bitset // avoids all allocations. The bitset should be implemented as 8K of storage, which is // tight enough for all callers. std::bitset defined_classes_; // Class definition indexes, valid only if corresponding `defined_classes_[.]` is true. std::vector defined_class_indexes_; // Used by CheckEncodedValue to avoid recursion. Field so we can reuse allocated memory. ToDoList todo_; }; template bool DexFileVerifier::VerifyTypeDescriptor(dex::TypeIndex idx, const char* error_msg, ExtraCheckFn extra_check) { // All sources of the `idx` have already been checked in CheckIntraSection(). DCHECK_LT(idx.index_, header_->type_ids_size_); char cached_char = verified_type_descriptors_[idx.index_]; if (cached_char != 0) { if (!extra_check(cached_char)) { const char* descriptor = dex_file_->GetTypeDescriptor(idx); ErrorStringPrintf("%s: '%s'", error_msg, descriptor); return false; } return true; } const char* descriptor = dex_file_->GetTypeDescriptor(idx); if (UNLIKELY(!IsValidDescriptor(descriptor))) { ErrorStringPrintf("%s: '%s'", error_msg, descriptor); return false; } verified_type_descriptors_[idx.index_] = descriptor[0]; if (!extra_check(descriptor[0])) { ErrorStringPrintf("%s: '%s'", error_msg, descriptor); return false; } return true; } bool DexFileVerifier::CheckShortyDescriptorMatch(char shorty_char, const char* descriptor, bool is_return_type) { switch (shorty_char) { case 'V': if (UNLIKELY(!is_return_type)) { ErrorStringPrintf("Invalid use of void"); return false; } FALLTHROUGH_INTENDED; case 'B': case 'C': case 'D': case 'F': case 'I': case 'J': case 'S': case 'Z': if (UNLIKELY((descriptor[0] != shorty_char) || (descriptor[1] != '\0'))) { ErrorStringPrintf("Shorty vs. primitive type mismatch: '%c', '%s'", shorty_char, descriptor); return false; } break; case 'L': if (UNLIKELY((descriptor[0] != 'L') && (descriptor[0] != '['))) { ErrorStringPrintf("Shorty vs. type mismatch: '%c', '%s'", shorty_char, descriptor); return false; } break; default: ErrorStringPrintf("Bad shorty character: '%c'", shorty_char); return false; } return true; } bool DexFileVerifier::CheckListSize(const void* start, size_t count, size_t elem_size, const char* label) { // Check that element size is not 0. DCHECK_NE(elem_size, 0U); size_t offset; if (!PtrToOffset(start, &offset)) { ErrorStringPrintf("Offset beyond end of file for %s: %zx to %zx", label, offset, size_); return false; } // Calculate the number of elements that fit until the end of file, // rather than calculating the end of the range as that could overflow. size_t max_elements = (size_ - offset) / elem_size; if (UNLIKELY(max_elements < count)) { ErrorStringPrintf( "List too large for %s: %zx+%zu*%zu > %zx", label, offset, count, elem_size, size_); return false; } return true; } bool DexFileVerifier::CheckList(size_t element_size, const char* label, const uint8_t* *ptr) { // Check that the list is available. The first 4B are the count. if (!CheckListSize(*ptr, 1, 4U, label)) { return false; } uint32_t count = *reinterpret_cast(*ptr); if (count > 0) { if (!CheckListSize(*ptr + 4, count, element_size, label)) { return false; } } *ptr += 4 + count * element_size; return true; } bool DexFileVerifier::CheckValidOffsetAndSize(uint32_t offset, uint32_t size, size_t alignment, const char* label) { if (size == 0) { if (offset != 0) { ErrorStringPrintf("Offset(%d) should be zero when size is zero for %s.", offset, label); return false; } return true; } size_t hdr_offset = PtrToOffset(header_); if (offset < hdr_offset) { ErrorStringPrintf("Offset(%d) should be after header(%zu) for %s.", offset, hdr_offset, label); return false; } if (size_ <= offset) { ErrorStringPrintf("Offset(%d) should be within file size(%zu) for %s.", offset, size_, label); return false; } // Check that offset + size is within the file size. Note that we use `<` to allow the section to // end at the same point as the file. Check written as a subtraction to be safe from overfow. if (size_ - offset < size) { ErrorStringPrintf( "Section end(%d) should be within file size(%zu) for %s.", offset + size, size_, label); return false; } if (alignment != 0 && !IsAlignedParam(offset, alignment)) { ErrorStringPrintf("Offset(%d) should be aligned by %zu for %s.", offset, alignment, label); return false; } return true; } bool DexFileVerifier::CheckHeader() { // Check magic. size_t size = dex_file_->GetContainer()->End() - dex_file_->Begin(); if (size < sizeof(DexFile::Header)) { ErrorStringPrintf("Empty or truncated file."); return false; } if (!StandardDexFile::IsMagicValid(header_->magic_.data())) { ErrorStringPrintf("Bad file magic"); return false; } if (!StandardDexFile::IsVersionValid(header_->magic_.data())) { ErrorStringPrintf("Unknown dex version"); return false; } dex_version_ = header_->GetVersion(); // Check file size from the header. size_t file_size = header_->file_size_; size_t header_size = (dex_version_ >= 41) ? sizeof(DexFile::HeaderV41) : sizeof(DexFile::Header); if (file_size < header_size) { ErrorStringPrintf("Bad file size (%zu, expected at least %zu)", file_size, header_size); return false; } if (file_size > size) { ErrorStringPrintf("Bad file size (%zu, expected at most %zu)", file_size, size); return false; } CHECK_GE(size, header_size); // Implied by the two checks above. // Check header size. if (header_->header_size_ != header_size) { ErrorStringPrintf("Bad header size: %ud expected %zud", header_->header_size_, header_size); return false; } // Check the endian. if (header_->endian_tag_ != DexFile::kDexEndianConstant) { ErrorStringPrintf("Unexpected endian_tag: %x", header_->endian_tag_); return false; } // Compute and verify the checksum in the header. uint32_t adler_checksum = dex_file_->CalculateChecksum(); if (adler_checksum != header_->checksum_) { if (verify_checksum_) { ErrorStringPrintf("Bad checksum (%08x, expected %08x)", adler_checksum, header_->checksum_); return false; } else { LOG(WARNING) << StringPrintf( "Ignoring bad checksum (%08x, expected %08x)", adler_checksum, header_->checksum_); } } if (dex_version_ >= 41) { auto headerV41 = reinterpret_cast(header_); if (headerV41->container_size_ <= headerV41->header_offset_) { ErrorStringPrintf("Dex container is too small: size=%ud header_offset=%ud", headerV41->container_size_, headerV41->header_offset_); return false; } uint32_t remainder = headerV41->container_size_ - headerV41->header_offset_; if (headerV41->file_size_ > remainder) { ErrorStringPrintf( "Header file_size(%ud) is past multi-dex size(%ud)", headerV41->file_size_, remainder); return false; } } // Check that all offsets are inside the file. bool ok = CheckValidOffsetAndSize(header_->link_off_, header_->link_size_, /* alignment= */ 0, "link") && CheckValidOffsetAndSize(header_->map_off_, sizeof(dex::MapList), /* alignment= */ 4, "map") && CheckValidOffsetAndSize(header_->string_ids_off_, header_->string_ids_size_, /* alignment= */ 4, "string-ids") && CheckValidOffsetAndSize(header_->type_ids_off_, header_->type_ids_size_, /* alignment= */ 4, "type-ids") && CheckSizeLimit(header_->type_ids_size_, DexFile::kDexNoIndex16, "type-ids") && CheckValidOffsetAndSize(header_->proto_ids_off_, header_->proto_ids_size_, /* alignment= */ 4, "proto-ids") && CheckSizeLimit(header_->proto_ids_size_, DexFile::kDexNoIndex16, "proto-ids") && CheckValidOffsetAndSize(header_->field_ids_off_, header_->field_ids_size_, /* alignment= */ 4, "field-ids") && CheckValidOffsetAndSize(header_->method_ids_off_, header_->method_ids_size_, /* alignment= */ 4, "method-ids") && CheckValidOffsetAndSize(header_->class_defs_off_, header_->class_defs_size_, /* alignment= */ 4, "class-defs") && CheckValidOffsetAndSize(header_->data_off_, header_->data_size_, // Unaligned, spec doesn't talk about it, even though size // is supposed to be a multiple of 4. /* alignment= */ 0, "data"); if (ok) { data_ = (dex_version_ >= 41) ? ArrayRef(dex_file_->Begin(), EndOfFile() - dex_file_->Begin()) : ArrayRef(OffsetToPtr(header_->data_off_), header_->data_size_); } return ok; } bool DexFileVerifier::CheckMap() { const dex::MapList* map = OffsetToPtr(header_->map_off_); // Check that map list content is available. if (!CheckListSize(map, 1, sizeof(dex::MapList), "maplist content")) { return false; } const dex::MapItem* item = map->list_; uint32_t count = map->size_; uint32_t last_offset = 0; uint32_t last_type = 0; uint32_t data_item_count = 0; uint32_t data_items_left = data_.size(); uint32_t used_bits = 0; // Check the validity of the size of the map list. if (!CheckListSize(item, count, sizeof(dex::MapItem), "map size")) { return false; } // Check the items listed in the map. for (uint32_t i = 0; i < count; i++) { if (UNLIKELY(last_offset >= item->offset_ && i != 0)) { ErrorStringPrintf("Out of order map item: %x then %x for type %x last type was %x", last_offset, item->offset_, static_cast(item->type_), last_type); return false; } if (UNLIKELY(item->offset_ >= size_)) { ErrorStringPrintf("Map item after end of file: %x, size %zx", item->offset_, size_); return false; } DexFile::MapItemType item_type = static_cast(item->type_); if (IsDataSectionType(item_type)) { uint32_t icount = item->size_; if (UNLIKELY(icount > data_items_left)) { ErrorStringPrintf("Too many items in data section: %ud item_type %zx", data_item_count + icount, static_cast(item_type)); return false; } data_items_left -= icount; data_item_count += icount; } uint32_t bit = MapTypeToBitMask(item_type); if (UNLIKELY(bit == 0)) { ErrorStringPrintf("Unknown map section type %x", item->type_); return false; } if (UNLIKELY((used_bits & bit) != 0)) { ErrorStringPrintf("Duplicate map section of type %x", item->type_); return false; } used_bits |= bit; last_offset = item->offset_; last_type = item->type_; item++; } // Check for missing sections in the map. if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeHeaderItem)) == 0)) { ErrorStringPrintf("Map is missing header entry"); return false; } if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeMapList)) == 0)) { ErrorStringPrintf("Map is missing map_list entry"); return false; } if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeStringIdItem)) == 0 && ((header_->string_ids_off_ != 0) || (header_->string_ids_size_ != 0)))) { ErrorStringPrintf("Map is missing string_ids entry"); return false; } if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeTypeIdItem)) == 0 && ((header_->type_ids_off_ != 0) || (header_->type_ids_size_ != 0)))) { ErrorStringPrintf("Map is missing type_ids entry"); return false; } if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeProtoIdItem)) == 0 && ((header_->proto_ids_off_ != 0) || (header_->proto_ids_size_ != 0)))) { ErrorStringPrintf("Map is missing proto_ids entry"); return false; } if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeFieldIdItem)) == 0 && ((header_->field_ids_off_ != 0) || (header_->field_ids_size_ != 0)))) { ErrorStringPrintf("Map is missing field_ids entry"); return false; } if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeMethodIdItem)) == 0 && ((header_->method_ids_off_ != 0) || (header_->method_ids_size_ != 0)))) { ErrorStringPrintf("Map is missing method_ids entry"); return false; } if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeClassDefItem)) == 0 && ((header_->class_defs_off_ != 0) || (header_->class_defs_size_ != 0)))) { ErrorStringPrintf("Map is missing class_defs entry"); return false; } return true; } #define DECODE_UNSIGNED_CHECKED_FROM(ptr, var) \ uint32_t var; \ if (!DecodeUnsignedLeb128Checked(&(ptr), EndOfFile(), &(var))) { \ ErrorStringPrintf("Read out of bounds"); \ return false; \ } #define DECODE_SIGNED_CHECKED_FROM(ptr, var) \ int32_t var; \ if (!DecodeSignedLeb128Checked(&(ptr), EndOfFile(), &(var))) { \ ErrorStringPrintf("Read out of bounds"); \ return false; \ } bool DexFileVerifier::CheckAndGetHandlerOffsets(const dex::CodeItem* code_item, uint32_t* handler_offsets, uint32_t handlers_size) { CodeItemDataAccessor accessor(*dex_file_, code_item); const uint8_t* handlers_base = accessor.GetCatchHandlerData(); for (uint32_t i = 0; i < handlers_size; i++) { bool catch_all; size_t offset = ptr_ - handlers_base; DECODE_SIGNED_CHECKED_FROM(ptr_, size); if (UNLIKELY((size < -65536) || (size > 65536))) { ErrorStringPrintf("Invalid exception handler size: %d", size); return false; } if (size <= 0) { catch_all = true; size = -size; } else { catch_all = false; } handler_offsets[i] = static_cast(offset); while (size-- > 0) { DECODE_UNSIGNED_CHECKED_FROM(ptr_, type_idx); if (!CheckIndex(type_idx, header_->type_ids_size_, "handler type_idx")) { return false; } DECODE_UNSIGNED_CHECKED_FROM(ptr_, addr); if (UNLIKELY(addr >= accessor.InsnsSizeInCodeUnits())) { ErrorStringPrintf("Invalid handler addr: %x", addr); return false; } } if (catch_all) { DECODE_UNSIGNED_CHECKED_FROM(ptr_, addr); if (UNLIKELY(addr >= accessor.InsnsSizeInCodeUnits())) { ErrorStringPrintf("Invalid handler catch_all_addr: %x", addr); return false; } } } return true; } bool DexFileVerifier::CheckClassDataItemField(uint32_t idx, uint32_t access_flags, uint32_t class_access_flags, dex::TypeIndex class_type_index) { // The `idx` has already been checked in `CheckIntraClassDataItemFields()`. DCHECK_LE(idx, header_->field_ids_size_); // Check that it's the right class. dex::TypeIndex my_class_index = OffsetToPtr(header_->field_ids_off_)[idx].class_idx_; if (class_type_index != my_class_index) { ErrorStringPrintf("Field's class index unexpected, %" PRIu16 "vs %" PRIu16, my_class_index.index_, class_type_index.index_); return false; } // Check field access flags. std::string error_msg; if (!CheckFieldAccessFlags(idx, access_flags, class_access_flags, &error_msg)) { ErrorStringPrintf("%s", error_msg.c_str()); return false; } return true; } bool DexFileVerifier::CheckClassDataItemMethod(uint32_t idx, uint32_t access_flags, uint32_t class_access_flags, dex::TypeIndex class_type_index, uint32_t code_offset, bool expect_direct) { // The `idx` has already been checked in `CheckIntraClassDataItemMethods()`. DCHECK_LT(idx, header_->method_ids_size_); const dex::MethodId& method_id = OffsetToPtr(header_->method_ids_off_)[idx]; // Check that it's the right class. dex::TypeIndex my_class_index = method_id.class_idx_; if (class_type_index != my_class_index) { ErrorStringPrintf("Method's class index unexpected, %" PRIu16 " vs %" PRIu16, my_class_index.index_, class_type_index.index_); return false; } std::string error_msg; uint32_t constructor_flags_by_name = 0; { uint32_t string_idx = method_id.name_idx_.index_; if (!CheckIndex(string_idx, header_->string_ids_size_, "method flags verification")) { return false; } if (UNLIKELY(string_idx < init_indices_.angle_bracket_end_index) && string_idx >= init_indices_.angle_bracket_start_index) { if (string_idx == init_indices_.angle_clinit_angle_index) { constructor_flags_by_name = kAccStatic | kAccConstructor; } else if (string_idx == init_indices_.angle_init_angle_index) { constructor_flags_by_name = kAccConstructor; } else { ErrorStringPrintf("Bad method name for method index %u", idx); return false; } } } bool has_code = (code_offset != 0); if (!CheckMethodAccessFlags(idx, access_flags, class_access_flags, constructor_flags_by_name, has_code, expect_direct, &error_msg)) { ErrorStringPrintf("%s", error_msg.c_str()); return false; } if (constructor_flags_by_name != 0) { if (!CheckConstructorProperties(idx, constructor_flags_by_name)) { DCHECK(FailureReasonIsSet()); return false; } } return true; } bool DexFileVerifier::CheckPadding(uint32_t aligned_offset, DexFile::MapItemType type) { size_t offset = PtrToOffset(ptr_); if (offset < aligned_offset) { if (!CheckListSize(OffsetToPtr(offset), aligned_offset - offset, sizeof(uint8_t), "section")) { return false; } if (dex_version_ >= 41) { ptr_ += aligned_offset - offset; return true; } while (offset < aligned_offset) { if (UNLIKELY(*ptr_ != '\0')) { ErrorStringPrintf("Non-zero padding %x before section of type %zu at offset 0x%zx", *ptr_, static_cast(type), offset); return false; } ptr_++; offset++; } } return true; } bool DexFileVerifier::CheckEncodedValue() { if (!CheckListSize(ptr_, 1, sizeof(uint8_t), "encoded_value header")) { return false; } uint8_t header_byte = *(ptr_++); uint32_t value_type = header_byte & DexFile::kDexAnnotationValueTypeMask; uint32_t value_arg = header_byte >> DexFile::kDexAnnotationValueArgShift; switch (value_type) { case DexFile::kDexAnnotationByte: { if (UNLIKELY(value_arg != 0)) { ErrorStringPrintf("Bad encoded_value byte size %x", value_arg); return false; } uint32_t value; if (!ReadUnsignedLittleEndian(value_arg + 1, &value)) { return false; } break; } case DexFile::kDexAnnotationShort: case DexFile::kDexAnnotationChar: { if (UNLIKELY(value_arg > 1)) { ErrorStringPrintf("Bad encoded_value char/short size %x", value_arg); return false; } uint32_t value; if (!ReadUnsignedLittleEndian(value_arg + 1, &value)) { return false; } break; } case DexFile::kDexAnnotationInt: case DexFile::kDexAnnotationFloat: { if (UNLIKELY(value_arg > 3)) { ErrorStringPrintf("Bad encoded_value int/float size %x", value_arg); return false; } uint32_t value; if (!ReadUnsignedLittleEndian(value_arg + 1, &value)) { return false; } break; } case DexFile::kDexAnnotationLong: case DexFile::kDexAnnotationDouble: { uint32_t value; if (!ReadUnsignedLittleEndian(value_arg + 1, &value)) { return false; } break; } case DexFile::kDexAnnotationString: { if (UNLIKELY(value_arg > 3)) { ErrorStringPrintf("Bad encoded_value string size %x", value_arg); return false; } uint32_t idx; if (!ReadUnsignedLittleEndian(value_arg + 1, &idx)) { return false; } if (!CheckIndex(idx, header_->string_ids_size_, "encoded_value string")) { return false; } break; } case DexFile::kDexAnnotationType: { if (UNLIKELY(value_arg > 3)) { ErrorStringPrintf("Bad encoded_value type size %x", value_arg); return false; } uint32_t idx; if (!ReadUnsignedLittleEndian(value_arg + 1, &idx)) { return false; } if (!CheckIndex(idx, header_->type_ids_size_, "encoded_value type")) { return false; } break; } case DexFile::kDexAnnotationField: case DexFile::kDexAnnotationEnum: { if (UNLIKELY(value_arg > 3)) { ErrorStringPrintf("Bad encoded_value field/enum size %x", value_arg); return false; } uint32_t idx; if (!ReadUnsignedLittleEndian(value_arg + 1, &idx)) { return false; } if (!CheckIndex(idx, header_->field_ids_size_, "encoded_value field")) { return false; } break; } case DexFile::kDexAnnotationMethod: { if (UNLIKELY(value_arg > 3)) { ErrorStringPrintf("Bad encoded_value method size %x", value_arg); return false; } uint32_t idx; if (!ReadUnsignedLittleEndian(value_arg + 1, &idx)) { return false; } if (!CheckIndex(idx, header_->method_ids_size_, "encoded_value method")) { return false; } break; } case DexFile::kDexAnnotationArray: if (UNLIKELY(value_arg != 0)) { ErrorStringPrintf("Bad encoded_value array value_arg %x", value_arg); return false; } if (!CheckEncodedArray()) { return false; } break; case DexFile::kDexAnnotationAnnotation: if (UNLIKELY(value_arg != 0)) { ErrorStringPrintf("Bad encoded_value annotation value_arg %x", value_arg); return false; } if (!CheckEncodedAnnotation()) { return false; } break; case DexFile::kDexAnnotationNull: if (UNLIKELY(value_arg != 0)) { ErrorStringPrintf("Bad encoded_value null value_arg %x", value_arg); return false; } break; case DexFile::kDexAnnotationBoolean: if (UNLIKELY(value_arg > 1)) { ErrorStringPrintf("Bad encoded_value boolean size %x", value_arg); return false; } break; case DexFile::kDexAnnotationMethodType: { if (UNLIKELY(value_arg > 3)) { ErrorStringPrintf("Bad encoded_value method type size %x", value_arg); return false; } uint32_t idx; if (!ReadUnsignedLittleEndian(value_arg + 1, &idx)) { return false; } if (!CheckIndex(idx, header_->proto_ids_size_, "method_type value")) { return false; } break; } case DexFile::kDexAnnotationMethodHandle: { if (UNLIKELY(value_arg > 3)) { ErrorStringPrintf("Bad encoded_value method handle size %x", value_arg); return false; } uint32_t idx; if (!ReadUnsignedLittleEndian(value_arg + 1, &idx)) { return false; } if (!CheckIndex(idx, dex_file_->NumMethodHandles(), "method_handle value")) { return false; } break; } default: ErrorStringPrintf("Bogus encoded_value value_type %x", value_type); return false; } return true; } bool DexFileVerifier::CheckEncodedArray() { DECODE_UNSIGNED_CHECKED_FROM(ptr_, size); todo_.emplace(ToDoItem{.array_size = size}); return true; } // Always called directly from FlushToDoList, which avoids recursion. bool DexFileVerifier::CheckArrayElement() { if (!CheckEncodedValue()) { failure_reason_ = StringPrintf("Bad encoded_array value: %s", failure_reason_.c_str()); return false; } return true; } bool DexFileVerifier::CheckEncodedAnnotation() { DECODE_UNSIGNED_CHECKED_FROM(ptr_, anno_idx); if (!CheckIndex(anno_idx, header_->type_ids_size_, "encoded_annotation type_idx")) { return false; } DECODE_UNSIGNED_CHECKED_FROM(ptr_, size); todo_.emplace(ToDoItem{.annotation_size = size, .last_idx = kDexNoIndex}); return true; } // Always called directly from FlushToDoList, which avoids recursion. bool DexFileVerifier::CheckAnnotationElement(/*inout*/ uint32_t* last_idx) { DECODE_UNSIGNED_CHECKED_FROM(ptr_, idx); if (!CheckIndex(idx, header_->string_ids_size_, "annotation_element name_idx")) { return false; } if (UNLIKELY(*last_idx >= idx && *last_idx != kDexNoIndex)) { ErrorStringPrintf("Out-of-order annotation_element name_idx: %x then %x", *last_idx, idx); return false; } *last_idx = idx; return CheckEncodedValue(); } // Keep processing the rest of the to-do list until we are finished or encounter an error. bool DexFileVerifier::FlushToDoList() { while (!todo_.empty()) { ToDoItem& item = todo_.top(); DCHECK(item.array_size == 0u || item.annotation_size == 0u); if (item.array_size > 0) { item.array_size--; if (!CheckArrayElement()) { return false; } } else if (item.annotation_size > 0) { item.annotation_size--; if (!CheckAnnotationElement(&item.last_idx)) { return false; } } else { todo_.pop(); } } return true; } bool DexFileVerifier::CheckStaticFieldTypes(const dex::ClassDef& class_def) { ClassAccessor accessor(*dex_file_, ptr_); EncodedStaticFieldValueIterator array_it(*dex_file_, class_def); for (const ClassAccessor::Field& field : accessor.GetStaticFields()) { if (!array_it.HasNext()) { break; } uint32_t index = field.GetIndex(); // The `index` has already been checked in `CheckIntraClassDataItemFields()`. DCHECK_LT(index, header_->field_ids_size_); const dex::TypeId& type_id = dex_file_->GetTypeId(dex_file_->GetFieldId(index).type_idx_); const char* field_type_name = dex_file_->GetStringData(dex_file_->GetStringId(type_id.descriptor_idx_)); Primitive::Type field_type = Primitive::GetType(field_type_name[0]); EncodedArrayValueIterator::ValueType array_type = array_it.GetValueType(); // Ensure this matches RuntimeEncodedStaticFieldValueIterator. switch (array_type) { case EncodedArrayValueIterator::ValueType::kBoolean: if (field_type != Primitive::kPrimBoolean) { ErrorStringPrintf("unexpected static field initial value type: 'Z' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kByte: if (field_type != Primitive::kPrimByte) { ErrorStringPrintf("unexpected static field initial value type: 'B' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kShort: if (field_type != Primitive::kPrimShort) { ErrorStringPrintf("unexpected static field initial value type: 'S' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kChar: if (field_type != Primitive::kPrimChar) { ErrorStringPrintf("unexpected static field initial value type: 'C' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kInt: if (field_type != Primitive::kPrimInt) { ErrorStringPrintf("unexpected static field initial value type: 'I' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kLong: if (field_type != Primitive::kPrimLong) { ErrorStringPrintf("unexpected static field initial value type: 'J' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kFloat: if (field_type != Primitive::kPrimFloat) { ErrorStringPrintf("unexpected static field initial value type: 'F' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kDouble: if (field_type != Primitive::kPrimDouble) { ErrorStringPrintf("unexpected static field initial value type: 'D' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kNull: case EncodedArrayValueIterator::ValueType::kString: case EncodedArrayValueIterator::ValueType::kType: if (field_type != Primitive::kPrimNot) { ErrorStringPrintf("unexpected static field initial value type: 'L' vs '%c'", field_type_name[0]); return false; } break; default: ErrorStringPrintf("unexpected static field initial value type: %x", array_type); return false; } if (!array_it.MaybeNext()) { ErrorStringPrintf("unexpected encoded value type: '%c'", array_it.GetValueType()); return false; } } if (array_it.HasNext()) { ErrorStringPrintf("too many static field initial values"); return false; } return true; } bool DexFileVerifier::CheckIntraTypeIdItem() { if (!CheckListSize(ptr_, 1, sizeof(dex::TypeId), "type_ids")) { return false; } const dex::TypeId* type_id = reinterpret_cast(ptr_); if (!CheckIndex(type_id->descriptor_idx_.index_, header_->string_ids_size_, "type_id.descriptor")) { return false; } ptr_ += sizeof(dex::TypeId); return true; } bool DexFileVerifier::CheckIntraProtoIdItem() { if (!CheckListSize(ptr_, 1, sizeof(dex::ProtoId), "proto_ids")) { return false; } const dex::ProtoId* proto_id = reinterpret_cast(ptr_); if (!CheckIndex(proto_id->shorty_idx_.index_, header_->string_ids_size_, "proto_id.shorty") || !CheckIndex(proto_id->return_type_idx_.index_, header_->type_ids_size_, "proto_id.return_type")) { return false; } ptr_ += sizeof(dex::ProtoId); return true; } bool DexFileVerifier::CheckIntraFieldIdItem() { if (!CheckListSize(ptr_, 1, sizeof(dex::FieldId), "field_ids")) { return false; } const dex::FieldId* field_id = reinterpret_cast(ptr_); if (!CheckIndex(field_id->class_idx_.index_, header_->type_ids_size_, "field_id.class") || !CheckIndex(field_id->type_idx_.index_, header_->type_ids_size_, "field_id.type") || !CheckIndex(field_id->name_idx_.index_, header_->string_ids_size_, "field_id.name")) { return false; } ptr_ += sizeof(dex::FieldId); return true; } bool DexFileVerifier::CheckIntraMethodIdItem() { if (!CheckListSize(ptr_, 1, sizeof(dex::MethodId), "method_ids")) { return false; } const dex::MethodId* method_id = reinterpret_cast(ptr_); if (!CheckIndex(method_id->class_idx_.index_, header_->type_ids_size_, "method_id.class") || !CheckIndex(method_id->proto_idx_.index_, header_->proto_ids_size_, "method_id.proto") || !CheckIndex(method_id->name_idx_.index_, header_->string_ids_size_, "method_id.name")) { return false; } ptr_ += sizeof(dex::MethodId); return true; } bool DexFileVerifier::CheckIntraClassDefItem(uint32_t class_def_index) { if (!CheckListSize(ptr_, 1, sizeof(dex::ClassDef), "class_defs")) { return false; } const dex::ClassDef* class_def = reinterpret_cast(ptr_); if (!CheckIndex(class_def->class_idx_.index_, header_->type_ids_size_, "class_def.class")) { return false; } // Check superclass, if any. if (UNLIKELY(class_def->pad2_ != 0u)) { uint32_t combined = (static_cast(class_def->pad2_) << 16) + class_def->superclass_idx_.index_; if (combined != 0xffffffffu) { ErrorStringPrintf("Invalid superclass type padding/index: %x", combined); return false; } } else if (!CheckIndex(class_def->superclass_idx_.index_, header_->type_ids_size_, "class_def.superclass")) { return false; } DCHECK_LE(class_def->class_idx_.index_, kTypeIdLimit); DCHECK_LT(kTypeIdLimit, defined_classes_.size()); if (defined_classes_[class_def->class_idx_.index_]) { ErrorStringPrintf("Redefinition of class with type idx: '%u'", class_def->class_idx_.index_); return false; } defined_classes_[class_def->class_idx_.index_] = true; DCHECK_LE(class_def->class_idx_.index_, defined_class_indexes_.size()); defined_class_indexes_[class_def->class_idx_.index_] = class_def_index; ptr_ += sizeof(dex::ClassDef); return true; } bool DexFileVerifier::CheckIntraMethodHandleItem() { if (!CheckListSize(ptr_, 1, sizeof(dex::MethodHandleItem), "method_handles")) { return false; } const dex::MethodHandleItem* item = reinterpret_cast(ptr_); DexFile::MethodHandleType method_handle_type = static_cast(item->method_handle_type_); if (method_handle_type > DexFile::MethodHandleType::kLast) { ErrorStringPrintf("Bad method handle type %x", item->method_handle_type_); return false; } uint32_t index = item->field_or_method_idx_; switch (method_handle_type) { case DexFile::MethodHandleType::kStaticPut: case DexFile::MethodHandleType::kStaticGet: case DexFile::MethodHandleType::kInstancePut: case DexFile::MethodHandleType::kInstanceGet: if (!CheckIndex(index, header_->field_ids_size_, "method_handle_item field_idx")) { return false; } break; case DexFile::MethodHandleType::kInvokeStatic: case DexFile::MethodHandleType::kInvokeInstance: case DexFile::MethodHandleType::kInvokeConstructor: case DexFile::MethodHandleType::kInvokeDirect: case DexFile::MethodHandleType::kInvokeInterface: { if (!CheckIndex(index, header_->method_ids_size_, "method_handle_item method_idx")) { return false; } break; } } ptr_ += sizeof(dex::MethodHandleItem); return true; } bool DexFileVerifier::CheckIntraTypeList() { const dex::TypeList* type_list = reinterpret_cast(ptr_); if (!CheckList(sizeof(dex::TypeItem), "type_list", &ptr_)) { return false; } for (uint32_t i = 0, size = type_list->Size(); i != size; ++i) { if (!CheckIndex(type_list->GetTypeItem(i).type_idx_.index_, header_->type_ids_size_, "type_list.type")) { return false; } } return true; } template bool DexFileVerifier::CheckIntraClassDataItemFields(size_t count) { constexpr const char* kTypeDescr = kStatic ? "static field" : "instance field"; // We cannot use ClassAccessor::Field yet as it could read beyond the end of the data section. const uint8_t* ptr = ptr_; uint32_t prev_index = 0; for (size_t i = 0; i != count; ++i) { uint32_t field_idx_diff, access_flags; if (UNLIKELY(!DecodeUnsignedLeb128Checked(&ptr, data_.end(), &field_idx_diff)) || UNLIKELY(!DecodeUnsignedLeb128Checked(&ptr, data_.end(), &access_flags))) { ErrorStringPrintf("encoded_field read out of bounds"); return false; } uint32_t curr_index = prev_index + field_idx_diff; // Check for overflow. if (!CheckIndex(curr_index, header_->field_ids_size_, "class_data_item field_idx")) { return false; } if (!CheckOrder(kTypeDescr, curr_index, prev_index)) { return false; } // Check that it falls into the right class-data list. bool is_static = (access_flags & kAccStatic) != 0; if (UNLIKELY(is_static != kStatic)) { ErrorStringPrintf("Static/instance field not in expected list"); return false; } prev_index = curr_index; } ptr_ = ptr; return true; } bool DexFileVerifier::CheckIntraClassDataItemMethods(size_t num_methods, ClassAccessor::Method* direct_methods, size_t num_direct_methods) { DCHECK(num_direct_methods == 0u || direct_methods != nullptr); const char* kTypeDescr = (direct_methods == nullptr) ? "direct method" : "virtual method"; // We cannot use ClassAccessor::Method yet as it could read beyond the end of the data section. const uint8_t* ptr = ptr_; // Load the first direct method for the check below. size_t remaining_direct_methods = num_direct_methods; if (remaining_direct_methods != 0u) { DCHECK(direct_methods != nullptr); direct_methods->Read(); } uint32_t prev_index = 0; for (size_t i = 0; i != num_methods; ++i) { uint32_t method_idx_diff, access_flags, code_off; if (UNLIKELY(!DecodeUnsignedLeb128Checked(&ptr, data_.end(), &method_idx_diff)) || UNLIKELY(!DecodeUnsignedLeb128Checked(&ptr, data_.end(), &access_flags)) || UNLIKELY(!DecodeUnsignedLeb128Checked(&ptr, data_.end(), &code_off))) { ErrorStringPrintf("encoded_method read out of bounds"); return false; } uint32_t curr_index = prev_index + method_idx_diff; // Check for overflow. if (!CheckIndex(curr_index, header_->method_ids_size_, "class_data_item method_idx")) { return false; } if (!CheckOrder(kTypeDescr, curr_index, prev_index)) { return false; } // For virtual methods, we cross reference the method index to make sure // it doesn't match any direct methods. if (remaining_direct_methods != 0) { // The direct methods are already known to be in ascending index order. // So just keep up with the current index. while (true) { const uint32_t direct_idx = direct_methods->GetIndex(); if (direct_idx > curr_index) { break; } if (direct_idx == curr_index) { ErrorStringPrintf("Found virtual method with same index as direct method: %u", curr_index); return false; } --remaining_direct_methods; if (remaining_direct_methods == 0u) { break; } direct_methods->Read(); } } prev_index = curr_index; } ptr_ = ptr; return true; } bool DexFileVerifier::CheckIntraClassDataItem() { // We cannot use ClassAccessor yet as it could read beyond the end of the data section. const uint8_t* ptr = ptr_; uint32_t static_fields_size, instance_fields_size, direct_methods_size, virtual_methods_size; if (UNLIKELY(!DecodeUnsignedLeb128Checked(&ptr, data_.end(), &static_fields_size)) || UNLIKELY(!DecodeUnsignedLeb128Checked(&ptr, data_.end(), &instance_fields_size)) || UNLIKELY(!DecodeUnsignedLeb128Checked(&ptr, data_.end(), &direct_methods_size)) || UNLIKELY(!DecodeUnsignedLeb128Checked(&ptr, data_.end(), &virtual_methods_size))) { ErrorStringPrintf("class_data_item read out of bounds"); return false; } ptr_ = ptr; // Check fields. if (!CheckIntraClassDataItemFields(static_fields_size)) { return false; } if (!CheckIntraClassDataItemFields(instance_fields_size)) { return false; } // Check methods. const uint8_t* direct_methods_ptr = ptr_; if (!CheckIntraClassDataItemMethods(direct_methods_size, /*direct_methods=*/ nullptr, /*num_direct_methods=*/ 0u)) { return false; } // Direct methods have been checked, so we can now use ClassAccessor::Method to read them again. ClassAccessor::Method direct_methods(*dex_file_, direct_methods_ptr); if (!CheckIntraClassDataItemMethods(virtual_methods_size, &direct_methods, direct_methods_size)) { return false; } return true; } bool DexFileVerifier::CheckIntraCodeItem() { const dex::CodeItem* code_item = reinterpret_cast(ptr_); DCHECK(dex_file_->IsStandardDexFile()); if (!CheckListSize(code_item, 1, sizeof(StandardDexFile::CodeItem), "code")) { return false; } CodeItemDataAccessor accessor(*dex_file_, code_item); if (UNLIKELY(accessor.InsSize() > accessor.RegistersSize())) { ErrorStringPrintf("ins_size (%ud) > registers_size (%ud)", accessor.InsSize(), accessor.RegistersSize()); return false; } if (UNLIKELY(accessor.OutsSize() > 5 && accessor.OutsSize() > accessor.RegistersSize())) { /* * outs_size can be up to 5, even if registers_size is smaller, since the * short forms of method invocation allow repetitions of a register multiple * times within a single parameter list. However, longer parameter lists * need to be represented in-order in the register file. */ ErrorStringPrintf("outs_size (%ud) > registers_size (%ud)", accessor.OutsSize(), accessor.RegistersSize()); return false; } const uint16_t* insns = accessor.Insns(); uint32_t insns_size = accessor.InsnsSizeInCodeUnits(); if (!CheckListSize(insns, insns_size, sizeof(uint16_t), "insns size")) { return false; } // Grab the end of the insns if there are no try_items. uint32_t try_items_size = accessor.TriesSize(); if (try_items_size == 0) { ptr_ = reinterpret_cast(&insns[insns_size]); return true; } const dex::TryItem* try_items = accessor.TryItems().begin(); if (!CheckListSize(try_items, try_items_size, sizeof(dex::TryItem), "try_items size")) { return false; } // try_items are 4-byte aligned. Verify the spacer is 0. if (((reinterpret_cast(&insns[insns_size]) & 3) != 0) && (insns[insns_size] != 0)) { ErrorStringPrintf("Non-zero padding: %x", insns[insns_size]); return false; } ptr_ = accessor.GetCatchHandlerData(); DECODE_UNSIGNED_CHECKED_FROM(ptr_, handlers_size); if (UNLIKELY((handlers_size == 0) || (handlers_size >= 65536))) { ErrorStringPrintf("Invalid handlers_size: %ud", handlers_size); return false; } // Avoid an expensive allocation, if possible. std::unique_ptr handler_offsets_uptr; uint32_t* handler_offsets; constexpr size_t kAllocaMaxSize = 1024; if (handlers_size < kAllocaMaxSize/sizeof(uint32_t)) { // Note: Clang does not specify alignment guarantees for alloca. So align by hand. handler_offsets = AlignUp(reinterpret_cast(alloca((handlers_size + 1) * sizeof(uint32_t))), alignof(uint32_t[])); } else { handler_offsets_uptr.reset(new uint32_t[handlers_size]); handler_offsets = handler_offsets_uptr.get(); } if (!CheckAndGetHandlerOffsets(code_item, &handler_offsets[0], handlers_size)) { return false; } uint32_t last_addr = 0; for (; try_items_size != 0u; --try_items_size) { if (UNLIKELY(try_items->start_addr_ < last_addr)) { ErrorStringPrintf("Out-of_order try_item with start_addr: %x", try_items->start_addr_); return false; } if (UNLIKELY(try_items->start_addr_ >= insns_size)) { ErrorStringPrintf("Invalid try_item start_addr: %x", try_items->start_addr_); return false; } uint32_t i; for (i = 0; i < handlers_size; i++) { if (try_items->handler_off_ == handler_offsets[i]) { break; } } if (UNLIKELY(i == handlers_size)) { ErrorStringPrintf("Bogus handler offset: %x", try_items->handler_off_); return false; } last_addr = try_items->start_addr_ + try_items->insn_count_; if (UNLIKELY(last_addr > insns_size)) { ErrorStringPrintf("Invalid try_item insn_count: %x", try_items->insn_count_); return false; } try_items++; } return true; } bool DexFileVerifier::CheckIntraStringDataItem() { DECODE_UNSIGNED_CHECKED_FROM(ptr_, size); const uint8_t* file_end = EndOfFile(); size_t available_bytes = static_cast(file_end - ptr_); if (available_bytes < size) { ErrorStringPrintf("String data would go beyond end-of-file"); return false; } // Eagerly subtract one byte per character. available_bytes -= size; for (uint32_t i = 0; i < size; i++) { CHECK_LT(i, size); // b/15014252 Prevents hitting the impossible case below uint8_t byte = *(ptr_++); // Switch on the high 4 bits. switch (byte >> 4) { case 0x00: // Special case of bit pattern 0xxx. if (UNLIKELY(byte == 0)) { CHECK_LT(i, size); // b/15014252 Actually hit this impossible case with clang ErrorStringPrintf("String data shorter than indicated utf16_size %x", size); return false; } break; case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: // No extra checks necessary for bit pattern 0xxx. break; case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0f: // Illegal bit patterns 10xx or 1111. // Note: 1111 is valid for normal UTF-8, but not here. ErrorStringPrintf("Illegal start byte %x in string data", byte); return false; case 0x0c: case 0x0d: { // Bit pattern 110x has an additional byte. if (available_bytes < 1u) { ErrorStringPrintf("String data would go beyond end-of-file"); return false; } available_bytes -= 1u; uint8_t byte2 = *(ptr_++); if (UNLIKELY((byte2 & 0xc0) != 0x80)) { ErrorStringPrintf("Illegal continuation byte %x in string data", byte2); return false; } uint16_t value = ((byte & 0x1f) << 6) | (byte2 & 0x3f); if (UNLIKELY((value != 0) && (value < 0x80))) { ErrorStringPrintf("Illegal representation for value %x in string data", value); return false; } break; } case 0x0e: { // Bit pattern 1110 has 2 additional bytes. if (available_bytes < 2u) { ErrorStringPrintf("String data would go beyond end-of-file"); return false; } available_bytes -= 2u; uint8_t byte2 = *(ptr_++); if (UNLIKELY((byte2 & 0xc0) != 0x80)) { ErrorStringPrintf("Illegal continuation byte %x in string data", byte2); return false; } uint8_t byte3 = *(ptr_++); if (UNLIKELY((byte3 & 0xc0) != 0x80)) { ErrorStringPrintf("Illegal continuation byte %x in string data", byte3); return false; } uint16_t value = ((byte & 0x0f) << 12) | ((byte2 & 0x3f) << 6) | (byte3 & 0x3f); if (UNLIKELY(value < 0x800)) { ErrorStringPrintf("Illegal representation for value %x in string data", value); return false; } break; } } } if (available_bytes < 1u) { ErrorStringPrintf("String data would go beyond end-of-file"); return false; } available_bytes -= 1u; if (UNLIKELY(*(ptr_++) != '\0')) { ErrorStringPrintf("String longer than indicated size %x", size); return false; } DCHECK_EQ(available_bytes, static_cast(file_end - ptr_)); return true; } bool DexFileVerifier::CheckIntraDebugInfoItem() { DECODE_UNSIGNED_CHECKED_FROM(ptr_, unused_line_start); DECODE_UNSIGNED_CHECKED_FROM(ptr_, parameters_size); if (UNLIKELY(parameters_size > 65536)) { ErrorStringPrintf("Invalid parameters_size: %x", parameters_size); return false; } for (uint32_t j = 0; j < parameters_size; j++) { DECODE_UNSIGNED_CHECKED_FROM(ptr_, parameter_name); if (parameter_name != 0) { parameter_name--; if (!CheckIndex(parameter_name, header_->string_ids_size_, "debug_info_item parameter_name")) { return false; } } } while (true) { if (UNLIKELY(ptr_ >= EndOfFile())) { // Went past the end. return false; } uint8_t opcode = *(ptr_++); switch (opcode) { case DexFile::DBG_END_SEQUENCE: { return true; } case DexFile::DBG_ADVANCE_PC: { DECODE_UNSIGNED_CHECKED_FROM(ptr_, unused_advance_pc); break; } case DexFile::DBG_ADVANCE_LINE: { DECODE_SIGNED_CHECKED_FROM(ptr_, unused_advance_line); break; } case DexFile::DBG_START_LOCAL: { DECODE_UNSIGNED_CHECKED_FROM(ptr_, reg_num); if (UNLIKELY(reg_num >= 65536)) { ErrorStringPrintf("Bad reg_num for opcode %x", opcode); return false; } DECODE_UNSIGNED_CHECKED_FROM(ptr_, name_idx); if (name_idx != 0) { name_idx--; if (!CheckIndex(name_idx, header_->string_ids_size_, "DBG_START_LOCAL name_idx")) { return false; } } DECODE_UNSIGNED_CHECKED_FROM(ptr_, type_idx); if (type_idx != 0) { type_idx--; if (!CheckIndex(type_idx, header_->type_ids_size_, "DBG_START_LOCAL type_idx")) { return false; } } break; } case DexFile::DBG_END_LOCAL: case DexFile::DBG_RESTART_LOCAL: { DECODE_UNSIGNED_CHECKED_FROM(ptr_, reg_num); if (UNLIKELY(reg_num >= 65536)) { ErrorStringPrintf("Bad reg_num for opcode %x", opcode); return false; } break; } case DexFile::DBG_START_LOCAL_EXTENDED: { DECODE_UNSIGNED_CHECKED_FROM(ptr_, reg_num); if (UNLIKELY(reg_num >= 65536)) { ErrorStringPrintf("Bad reg_num for opcode %x", opcode); return false; } DECODE_UNSIGNED_CHECKED_FROM(ptr_, name_idx); if (name_idx != 0) { name_idx--; if (!CheckIndex(name_idx, header_->string_ids_size_, "DBG_START_LOCAL_EXTENDED name_idx")) { return false; } } DECODE_UNSIGNED_CHECKED_FROM(ptr_, type_idx); if (type_idx != 0) { type_idx--; if (!CheckIndex(type_idx, header_->type_ids_size_, "DBG_START_LOCAL_EXTENDED type_idx")) { return false; } } DECODE_UNSIGNED_CHECKED_FROM(ptr_, sig_idx); if (sig_idx != 0) { sig_idx--; if (!CheckIndex(sig_idx, header_->string_ids_size_, "DBG_START_LOCAL_EXTENDED sig_idx")) { return false; } } break; } case DexFile::DBG_SET_FILE: { DECODE_UNSIGNED_CHECKED_FROM(ptr_, name_idx); if (name_idx != 0) { name_idx--; if (!CheckIndex(name_idx, header_->string_ids_size_, "DBG_SET_FILE name_idx")) { return false; } } break; } } } } bool DexFileVerifier::CheckIntraAnnotationItem() { if (!CheckListSize(ptr_, 1, sizeof(uint8_t), "annotation visibility")) { return false; } // Check visibility uint8_t visibility = *(ptr_++); switch (visibility) { case DexFile::kDexVisibilityBuild: case DexFile::kDexVisibilityRuntime: case DexFile::kDexVisibilitySystem: break; default: ErrorStringPrintf("Bad annotation visibility: %x", visibility); return false; } CHECK(todo_.empty()); if (!CheckEncodedAnnotation() || !FlushToDoList()) { return false; } return true; } bool DexFileVerifier::CheckIntraHiddenapiClassData() { const dex::HiddenapiClassData* item = reinterpret_cast(ptr_); // Check expected header size. uint32_t num_header_elems = dex_file_->NumClassDefs() + 1; uint32_t elem_size = sizeof(uint32_t); uint32_t header_size = num_header_elems * elem_size; if (!CheckListSize(item, num_header_elems, elem_size, "hiddenapi class data section header")) { return false; } // Check total size. if (!CheckListSize(item, item->size_, 1u, "hiddenapi class data section")) { return false; } // Check that total size can fit header. if (item->size_ < header_size) { ErrorStringPrintf( "Hiddenapi class data too short to store header (%u < %u)", item->size_, header_size); return false; } // The rest of the section depends on the class_data_item being verified first. We will finalize // verifying the hiddenapi_class_data_item in CheckInterHiddenapiClassData. const uint8_t* data_end = ptr_ + item->size_; ptr_ = data_end; return true; } bool DexFileVerifier::CheckIntraAnnotationsDirectoryItem() { const dex::AnnotationsDirectoryItem* item = reinterpret_cast(ptr_); if (!CheckListSize(item, 1, sizeof(dex::AnnotationsDirectoryItem), "annotations_directory")) { return false; } // Field annotations follow immediately after the annotations directory. const dex::FieldAnnotationsItem* field_item = reinterpret_cast(item + 1); uint32_t field_count = item->fields_size_; if (!CheckListSize(field_item, field_count, sizeof(dex::FieldAnnotationsItem), "field_annotations list")) { return false; } uint32_t last_idx = 0; for (uint32_t i = 0; i < field_count; i++) { if (!CheckIndex(field_item->field_idx_, header_->field_ids_size_, "field annotation")) { return false; } if (UNLIKELY(last_idx >= field_item->field_idx_ && i != 0)) { ErrorStringPrintf("Out-of-order field_idx for annotation: %x then %x", last_idx, field_item->field_idx_); return false; } last_idx = field_item->field_idx_; field_item++; } // Method annotations follow immediately after field annotations. const dex::MethodAnnotationsItem* method_item = reinterpret_cast(field_item); uint32_t method_count = item->methods_size_; if (!CheckListSize(method_item, method_count, sizeof(dex::MethodAnnotationsItem), "method_annotations list")) { return false; } last_idx = 0; for (uint32_t i = 0; i < method_count; i++) { if (!CheckIndex(method_item->method_idx_, header_->method_ids_size_, "method annotation")) { return false; } if (UNLIKELY(last_idx >= method_item->method_idx_ && i != 0)) { ErrorStringPrintf("Out-of-order method_idx for annotation: %x then %x", last_idx, method_item->method_idx_); return false; } last_idx = method_item->method_idx_; method_item++; } // Parameter annotations follow immediately after method annotations. const dex::ParameterAnnotationsItem* parameter_item = reinterpret_cast(method_item); uint32_t parameter_count = item->parameters_size_; if (!CheckListSize(parameter_item, parameter_count, sizeof(dex::ParameterAnnotationsItem), "parameter_annotations list")) { return false; } last_idx = 0; for (uint32_t i = 0; i < parameter_count; i++) { if (!CheckIndex(parameter_item->method_idx_, header_->method_ids_size_, "parameter annotation method")) { return false; } if (UNLIKELY(last_idx >= parameter_item->method_idx_ && i != 0)) { ErrorStringPrintf("Out-of-order method_idx for annotation: %x then %x", last_idx, parameter_item->method_idx_); return false; } last_idx = parameter_item->method_idx_; parameter_item++; } // Return a pointer to the end of the annotations. ptr_ = reinterpret_cast(parameter_item); return true; } template bool DexFileVerifier::CheckIntraSectionIterate(uint32_t section_count) { // Get the right alignment mask for the type of section. size_t alignment_mask; switch (kType) { case DexFile::kDexTypeClassDataItem: case DexFile::kDexTypeStringDataItem: case DexFile::kDexTypeDebugInfoItem: case DexFile::kDexTypeAnnotationItem: case DexFile::kDexTypeEncodedArrayItem: alignment_mask = sizeof(uint8_t) - 1; break; default: alignment_mask = sizeof(uint32_t) - 1; break; } // Iterate through the items in the section. for (uint32_t i = 0; i < section_count; i++) { size_t aligned_offset = (PtrToOffset(ptr_) + alignment_mask) & ~alignment_mask; // Check the padding between items. if (!CheckPadding(aligned_offset, kType)) { return false; } // Check depending on the section type. const uint8_t* start_ptr = ptr_; switch (kType) { case DexFile::kDexTypeStringIdItem: { if (!CheckListSize(ptr_, 1, sizeof(dex::StringId), "string_ids")) { return false; } ptr_ += sizeof(dex::StringId); break; } case DexFile::kDexTypeTypeIdItem: { if (!CheckIntraTypeIdItem()) { return false; } break; } case DexFile::kDexTypeProtoIdItem: { if (!CheckIntraProtoIdItem()) { return false; } break; } case DexFile::kDexTypeFieldIdItem: { if (!CheckIntraFieldIdItem()) { return false; } break; } case DexFile::kDexTypeMethodIdItem: { if (!CheckIntraMethodIdItem()) { return false; } break; } case DexFile::kDexTypeClassDefItem: { if (!CheckIntraClassDefItem(/*class_def_index=*/ i)) { return false; } break; } case DexFile::kDexTypeCallSiteIdItem: { if (!CheckListSize(ptr_, 1, sizeof(dex::CallSiteIdItem), "call_site_ids")) { return false; } ptr_ += sizeof(dex::CallSiteIdItem); break; } case DexFile::kDexTypeMethodHandleItem: { if (!CheckIntraMethodHandleItem()) { return false; } break; } case DexFile::kDexTypeTypeList: { if (!CheckIntraTypeList()) { return false; } break; } case DexFile::kDexTypeAnnotationSetRefList: { if (!CheckList(sizeof(dex::AnnotationSetRefItem), "annotation_set_ref_list", &ptr_)) { return false; } break; } case DexFile::kDexTypeAnnotationSetItem: { if (!CheckList(sizeof(uint32_t), "annotation_set_item", &ptr_)) { return false; } break; } case DexFile::kDexTypeClassDataItem: { if (!CheckIntraClassDataItem()) { return false; } break; } case DexFile::kDexTypeCodeItem: { if (!CheckIntraCodeItem()) { return false; } break; } case DexFile::kDexTypeStringDataItem: { if (!CheckIntraStringDataItem()) { return false; } break; } case DexFile::kDexTypeDebugInfoItem: { if (!CheckIntraDebugInfoItem()) { return false; } break; } case DexFile::kDexTypeAnnotationItem: { if (!CheckIntraAnnotationItem()) { return false; } break; } case DexFile::kDexTypeEncodedArrayItem: { CHECK(todo_.empty()); if (!CheckEncodedArray() || !FlushToDoList()) { return false; } break; } case DexFile::kDexTypeAnnotationsDirectoryItem: { if (!CheckIntraAnnotationsDirectoryItem()) { return false; } break; } case DexFile::kDexTypeHiddenapiClassData: { if (!CheckIntraHiddenapiClassData()) { return false; } break; } case DexFile::kDexTypeHeaderItem: case DexFile::kDexTypeMapList: break; } if (start_ptr == ptr_) { ErrorStringPrintf("Unknown map item type %x", kType); return false; } if (IsDataSectionType(kType)) { if (aligned_offset == 0u) { ErrorStringPrintf("Item %d offset is 0", i); return false; } DCHECK(offset_to_type_map_.find(aligned_offset) == offset_to_type_map_.end()); offset_to_type_map_.insert(std::pair(aligned_offset, kType)); } if (!PtrToOffset(ptr_, &aligned_offset)) { ErrorStringPrintf("Item %d at ends out of bounds", i); return false; } } return true; } template bool DexFileVerifier::CheckIntraIdSection(size_t offset, uint32_t count) { uint32_t expected_offset; uint32_t expected_size; // Get the expected offset and size from the header. switch (kType) { case DexFile::kDexTypeStringIdItem: expected_offset = header_->string_ids_off_; expected_size = header_->string_ids_size_; break; case DexFile::kDexTypeTypeIdItem: expected_offset = header_->type_ids_off_; expected_size = header_->type_ids_size_; break; case DexFile::kDexTypeProtoIdItem: expected_offset = header_->proto_ids_off_; expected_size = header_->proto_ids_size_; break; case DexFile::kDexTypeFieldIdItem: expected_offset = header_->field_ids_off_; expected_size = header_->field_ids_size_; break; case DexFile::kDexTypeMethodIdItem: expected_offset = header_->method_ids_off_; expected_size = header_->method_ids_size_; break; case DexFile::kDexTypeClassDefItem: expected_offset = header_->class_defs_off_; expected_size = header_->class_defs_size_; break; default: ErrorStringPrintf("Bad type for id section: %x", kType); return false; } // Check that the offset and size are what were expected from the header. if (UNLIKELY(offset != expected_offset)) { ErrorStringPrintf("Bad offset for section: got %zx, expected %x", offset, expected_offset); return false; } if (UNLIKELY(count != expected_size)) { ErrorStringPrintf("Bad size for section: got %x, expected %x", count, expected_size); return false; } return CheckIntraSectionIterate(count); } template bool DexFileVerifier::CheckIntraDataSection(size_t offset, uint32_t count) { size_t data_start = PtrToOffset(data_.begin()); size_t data_end = PtrToOffset(data_.end()); // Check the validity of the offset of the section. if (UNLIKELY((offset < data_start) || (offset > data_end))) { ErrorStringPrintf("Bad offset for data subsection: %zx", offset); return false; } if (!CheckIntraSectionIterate(count)) { return false; } // FIXME: Doing this check late means we may have already read memory outside the // data section and potentially outside the file, thus risking a segmentation fault. size_t next_offset; if (!PtrToOffset(ptr_, &next_offset) || next_offset > data_end) { ErrorStringPrintf("Out-of-bounds end of data subsection: %zu data_off=%u data_size=%u", next_offset, header_->data_off_, header_->data_size_); return false; } return true; } bool DexFileVerifier::CheckIntraSection() { const dex::MapList* map = OffsetToPtr(header_->map_off_); const dex::MapItem* item = map->list_; uint32_t count = map->size_; ptr_ = dex_file_->Begin(); // Preallocate offset map to avoid some allocations. We can only guess from the list items, // not derived things. offset_to_type_map_.reserve( std::min(header_->class_defs_size_, 65535u) + std::min(header_->string_ids_size_, 65535u) + 2 * std::min(header_->method_ids_size_, 65535u)); // Check the items listed in the map. for (; count != 0u; --count) { const uint8_t* initial_ptr = ptr_; uint32_t section_offset = item->offset_; uint32_t section_count = item->size_; DexFile::MapItemType type = static_cast(item->type_); // Check for padding and overlap between items. size_t offset = PtrToOffset(ptr_); if (UNLIKELY(offset > section_offset)) { ErrorStringPrintf("Section overlap or out-of-order map: %zx, %x", offset, section_offset); return false; } if (!CheckPadding(section_offset, type)) { return false; } // Check each item based on its type. switch (type) { case DexFile::kDexTypeHeaderItem: { if (UNLIKELY(section_count != 1)) { ErrorStringPrintf("Multiple header items"); return false; } uint32_t expected = dex_version_ >= 41 ? PtrToOffset(dex_file_->Begin()) : 0; if (UNLIKELY(section_offset != expected)) { ErrorStringPrintf("Header at %x, expected %x", section_offset, expected); return false; } ptr_ += header_->header_size_; break; } #define CHECK_INTRA_ID_SECTION_CASE(type) \ case type: \ if (!CheckIntraIdSection(section_offset, section_count)) { \ return false; \ } \ break; CHECK_INTRA_ID_SECTION_CASE(DexFile::kDexTypeStringIdItem) CHECK_INTRA_ID_SECTION_CASE(DexFile::kDexTypeTypeIdItem) CHECK_INTRA_ID_SECTION_CASE(DexFile::kDexTypeProtoIdItem) CHECK_INTRA_ID_SECTION_CASE(DexFile::kDexTypeFieldIdItem) CHECK_INTRA_ID_SECTION_CASE(DexFile::kDexTypeMethodIdItem) CHECK_INTRA_ID_SECTION_CASE(DexFile::kDexTypeClassDefItem) #undef CHECK_INTRA_ID_SECTION_CASE case DexFile::kDexTypeMapList: if (UNLIKELY(section_count != 1)) { ErrorStringPrintf("Multiple map list items"); return false; } if (UNLIKELY(section_offset != header_->map_off_)) { ErrorStringPrintf("Map not at header-defined offset: %x, expected %x", section_offset, header_->map_off_); return false; } ptr_ += sizeof(uint32_t) + (map->size_ * sizeof(dex::MapItem)); break; #define CHECK_INTRA_SECTION_ITERATE_CASE(type) \ case type: \ if (!CheckIntraSectionIterate(section_count)) { \ return false; \ } \ break; CHECK_INTRA_SECTION_ITERATE_CASE(DexFile::kDexTypeMethodHandleItem) CHECK_INTRA_SECTION_ITERATE_CASE(DexFile::kDexTypeCallSiteIdItem) #undef CHECK_INTRA_SECTION_ITERATE_CASE #define CHECK_INTRA_DATA_SECTION_CASE(type) \ case type: \ if (!CheckIntraDataSection(section_offset, section_count)) { \ return false; \ } \ break; CHECK_INTRA_DATA_SECTION_CASE(DexFile::kDexTypeTypeList) CHECK_INTRA_DATA_SECTION_CASE(DexFile::kDexTypeAnnotationSetRefList) CHECK_INTRA_DATA_SECTION_CASE(DexFile::kDexTypeAnnotationSetItem) CHECK_INTRA_DATA_SECTION_CASE(DexFile::kDexTypeClassDataItem) CHECK_INTRA_DATA_SECTION_CASE(DexFile::kDexTypeCodeItem) CHECK_INTRA_DATA_SECTION_CASE(DexFile::kDexTypeStringDataItem) CHECK_INTRA_DATA_SECTION_CASE(DexFile::kDexTypeDebugInfoItem) CHECK_INTRA_DATA_SECTION_CASE(DexFile::kDexTypeAnnotationItem) CHECK_INTRA_DATA_SECTION_CASE(DexFile::kDexTypeEncodedArrayItem) CHECK_INTRA_DATA_SECTION_CASE(DexFile::kDexTypeAnnotationsDirectoryItem) CHECK_INTRA_DATA_SECTION_CASE(DexFile::kDexTypeHiddenapiClassData) #undef CHECK_INTRA_DATA_SECTION_CASE } if (ptr_ == initial_ptr) { ErrorStringPrintf("Unknown map item type %x", type); return false; } item++; } return true; } bool DexFileVerifier::CheckOffsetToTypeMap(size_t offset, uint16_t type) { DCHECK(offset_to_type_map_.find(0) == offset_to_type_map_.end()); auto it = offset_to_type_map_.find(offset); if (UNLIKELY(it == offset_to_type_map_.end())) { ErrorStringPrintf("No data map entry found @ %zx; expected %x", offset, type); return false; } if (UNLIKELY(it->second != type)) { ErrorStringPrintf("Unexpected data map entry @ %zx; expected %x, found %x", offset, type, it->second); return false; } return true; } uint32_t DexFileVerifier::FindFirstClassDataDefiner(const ClassAccessor& accessor) { // The data item and field/method indexes have already been checked in // `CheckIntraClassDataItem()` or its helper functions. if (accessor.NumFields() != 0) { ClassAccessor::Field read_field(*dex_file_, accessor.ptr_pos_); read_field.Read(); DCHECK_LE(read_field.GetIndex(), dex_file_->NumFieldIds()); return dex_file_->GetFieldId(read_field.GetIndex()).class_idx_.index_; } if (accessor.NumMethods() != 0) { ClassAccessor::Method read_method(*dex_file_, accessor.ptr_pos_); read_method.Read(); DCHECK_LE(read_method.GetIndex(), dex_file_->NumMethodIds()); return dex_file_->GetMethodId(read_method.GetIndex()).class_idx_.index_; } return kDexNoIndex; } uint32_t DexFileVerifier::FindFirstAnnotationsDirectoryDefiner(const uint8_t* ptr) { // The annotations directory and field/method indexes have already been checked in // `CheckIntraAnnotationsDirectoryItem()`. const dex::AnnotationsDirectoryItem* item = reinterpret_cast(ptr); if (item->fields_size_ != 0) { dex::FieldAnnotationsItem* field_items = (dex::FieldAnnotationsItem*) (item + 1); DCHECK_LE(field_items[0].field_idx_, dex_file_->NumFieldIds()); return dex_file_->GetFieldId(field_items[0].field_idx_).class_idx_.index_; } if (item->methods_size_ != 0) { dex::MethodAnnotationsItem* method_items = (dex::MethodAnnotationsItem*) (item + 1); DCHECK_LE(method_items[0].method_idx_, dex_file_->NumMethodIds()); return dex_file_->GetMethodId(method_items[0].method_idx_).class_idx_.index_; } if (item->parameters_size_ != 0) { dex::ParameterAnnotationsItem* parameter_items = (dex::ParameterAnnotationsItem*) (item + 1); DCHECK_LE(parameter_items[0].method_idx_, dex_file_->NumMethodIds()); return dex_file_->GetMethodId(parameter_items[0].method_idx_).class_idx_.index_; } return kDexNoIndex; } bool DexFileVerifier::CheckInterHiddenapiClassData() { const dex::HiddenapiClassData* item = reinterpret_cast(ptr_); // Move pointer after the header. This data has been verified in CheckIntraHiddenapiClassData. uint32_t num_header_elems = dex_file_->NumClassDefs() + 1; uint32_t elem_size = sizeof(uint32_t); uint32_t header_size = num_header_elems * elem_size; const uint8_t* data_end = ptr_ + item->size_; ptr_ += header_size; // Check offsets for each class def. for (uint32_t i = 0; i < dex_file_->NumClassDefs(); ++i) { const dex::ClassDef& class_def = dex_file_->GetClassDef(i); const uint8_t* class_data = dex_file_->GetClassData(class_def); uint32_t offset = item->flags_offset_[i]; if (offset == 0) { continue; } // Check that class defs with no class data do not have any hiddenapi class data. if (class_data == nullptr) { ErrorStringPrintf( "Hiddenapi class data offset not zero for class def %u with no class data", i); return false; } // Check that the offset is within the section. if (offset > item->size_) { ErrorStringPrintf( "Hiddenapi class data offset out of section bounds (%u > %u) for class def %u", offset, item->size_, i); return false; } // Check that the offset matches current pointer position. We do not allow // offsets into already parsed data, or gaps between class def data. uint32_t ptr_offset = ptr_ - reinterpret_cast(item); if (offset != ptr_offset) { ErrorStringPrintf( "Hiddenapi class data unexpected offset (%u != %u) for class def %u", offset, ptr_offset, i); return false; } // Parse a uleb128 value for each field and method of this class. bool failure = false; auto fn_member = [&](const ClassAccessor::BaseItem& member, const char* member_type) { if (failure) { return; } uint32_t decoded_flags; if (!DecodeUnsignedLeb128Checked(&ptr_, data_end, &decoded_flags)) { ErrorStringPrintf("Hiddenapi class data value out of bounds (%p > %p) for %s %i", ptr_, data_end, member_type, member.GetIndex()); failure = true; return; } if (!hiddenapi::ApiList(decoded_flags).IsValid()) { ErrorStringPrintf("Hiddenapi class data flags invalid (%u) for %s %i", decoded_flags, member_type, member.GetIndex()); failure = true; return; } }; auto fn_field = [&](const ClassAccessor::Field& field) { fn_member(field, "field"); }; auto fn_method = [&](const ClassAccessor::Method& method) { fn_member(method, "method"); }; ClassAccessor accessor(*dex_file_, class_data); accessor.VisitFieldsAndMethods(fn_field, fn_field, fn_method, fn_method); if (failure) { return false; } } if (ptr_ != data_end) { ErrorStringPrintf("Hiddenapi class data wrong reported size (%u != %u)", static_cast(ptr_ - reinterpret_cast(item)), item->size_); return false; } return true; } bool DexFileVerifier::CheckInterStringIdItem() { const dex::StringId* item = reinterpret_cast(ptr_); // Note: The mapping to string data items is eagerly verified at the start of CheckInterSection(). // Check ordering between items. if (previous_item_ != nullptr) { const dex::StringId* prev_item = reinterpret_cast(previous_item_); const char* prev_str = dex_file_->GetStringData(*prev_item); const char* str = dex_file_->GetStringData(*item); if (UNLIKELY(CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(prev_str, str) >= 0)) { ErrorStringPrintf("Out-of-order string_ids: '%s' then '%s'", prev_str, str); return false; } } ptr_ += sizeof(dex::StringId); return true; } bool DexFileVerifier::CheckInterTypeIdItem() { const dex::TypeId* item = reinterpret_cast(ptr_); { // Translate to index to potentially use cache. // The check in `CheckIntraIdSection()` guarantees that this index is valid. size_t index = item - OffsetToPtr(header_->type_ids_off_); DCHECK_LE(index, header_->type_ids_size_); if (UNLIKELY(!VerifyTypeDescriptor( dex::TypeIndex(static_cast(index)), "Invalid type descriptor", [](char) { return true; }))) { return false; } } // Check ordering between items. if (previous_item_ != nullptr) { const dex::TypeId* prev_item = reinterpret_cast(previous_item_); if (UNLIKELY(prev_item->descriptor_idx_ >= item->descriptor_idx_)) { ErrorStringPrintf("Out-of-order type_ids: %x then %x", prev_item->descriptor_idx_.index_, item->descriptor_idx_.index_); return false; } } ptr_ += sizeof(dex::TypeId); return true; } bool DexFileVerifier::CheckInterProtoIdItem() { const dex::ProtoId* item = reinterpret_cast(ptr_); const char* shorty = dex_file_->GetStringData(item->shorty_idx_); if (item->parameters_off_ != 0 && !CheckOffsetToTypeMap(item->parameters_off_, DexFile::kDexTypeTypeList)) { return false; } // Check that return type is representable as a uint16_t; if (UNLIKELY(!IsValidOrNoTypeId(item->return_type_idx_.index_, item->pad_))) { ErrorStringPrintf("proto with return type idx outside uint16_t range '%x:%x'", item->pad_, item->return_type_idx_.index_); return false; } // Check the return type and advance the shorty. const char* return_type = dex_file_->GetTypeDescriptor(item->return_type_idx_); if (!CheckShortyDescriptorMatch(*shorty, return_type, true)) { return false; } shorty++; DexFileParameterIterator it(*dex_file_, *item); while (it.HasNext() && *shorty != '\0') { if (!CheckIndex(it.GetTypeIdx().index_, dex_file_->NumTypeIds(), "inter_proto_id_item shorty type_idx")) { return false; } const char* descriptor = it.GetDescriptor(); if (!CheckShortyDescriptorMatch(*shorty, descriptor, false)) { return false; } it.Next(); shorty++; } if (UNLIKELY(it.HasNext() || *shorty != '\0')) { ErrorStringPrintf("Mismatched length for parameters and shorty"); return false; } // Check ordering between items. This relies on type_ids being in order. if (previous_item_ != nullptr) { const dex::ProtoId* prev = reinterpret_cast(previous_item_); if (UNLIKELY(prev->return_type_idx_ > item->return_type_idx_)) { ErrorStringPrintf("Out-of-order proto_id return types"); return false; } else if (prev->return_type_idx_ == item->return_type_idx_) { DexFileParameterIterator curr_it(*dex_file_, *item); DexFileParameterIterator prev_it(*dex_file_, *prev); while (curr_it.HasNext() && prev_it.HasNext()) { dex::TypeIndex prev_idx = prev_it.GetTypeIdx(); dex::TypeIndex curr_idx = curr_it.GetTypeIdx(); DCHECK_NE(prev_idx, dex::TypeIndex(DexFile::kDexNoIndex16)); DCHECK_NE(curr_idx, dex::TypeIndex(DexFile::kDexNoIndex16)); if (prev_idx < curr_idx) { break; } else if (UNLIKELY(prev_idx > curr_idx)) { ErrorStringPrintf("Out-of-order proto_id arguments"); return false; } prev_it.Next(); curr_it.Next(); } if (!curr_it.HasNext()) { // Either a duplicate ProtoId or a ProtoId with a shorter argument list follows // a ProtoId with a longer one. Both cases are forbidden by the specification. ErrorStringPrintf("Out-of-order proto_id arguments"); return false; } } } ptr_ += sizeof(dex::ProtoId); return true; } bool DexFileVerifier::CheckInterFieldIdItem() { const dex::FieldId* item = reinterpret_cast(ptr_); // Check that the class descriptor is valid. if (UNLIKELY(!VerifyTypeDescriptor(item->class_idx_, "Invalid descriptor for class_idx", [](char d) { return d == 'L'; }))) { return false; } // Check that the type descriptor is a valid field name. if (UNLIKELY(!VerifyTypeDescriptor(item->type_idx_, "Invalid descriptor for type_idx", [](char d) { return d != 'V'; }))) { return false; } // Check that the name is valid. const char* field_name = dex_file_->GetStringData(item->name_idx_); if (UNLIKELY(!IsValidMemberName(field_name))) { ErrorStringPrintf("Invalid field name: '%s'", field_name); return false; } // Check ordering between items. This relies on the other sections being in order. if (previous_item_ != nullptr) { const dex::FieldId* prev_item = reinterpret_cast(previous_item_); if (UNLIKELY(prev_item->class_idx_ > item->class_idx_)) { ErrorStringPrintf("Out-of-order field_ids"); return false; } else if (prev_item->class_idx_ == item->class_idx_) { if (UNLIKELY(prev_item->name_idx_ > item->name_idx_)) { ErrorStringPrintf("Out-of-order field_ids"); return false; } else if (prev_item->name_idx_ == item->name_idx_) { if (UNLIKELY(prev_item->type_idx_ >= item->type_idx_)) { ErrorStringPrintf("Out-of-order field_ids"); return false; } } } } ptr_ += sizeof(dex::FieldId); return true; } bool DexFileVerifier::CheckInterMethodIdItem() { const dex::MethodId* item = reinterpret_cast(ptr_); // Check that the class descriptor is a valid reference name. if (UNLIKELY(!VerifyTypeDescriptor(item->class_idx_, "Invalid descriptor for class_idx", [](char d) { return d == 'L' || d == '['; }))) { return false; } // Check that the name is valid. const char* method_name = dex_file_->GetStringData(item->name_idx_); if (UNLIKELY(!IsValidMemberName(method_name))) { ErrorStringPrintf("Invalid method name: '%s'", method_name); return false; } // Check that the proto id is valid. if (UNLIKELY(!CheckIndex(item->proto_idx_.index_, dex_file_->NumProtoIds(), "inter_method_id_item proto_idx"))) { return false; } // Check ordering between items. This relies on the other sections being in order. if (previous_item_ != nullptr) { const dex::MethodId* prev_item = reinterpret_cast(previous_item_); if (UNLIKELY(prev_item->class_idx_ > item->class_idx_)) { ErrorStringPrintf("Out-of-order method_ids"); return false; } else if (prev_item->class_idx_ == item->class_idx_) { if (UNLIKELY(prev_item->name_idx_ > item->name_idx_)) { ErrorStringPrintf("Out-of-order method_ids"); return false; } else if (prev_item->name_idx_ == item->name_idx_) { if (UNLIKELY(prev_item->proto_idx_ >= item->proto_idx_)) { ErrorStringPrintf("Out-of-order method_ids"); return false; } } } } ptr_ += sizeof(dex::MethodId); return true; } bool DexFileVerifier::CheckInterClassDefItem() { const dex::ClassDef* item = reinterpret_cast(ptr_); // Check that class_idx_ is representable as a uint16_t; if (UNLIKELY(!IsValidTypeId(item->class_idx_.index_, item->pad1_))) { ErrorStringPrintf("class with type idx outside uint16_t range '%x:%x'", item->pad1_, item->class_idx_.index_); return false; } // Check that superclass_idx_ is representable as a uint16_t; if (UNLIKELY(!IsValidOrNoTypeId(item->superclass_idx_.index_, item->pad2_))) { ErrorStringPrintf("class with superclass type idx outside uint16_t range '%x:%x'", item->pad2_, item->superclass_idx_.index_); return false; } // Check for duplicate class def. if (UNLIKELY(!VerifyTypeDescriptor(item->class_idx_, "Invalid class descriptor", [](char d) { return d == 'L'; }))) { return false; } // Only allow non-runtime modifiers. if ((item->access_flags_ & ~kAccJavaFlagsMask) != 0) { ErrorStringPrintf("Invalid class flags: '%d'", item->access_flags_); return false; } if (item->interfaces_off_ != 0 && !CheckOffsetToTypeMap(item->interfaces_off_, DexFile::kDexTypeTypeList)) { return false; } if (item->annotations_off_ != 0 && !CheckOffsetToTypeMap(item->annotations_off_, DexFile::kDexTypeAnnotationsDirectoryItem)) { return false; } if (item->class_data_off_ != 0 && !CheckOffsetToTypeMap(item->class_data_off_, DexFile::kDexTypeClassDataItem)) { return false; } if (item->static_values_off_ != 0 && !CheckOffsetToTypeMap(item->static_values_off_, DexFile::kDexTypeEncodedArrayItem)) { return false; } if (item->superclass_idx_.IsValid()) { if (header_->GetVersion() >= DexFile::kClassDefinitionOrderEnforcedVersion) { // Check that a class does not inherit from itself directly (by having // the same type idx as its super class). if (UNLIKELY(item->superclass_idx_ == item->class_idx_)) { ErrorStringPrintf("Class with same type idx as its superclass: '%d'", item->class_idx_.index_); return false; } // Check that a class is defined after its super class (if the // latter is defined in the same Dex file). uint16_t superclass_idx = item->superclass_idx_.index_; if (defined_classes_[superclass_idx]) { // The superclass is defined in this Dex file. if (&dex_file_->GetClassDef(defined_class_indexes_[superclass_idx]) > item) { // ClassDef item for super class appearing after the class' ClassDef item. ErrorStringPrintf("Invalid class definition ordering:" " class with type idx: '%d' defined before" " superclass with type idx: '%d'", item->class_idx_.index_, superclass_idx); return false; } } } if (UNLIKELY(!VerifyTypeDescriptor(item->superclass_idx_, "Invalid superclass", [](char d) { return d == 'L'; }))) { return false; } } // Check interfaces. const dex::TypeList* interfaces = dex_file_->GetInterfacesList(*item); if (interfaces != nullptr) { uint32_t size = interfaces->Size(); for (uint32_t i = 0; i < size; i++) { if (header_->GetVersion() >= DexFile::kClassDefinitionOrderEnforcedVersion) { // Check that a class does not implement itself directly (by having the // same type idx as one of its immediate implemented interfaces). if (UNLIKELY(interfaces->GetTypeItem(i).type_idx_ == item->class_idx_)) { ErrorStringPrintf("Class with same type idx as implemented interface: '%d'", item->class_idx_.index_); return false; } // Check that a class is defined after the interfaces it implements // (if they are defined in the same Dex file). uint16_t interface_idx = interfaces->GetTypeItem(i).type_idx_.index_; if (defined_classes_[interface_idx]) { // The interface is defined in this Dex file. if (&dex_file_->GetClassDef(defined_class_indexes_[interface_idx]) > item) { // ClassDef item for interface appearing after the class' ClassDef item. ErrorStringPrintf("Invalid class definition ordering:" " class with type idx: '%d' defined before" " implemented interface with type idx: '%d'", item->class_idx_.index_, interface_idx); return false; } } } // Ensure that the interface refers to a class (not an array nor a primitive type). if (UNLIKELY(!VerifyTypeDescriptor(interfaces->GetTypeItem(i).type_idx_, "Invalid interface", [](char d) { return d == 'L'; }))) { return false; } } /* * Ensure that there are no duplicates. This is an O(N^2) test, but in * practice the number of interfaces implemented by any given class is low. */ for (uint32_t i = 1; i < size; i++) { dex::TypeIndex idx1 = interfaces->GetTypeItem(i).type_idx_; for (uint32_t j =0; j < i; j++) { dex::TypeIndex idx2 = interfaces->GetTypeItem(j).type_idx_; if (UNLIKELY(idx1 == idx2)) { ErrorStringPrintf("Duplicate interface: '%s'", dex_file_->GetTypeDescriptor(idx1)); return false; } } } } // Check that references in class_data_item are to the right class. if (item->class_data_off_ != 0) { ClassAccessor accessor(*dex_file_, OffsetToPtr(item->class_data_off_)); uint32_t data_definer = FindFirstClassDataDefiner(accessor); DCHECK(IsUint<16>(data_definer) || data_definer == kDexNoIndex) << data_definer; if (UNLIKELY((data_definer != item->class_idx_.index_) && (data_definer != kDexNoIndex))) { ErrorStringPrintf("Invalid class_data_item"); return false; } } // Check that references in annotations_directory_item are to right class. if (item->annotations_off_ != 0) { // annotations_off_ is supposed to be aligned by 4. if (!IsAlignedParam(item->annotations_off_, 4)) { ErrorStringPrintf("Invalid annotations_off_, not aligned by 4"); return false; } const uint8_t* data = OffsetToPtr(item->annotations_off_); uint32_t defining_class = FindFirstAnnotationsDirectoryDefiner(data); DCHECK(IsUint<16>(defining_class) || defining_class == kDexNoIndex) << defining_class; if (UNLIKELY((defining_class != item->class_idx_.index_) && (defining_class != kDexNoIndex))) { ErrorStringPrintf("Invalid annotations_directory_item"); return false; } } ptr_ += sizeof(dex::ClassDef); return true; } bool DexFileVerifier::CheckInterCallSiteIdItem() { const dex::CallSiteIdItem* item = reinterpret_cast(ptr_); // Check call site referenced by item is in encoded array section. if (!CheckOffsetToTypeMap(item->data_off_, DexFile::kDexTypeEncodedArrayItem)) { DCHECK(!failure_reason_.empty()); // Error already set. return false; } CallSiteArrayValueIterator it(*dex_file_, *item); // Check Method Handle if (!it.HasNext() || it.GetValueType() != EncodedArrayValueIterator::ValueType::kMethodHandle) { ErrorStringPrintf("CallSiteArray missing method handle"); return false; } uint32_t handle_index = static_cast(it.GetJavaValue().i); if (handle_index >= dex_file_->NumMethodHandles()) { ErrorStringPrintf("CallSite has bad method handle id: %x", handle_index); return false; } // Check target method name. if (!it.MaybeNext()) { ErrorStringPrintf("unexpected encoded value type: '%c'", it.GetValueType()); return false; } if (!it.HasNext() || it.GetValueType() != EncodedArrayValueIterator::ValueType::kString) { ErrorStringPrintf("CallSiteArray missing target method name"); return false; } uint32_t name_index = static_cast(it.GetJavaValue().i); if (name_index >= dex_file_->NumStringIds()) { ErrorStringPrintf("CallSite has bad method name id: %x", name_index); return false; } // Check method type. if (!it.MaybeNext()) { ErrorStringPrintf("unexpected encoded value type: '%c'", it.GetValueType()); return false; } if (!it.HasNext() || it.GetValueType() != EncodedArrayValueIterator::ValueType::kMethodType) { ErrorStringPrintf("CallSiteArray missing method type"); return false; } uint32_t proto_index = static_cast(it.GetJavaValue().i); if (proto_index >= dex_file_->NumProtoIds()) { ErrorStringPrintf("CallSite has bad method type: %x", proto_index); return false; } ptr_ += sizeof(dex::CallSiteIdItem); return true; } bool DexFileVerifier::CheckInterAnnotationSetRefList() { const dex::AnnotationSetRefList* list = reinterpret_cast(ptr_); const dex::AnnotationSetRefItem* item = list->list_; uint32_t count = list->size_; for (; count != 0u; --count) { if (item->annotations_off_ != 0 && !CheckOffsetToTypeMap(item->annotations_off_, DexFile::kDexTypeAnnotationSetItem)) { return false; } item++; } ptr_ = reinterpret_cast(item); return true; } bool DexFileVerifier::CheckInterAnnotationSetItem() { const dex::AnnotationSetItem* set = reinterpret_cast(ptr_); const uint32_t* offsets = set->entries_; uint32_t count = set->size_; uint32_t last_idx = 0; for (uint32_t i = 0; i < count; i++) { if (*offsets != 0 && !CheckOffsetToTypeMap(*offsets, DexFile::kDexTypeAnnotationItem)) { return false; } // Get the annotation from the offset and the type index for the annotation. const dex::AnnotationItem* annotation = OffsetToPtr(*offsets); const uint8_t* data = annotation->annotation_; DECODE_UNSIGNED_CHECKED_FROM(data, idx); if (UNLIKELY(last_idx >= idx && i != 0)) { ErrorStringPrintf("Out-of-order entry types: %x then %x", last_idx, idx); return false; } last_idx = idx; offsets++; } ptr_ = reinterpret_cast(offsets); return true; } bool DexFileVerifier::CheckInterClassDataItem() { ClassAccessor accessor(*dex_file_, ptr_); uint32_t defining_class = FindFirstClassDataDefiner(accessor); DCHECK(IsUint<16>(defining_class) || defining_class == kDexNoIndex) << defining_class; if (defining_class == kDexNoIndex) { return true; // Empty definitions are OK (but useless) and could be shared by multiple classes. } if (!defined_classes_[defining_class]) { // Should really have a class definition for this class data item. ErrorStringPrintf("Could not find declaring class for non-empty class data item."); return false; } const dex::TypeIndex class_type_index(defining_class); const dex::ClassDef& class_def = dex_file_->GetClassDef(defined_class_indexes_[defining_class]); for (const ClassAccessor::Field& read_field : accessor.GetFields()) { // The index has already been checked in `CheckIntraClassDataItemFields()`. DCHECK_LE(read_field.GetIndex(), header_->field_ids_size_); const dex::FieldId& field = dex_file_->GetFieldId(read_field.GetIndex()); if (UNLIKELY(field.class_idx_ != class_type_index)) { ErrorStringPrintf("Mismatched defining class for class_data_item field"); return false; } if (!CheckClassDataItemField(read_field.GetIndex(), read_field.GetAccessFlags(), class_def.access_flags_, class_type_index)) { return false; } } size_t num_direct_methods = accessor.NumDirectMethods(); size_t num_processed_methods = 0u; auto methods = accessor.GetMethods(); auto it = methods.begin(); for (; it != methods.end(); ++it, ++num_processed_methods) { uint32_t code_off = it->GetCodeItemOffset(); if (code_off != 0 && !CheckOffsetToTypeMap(code_off, DexFile::kDexTypeCodeItem)) { return false; } // The index has already been checked in `CheckIntraClassDataItemMethods()`. DCHECK_LE(it->GetIndex(), header_->method_ids_size_); const dex::MethodId& method = dex_file_->GetMethodId(it->GetIndex()); if (UNLIKELY(method.class_idx_ != class_type_index)) { ErrorStringPrintf("Mismatched defining class for class_data_item method"); return false; } bool expect_direct = num_processed_methods < num_direct_methods; if (!CheckClassDataItemMethod(it->GetIndex(), it->GetAccessFlags(), class_def.access_flags_, class_type_index, it->GetCodeItemOffset(), expect_direct)) { return false; } } // Check static field types against initial static values in encoded array. if (!CheckStaticFieldTypes(class_def)) { return false; } ptr_ = it.GetDataPointer(); return true; } bool DexFileVerifier::CheckInterAnnotationsDirectoryItem() { const dex::AnnotationsDirectoryItem* item = reinterpret_cast(ptr_); uint32_t defining_class = FindFirstAnnotationsDirectoryDefiner(ptr_); DCHECK(IsUint<16>(defining_class) || defining_class == kDexNoIndex) << defining_class; if (item->class_annotations_off_ != 0 && !CheckOffsetToTypeMap(item->class_annotations_off_, DexFile::kDexTypeAnnotationSetItem)) { return false; } // Field annotations follow immediately after the annotations directory. const dex::FieldAnnotationsItem* field_item = reinterpret_cast(item + 1); uint32_t field_count = item->fields_size_; for (uint32_t i = 0; i < field_count; i++) { // The index has already been checked in `CheckIntraAnnotationsDirectoryItem()`. DCHECK_LE(field_item->field_idx_, header_->field_ids_size_); const dex::FieldId& field = dex_file_->GetFieldId(field_item->field_idx_); if (UNLIKELY(field.class_idx_.index_ != defining_class)) { ErrorStringPrintf("Mismatched defining class for field_annotation"); return false; } if (!CheckOffsetToTypeMap(field_item->annotations_off_, DexFile::kDexTypeAnnotationSetItem)) { return false; } field_item++; } // Method annotations follow immediately after field annotations. const dex::MethodAnnotationsItem* method_item = reinterpret_cast(field_item); uint32_t method_count = item->methods_size_; for (uint32_t i = 0; i < method_count; i++) { // The index has already been checked in `CheckIntraAnnotationsDirectoryItem()`. DCHECK_LE(method_item->method_idx_, header_->method_ids_size_); const dex::MethodId& method = dex_file_->GetMethodId(method_item->method_idx_); if (UNLIKELY(method.class_idx_.index_ != defining_class)) { ErrorStringPrintf("Mismatched defining class for method_annotation"); return false; } if (!CheckOffsetToTypeMap(method_item->annotations_off_, DexFile::kDexTypeAnnotationSetItem)) { return false; } method_item++; } // Parameter annotations follow immediately after method annotations. const dex::ParameterAnnotationsItem* parameter_item = reinterpret_cast(method_item); uint32_t parameter_count = item->parameters_size_; for (uint32_t i = 0; i < parameter_count; i++) { // The index has already been checked in `CheckIntraAnnotationsDirectoryItem()`. DCHECK_LE(parameter_item->method_idx_, header_->method_ids_size_); const dex::MethodId& parameter_method = dex_file_->GetMethodId(parameter_item->method_idx_); if (UNLIKELY(parameter_method.class_idx_.index_ != defining_class)) { ErrorStringPrintf("Mismatched defining class for parameter_annotation"); return false; } if (!CheckOffsetToTypeMap(parameter_item->annotations_off_, DexFile::kDexTypeAnnotationSetRefList)) { return false; } parameter_item++; } ptr_ = reinterpret_cast(parameter_item); return true; } bool DexFileVerifier::CheckInterSectionIterate(size_t offset, uint32_t count, DexFile::MapItemType type) { // Get the right alignment mask for the type of section. size_t alignment_mask; switch (type) { case DexFile::kDexTypeClassDataItem: alignment_mask = sizeof(uint8_t) - 1; break; default: alignment_mask = sizeof(uint32_t) - 1; break; } // Iterate through the items in the section. previous_item_ = nullptr; for (uint32_t i = 0; i < count; i++) { uint32_t new_offset = (offset + alignment_mask) & ~alignment_mask; ptr_ = OffsetToPtr(new_offset); const uint8_t* prev_ptr = ptr_; if (MapTypeToBitMask(type) == 0) { ErrorStringPrintf("Unknown map item type %x", type); return false; } // Check depending on the section type. switch (type) { case DexFile::kDexTypeHeaderItem: case DexFile::kDexTypeMethodHandleItem: case DexFile::kDexTypeMapList: case DexFile::kDexTypeTypeList: case DexFile::kDexTypeCodeItem: case DexFile::kDexTypeStringDataItem: case DexFile::kDexTypeDebugInfoItem: case DexFile::kDexTypeAnnotationItem: case DexFile::kDexTypeEncodedArrayItem: break; case DexFile::kDexTypeHiddenapiClassData: { if (!CheckIntraHiddenapiClassData()) { return false; } break; } case DexFile::kDexTypeStringIdItem: { if (!CheckInterStringIdItem()) { return false; } break; } case DexFile::kDexTypeTypeIdItem: { if (!CheckInterTypeIdItem()) { return false; } break; } case DexFile::kDexTypeProtoIdItem: { if (!CheckInterProtoIdItem()) { return false; } break; } case DexFile::kDexTypeFieldIdItem: { if (!CheckInterFieldIdItem()) { return false; } break; } case DexFile::kDexTypeMethodIdItem: { if (!CheckInterMethodIdItem()) { return false; } break; } case DexFile::kDexTypeClassDefItem: { // There shouldn't be more class definitions than type ids allow. // This is checked in `CheckIntraClassDefItem()` by checking the type // index against `kTypeIdLimit` and rejecting dulicate definitions. DCHECK_LE(i, kTypeIdLimit); if (!CheckInterClassDefItem()) { return false; } break; } case DexFile::kDexTypeCallSiteIdItem: { if (!CheckInterCallSiteIdItem()) { return false; } break; } case DexFile::kDexTypeAnnotationSetRefList: { if (!CheckInterAnnotationSetRefList()) { return false; } break; } case DexFile::kDexTypeAnnotationSetItem: { if (!CheckInterAnnotationSetItem()) { return false; } break; } case DexFile::kDexTypeClassDataItem: { // There shouldn't be more class data than type ids allow. // This check should be redundant, since there are checks that the // class_idx_ is within range and that there is only one definition // for a given type id. if (i > kTypeIdLimit) { ErrorStringPrintf("Too many class data items"); return false; } if (!CheckInterClassDataItem()) { return false; } break; } case DexFile::kDexTypeAnnotationsDirectoryItem: { if (!CheckInterAnnotationsDirectoryItem()) { return false; } break; } } previous_item_ = prev_ptr; offset = PtrToOffset(ptr_); } return true; } bool DexFileVerifier::CheckInterSection() { // Eagerly verify that `StringId` offsets map to string data items to make sure // we can retrieve the string data for verifying other items (types, shorties, etc.). // After this we can safely use `DexFile` helpers such as `GetFieldId()` or `GetMethodId()` // but not `PrettyMethod()` or `PrettyField()` as descriptors have not been verified yet. const dex::StringId* string_ids = OffsetToPtr(header_->string_ids_off_); for (size_t i = 0, num_strings = header_->string_ids_size_; i != num_strings; ++i) { if (!CheckOffsetToTypeMap(string_ids[i].string_data_off_, DexFile::kDexTypeStringDataItem)) { return false; } } const dex::MapList* map = OffsetToPtr(header_->map_off_); const dex::MapItem* item = map->list_; uint32_t count = map->size_; // Cross check the items listed in the map. for (; count != 0u; --count) { uint32_t section_offset = item->offset_; uint32_t section_count = item->size_; DexFile::MapItemType type = static_cast(item->type_); bool found = false; if (type == DexFile::kDexTypeClassDataItem) { FindStringRangesForMethodNames(); } switch (type) { case DexFile::kDexTypeHeaderItem: case DexFile::kDexTypeMapList: case DexFile::kDexTypeTypeList: case DexFile::kDexTypeCodeItem: case DexFile::kDexTypeStringDataItem: case DexFile::kDexTypeDebugInfoItem: case DexFile::kDexTypeAnnotationItem: case DexFile::kDexTypeEncodedArrayItem: found = true; break; case DexFile::kDexTypeStringIdItem: case DexFile::kDexTypeTypeIdItem: case DexFile::kDexTypeProtoIdItem: case DexFile::kDexTypeFieldIdItem: case DexFile::kDexTypeMethodIdItem: case DexFile::kDexTypeClassDefItem: case DexFile::kDexTypeCallSiteIdItem: case DexFile::kDexTypeMethodHandleItem: case DexFile::kDexTypeAnnotationSetRefList: case DexFile::kDexTypeAnnotationSetItem: case DexFile::kDexTypeClassDataItem: case DexFile::kDexTypeAnnotationsDirectoryItem: case DexFile::kDexTypeHiddenapiClassData: { if (!CheckInterSectionIterate(section_offset, section_count, type)) { return false; } found = true; break; } } if (!found) { ErrorStringPrintf("Unknown map item type %x", item->type_); return false; } item++; } return true; } bool DexFileVerifier::Verify() { // Check the header. if (!CheckHeader()) { return false; } // Check the map section. if (!CheckMap()) { return false; } DCHECK_LE(header_->type_ids_size_, kTypeIdLimit + 1u); // Checked in CheckHeader(). verified_type_descriptors_.resize(header_->type_ids_size_, 0); defined_class_indexes_.resize(header_->type_ids_size_); // Check structure within remaining sections. if (!CheckIntraSection()) { return false; } // Check references from one section to another. if (!CheckInterSection()) { return false; } CHECK(todo_.empty()); // No unprocessed work left over. return true; } bool DexFileVerifier::CheckFieldAccessFlags(uint32_t idx, uint32_t field_access_flags, uint32_t class_access_flags, std::string* error_msg) { // Generally sort out >16-bit flags. if ((field_access_flags & ~kAccJavaFlagsMask) != 0) { *error_msg = StringPrintf("Bad field access_flags for %s: %x(%s)", GetFieldDescription(idx).c_str(), field_access_flags, PrettyJavaAccessFlags(field_access_flags).c_str()); return false; } // Flags allowed on fields, in general. Other lower-16-bit flags are to be ignored. constexpr uint32_t kFieldAccessFlags = kAccPublic | kAccPrivate | kAccProtected | kAccStatic | kAccFinal | kAccVolatile | kAccTransient | kAccSynthetic | kAccEnum; // Fields may have only one of public/protected/final. if (!CheckAtMostOneOfPublicProtectedPrivate(field_access_flags)) { *error_msg = StringPrintf("Field may have only one of public/protected/private, %s: %x(%s)", GetFieldDescription(idx).c_str(), field_access_flags, PrettyJavaAccessFlags(field_access_flags).c_str()); return false; } // Interfaces have a pretty restricted list. if ((class_access_flags & kAccInterface) != 0) { // Interface fields must be public final static. constexpr uint32_t kPublicFinalStatic = kAccPublic | kAccFinal | kAccStatic; if ((field_access_flags & kPublicFinalStatic) != kPublicFinalStatic) { *error_msg = StringPrintf("Interface field is not public final static, %s: %x(%s)", GetFieldDescription(idx).c_str(), field_access_flags, PrettyJavaAccessFlags(field_access_flags).c_str()); if (dex_file_->SupportsDefaultMethods()) { return false; } else { // Allow in older versions, but warn. LOG(WARNING) << "This dex file is invalid and will be rejected in the future. Error is: " << *error_msg; } } // Interface fields may be synthetic, but may not have other flags. constexpr uint32_t kDisallowed = ~(kPublicFinalStatic | kAccSynthetic); if ((field_access_flags & kFieldAccessFlags & kDisallowed) != 0) { *error_msg = StringPrintf("Interface field has disallowed flag, %s: %x(%s)", GetFieldDescription(idx).c_str(), field_access_flags, PrettyJavaAccessFlags(field_access_flags).c_str()); if (dex_file_->SupportsDefaultMethods()) { return false; } else { // Allow in older versions, but warn. LOG(WARNING) << "This dex file is invalid and will be rejected in the future. Error is: " << *error_msg; } } return true; } // Volatile fields may not be final. constexpr uint32_t kVolatileFinal = kAccVolatile | kAccFinal; if ((field_access_flags & kVolatileFinal) == kVolatileFinal) { *error_msg = StringPrintf("Fields may not be volatile and final: %s", GetFieldDescription(idx).c_str()); return false; } return true; } void DexFileVerifier::FindStringRangesForMethodNames() { // Use DexFile::StringId* as RandomAccessIterator. const dex::StringId* first = OffsetToPtr(header_->string_ids_off_); const dex::StringId* last = first + header_->string_ids_size_; auto get_string = [this](const dex::StringId& id) { const uint8_t* str_data_ptr = OffsetToPtr(id.string_data_off_); DecodeUnsignedLeb128(&str_data_ptr); return reinterpret_cast(str_data_ptr); }; auto compare = [&get_string](const dex::StringId& lhs, const char* rhs) { return CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(get_string(lhs), rhs) < 0; }; // '=' follows '<' static_assert('<' + 1 == '=', "Unexpected character relation"); const auto angle_end = std::lower_bound(first, last, "=", compare); init_indices_.angle_bracket_end_index = angle_end - first; const auto angle_start = std::lower_bound(first, angle_end, "<", compare); init_indices_.angle_bracket_start_index = angle_start - first; if (angle_start == angle_end) { // No strings starting with '<'. init_indices_.angle_init_angle_index = std::numeric_limits::max(); init_indices_.angle_clinit_angle_index = std::numeric_limits::max(); return; } { constexpr const char* kClinit = ""; const auto it = std::lower_bound(angle_start, angle_end, kClinit, compare); if (it != angle_end && strcmp(get_string(*it), kClinit) == 0) { init_indices_.angle_clinit_angle_index = it - first; } else { init_indices_.angle_clinit_angle_index = std::numeric_limits::max(); } } { constexpr const char* kInit = ""; const auto it = std::lower_bound(angle_start, angle_end, kInit, compare); if (it != angle_end && strcmp(get_string(*it), kInit) == 0) { init_indices_.angle_init_angle_index = it - first; } else { init_indices_.angle_init_angle_index = std::numeric_limits::max(); } } } bool DexFileVerifier::CheckMethodAccessFlags(uint32_t method_index, uint32_t method_access_flags, uint32_t class_access_flags, uint32_t constructor_flags_by_name, bool has_code, bool expect_direct, std::string* error_msg) { // Generally sort out >16-bit flags, except dex knows Constructor and DeclaredSynchronized. constexpr uint32_t kAllMethodFlags = kAccJavaFlagsMask | kAccConstructor | kAccDeclaredSynchronized; if ((method_access_flags & ~kAllMethodFlags) != 0) { *error_msg = StringPrintf("Bad method access_flags for %s: %x", GetMethodDescription(method_index).c_str(), method_access_flags); return false; } // Flags allowed on methods, in general. Other lower-16-bit flags are to be ignored. constexpr uint32_t kMethodAccessFlags = kAccPublic | kAccPrivate | kAccProtected | kAccStatic | kAccFinal | kAccSynthetic | kAccSynchronized | kAccBridge | kAccVarargs | kAccNative | kAccAbstract | kAccStrict; // Methods may have only one of public/protected/final. if (!CheckAtMostOneOfPublicProtectedPrivate(method_access_flags)) { *error_msg = StringPrintf("Method may have only one of public/protected/private, %s: %x", GetMethodDescription(method_index).c_str(), method_access_flags); return false; } constexpr uint32_t kConstructorFlags = kAccStatic | kAccConstructor; const bool is_constructor_by_name = (constructor_flags_by_name & kConstructorFlags) != 0; const bool is_clinit_by_name = constructor_flags_by_name == kConstructorFlags; // Only methods named "" or "" may be marked constructor. Note: we cannot enforce // the reverse for backwards compatibility reasons. if (((method_access_flags & kAccConstructor) != 0) && !is_constructor_by_name) { *error_msg = StringPrintf("Method %" PRIu32 "(%s) is marked constructor, but doesn't match name", method_index, GetMethodDescription(method_index).c_str()); return false; } if (is_constructor_by_name) { // Check that the static constructor (= static initializer) is named "" and that the // instance constructor is called "". bool is_static = (method_access_flags & kAccStatic) != 0; if (is_static ^ is_clinit_by_name) { *error_msg = StringPrintf("Constructor %" PRIu32 "(%s) is not flagged correctly wrt/ static.", method_index, GetMethodDescription(method_index).c_str()); if (dex_file_->SupportsDefaultMethods()) { return false; } else { // Allow in older versions, but warn. LOG(WARNING) << "This dex file is invalid and will be rejected in the future. Error is: " << *error_msg; } } } // Check that static and private methods, as well as constructors, are in the direct methods list, // and other methods in the virtual methods list. bool is_direct = ((method_access_flags & (kAccStatic | kAccPrivate)) != 0) || is_constructor_by_name; if (is_direct != expect_direct) { *error_msg = StringPrintf("Direct/virtual method %" PRIu32 "(%s) not in expected list %d", method_index, GetMethodDescription(method_index).c_str(), expect_direct); return false; } // From here on out it is easier to mask out the bits we're supposed to ignore. method_access_flags &= kMethodAccessFlags; // Interfaces are special. if ((class_access_flags & kAccInterface) != 0) { // Non-static interface methods must be public or private. uint32_t desired_flags = (kAccPublic | kAccStatic); if (dex_file_->SupportsDefaultMethods()) { desired_flags |= kAccPrivate; } if ((method_access_flags & desired_flags) == 0) { *error_msg = StringPrintf("Interface virtual method %" PRIu32 "(%s) is not public", method_index, GetMethodDescription(method_index).c_str()); if (dex_file_->SupportsDefaultMethods()) { return false; } else { // Allow in older versions, but warn. LOG(WARNING) << "This dex file is invalid and will be rejected in the future. Error is: " << *error_msg; } } } // If there aren't any instructions, make sure that's expected. if (!has_code) { // Only native or abstract methods may not have code. if ((method_access_flags & (kAccNative | kAccAbstract)) == 0) { *error_msg = StringPrintf("Method %" PRIu32 "(%s) has no code, but is not marked native or " "abstract", method_index, GetMethodDescription(method_index).c_str()); return false; } // Constructors must always have code. if (is_constructor_by_name) { *error_msg = StringPrintf("Constructor %u(%s) must not be abstract or native", method_index, GetMethodDescription(method_index).c_str()); if (dex_file_->SupportsDefaultMethods()) { return false; } else { // Allow in older versions, but warn. LOG(WARNING) << "This dex file is invalid and will be rejected in the future. Error is: " << *error_msg; } } if ((method_access_flags & kAccAbstract) != 0) { // Abstract methods are not allowed to have the following flags. constexpr uint32_t kForbidden = kAccPrivate | kAccStatic | kAccFinal | kAccNative | kAccStrict | kAccSynchronized; if ((method_access_flags & kForbidden) != 0) { *error_msg = StringPrintf("Abstract method %" PRIu32 "(%s) has disallowed access flags %x", method_index, GetMethodDescription(method_index).c_str(), method_access_flags); return false; } // Abstract methods should be in an abstract class or interface. if ((class_access_flags & (kAccInterface | kAccAbstract)) == 0) { LOG(WARNING) << "Method " << GetMethodDescription(method_index) << " is abstract, but the declaring class is neither abstract nor an " << "interface in dex file " << dex_file_->GetLocation(); } } // Interfaces are special. if ((class_access_flags & kAccInterface) != 0) { // Interface methods without code must be abstract. if ((method_access_flags & (kAccPublic | kAccAbstract)) != (kAccPublic | kAccAbstract)) { *error_msg = StringPrintf("Interface method %" PRIu32 "(%s) is not public and abstract", method_index, GetMethodDescription(method_index).c_str()); if (dex_file_->SupportsDefaultMethods()) { return false; } else { // Allow in older versions, but warn. LOG(WARNING) << "This dex file is invalid and will be rejected in the future. Error is: " << *error_msg; } } // At this point, we know the method is public and abstract. This means that all the checks // for invalid combinations above applies. In addition, interface methods must not be // protected. This is caught by the check for only-one-of-public-protected-private. } return true; } // When there's code, the method must not be native or abstract. if ((method_access_flags & (kAccNative | kAccAbstract)) != 0) { *error_msg = StringPrintf("Method %" PRIu32 "(%s) has code, but is marked native or abstract", method_index, GetMethodDescription(method_index).c_str()); return false; } // Instance constructors must not be synchronized and a few other flags. if (constructor_flags_by_name == kAccConstructor) { static constexpr uint32_t kInitAllowed = kAccPrivate | kAccProtected | kAccPublic | kAccStrict | kAccVarargs | kAccSynthetic; if ((method_access_flags & ~kInitAllowed) != 0) { *error_msg = StringPrintf("Constructor %" PRIu32 "(%s) flagged inappropriately %x", method_index, GetMethodDescription(method_index).c_str(), method_access_flags); return false; } } return true; } bool DexFileVerifier::CheckConstructorProperties( uint32_t method_index, uint32_t constructor_flags) { DCHECK(constructor_flags == kAccConstructor || constructor_flags == (kAccConstructor | kAccStatic)); // Check signature matches expectations. // The `method_index` has already been checked in `CheckIntraClassDataItemMethods()`. CHECK_LT(method_index, header_->method_ids_size_); const dex::MethodId& method_id = dex_file_->GetMethodId(method_index); // The `method_id.proto_idx_` has already been checked in `CheckIntraMethodIdItem()` DCHECK_LE(method_id.proto_idx_.index_, header_->proto_ids_size_); Signature signature = dex_file_->GetMethodSignature(method_id); if (constructor_flags == (kAccStatic | kAccConstructor)) { if (!signature.IsVoid() || signature.GetNumberOfParameters() != 0) { ErrorStringPrintf(" must have descriptor ()V"); return false; } } else if (!signature.IsVoid()) { ErrorStringPrintf("Constructor %u(%s) must be void", method_index, GetMethodDescription(method_index).c_str()); return false; } return true; } bool Verify(const DexFile* dex_file, const char* location, bool verify_checksum, std::string* error_msg) { std::unique_ptr verifier( new DexFileVerifier(dex_file, location, verify_checksum)); if (!verifier->Verify()) { *error_msg = verifier->FailureReason(); return false; } return true; } } // namespace dex } // namespace art