/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_ART_METHOD_H_ #define ART_RUNTIME_ART_METHOD_H_ #include #include #include #include #include "base/array_ref.h" #include "base/bit_utils.h" #include "base/casts.h" #include "base/logging.h" #include "base/macros.h" #include "base/pointer_size.h" #include "base/runtime_debug.h" #include "dex/dex_file_structs.h" #include "dex/modifiers.h" #include "dex/primitive.h" #include "interpreter/mterp/nterp.h" #include "gc_root.h" #include "obj_ptr.h" #include "offsets.h" #include "read_barrier_option.h" namespace art HIDDEN { class CodeItemDataAccessor; class CodeItemDebugInfoAccessor; class CodeItemInstructionAccessor; class DexFile; template class Handle; class ImtConflictTable; enum InvokeType : uint32_t; union JValue; template class LengthPrefixedArray; class OatQuickMethodHeader; class ProfilingInfo; class ScopedObjectAccessAlreadyRunnable; class ShadowFrame; class Signature; namespace mirror { class Array; class Class; class ClassLoader; class DexCache; class IfTable; class Object; template class ObjectArray; class PointerArray; class String; } // namespace mirror namespace detail { template struct ShortyTraits; template <> struct ShortyTraits<'V'>; template <> struct ShortyTraits<'Z'>; template <> struct ShortyTraits<'B'>; template <> struct ShortyTraits<'C'>; template <> struct ShortyTraits<'S'>; template <> struct ShortyTraits<'I'>; template <> struct ShortyTraits<'J'>; template <> struct ShortyTraits<'F'>; template <> struct ShortyTraits<'D'>; template <> struct ShortyTraits<'L'>; template struct HandleShortyTraits; template <> struct HandleShortyTraits<'L'>; } // namespace detail class EXPORT ArtMethod final { public: // Should the class state be checked on sensitive operations? DECLARE_RUNTIME_DEBUG_FLAG(kCheckDeclaringClassState); // The runtime dex_method_index is kDexNoIndex. To lower dependencies, we use this // constexpr, and ensure that the value is correct in art_method.cc. static constexpr uint32_t kRuntimeMethodDexMethodIndex = 0xFFFFFFFF; ArtMethod() : access_flags_(0), dex_method_index_(0), method_index_(0), hotness_count_(0) { } ArtMethod(ArtMethod* src, PointerSize image_pointer_size) { CopyFrom(src, image_pointer_size); } static ArtMethod* FromReflectedMethod(const ScopedObjectAccessAlreadyRunnable& soa, jobject jlr_method) REQUIRES_SHARED(Locks::mutator_lock_); // Visit the declaring class in 'method' if it is within [start_boundary, end_boundary). template static void VisitRoots(RootVisitorType& visitor, uint8_t* start_boundary, uint8_t* end_boundary, ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_); // Visit declaring classes of all the art-methods in 'array' that reside // in [start_boundary, end_boundary). template static void VisitArrayRoots(RootVisitorType& visitor, uint8_t* start_boundary, uint8_t* end_boundary, LengthPrefixedArray* array) REQUIRES_SHARED(Locks::mutator_lock_); template ALWAYS_INLINE ObjPtr GetDeclaringClass() REQUIRES_SHARED(Locks::mutator_lock_); template ALWAYS_INLINE ObjPtr GetDeclaringClassUnchecked() REQUIRES_SHARED(Locks::mutator_lock_); mirror::CompressedReference* GetDeclaringClassAddressWithoutBarrier() { return declaring_class_.AddressWithoutBarrier(); } void SetDeclaringClass(ObjPtr new_declaring_class) REQUIRES_SHARED(Locks::mutator_lock_); bool CASDeclaringClass(ObjPtr expected_class, ObjPtr desired_class) REQUIRES_SHARED(Locks::mutator_lock_); static constexpr MemberOffset DeclaringClassOffset() { return MemberOffset(OFFSETOF_MEMBER(ArtMethod, declaring_class_)); } uint32_t GetAccessFlags() const { return access_flags_.load(std::memory_order_relaxed); } // This version should only be called when it's certain there is no // concurrency so there is no need to guarantee atomicity. For example, // before the method is linked. void SetAccessFlags(uint32_t new_access_flags) REQUIRES_SHARED(Locks::mutator_lock_) { // The following check ensures that we do not set `Intrinsics::kNone` (see b/228049006). DCHECK_IMPLIES((new_access_flags & kAccIntrinsic) != 0, (new_access_flags & kAccIntrinsicBits) != 0); access_flags_.store(new_access_flags, std::memory_order_relaxed); } static constexpr MemberOffset AccessFlagsOffset() { return MemberOffset(OFFSETOF_MEMBER(ArtMethod, access_flags_)); } // Approximate what kind of method call would be used for this method. InvokeType GetInvokeType() REQUIRES_SHARED(Locks::mutator_lock_); // Returns true if the method is declared public. bool IsPublic() const { return IsPublic(GetAccessFlags()); } static bool IsPublic(uint32_t access_flags) { return (access_flags & kAccPublic) != 0; } // Returns true if the method is declared private. bool IsPrivate() const { return IsPrivate(GetAccessFlags()); } static bool IsPrivate(uint32_t access_flags) { return (access_flags & kAccPrivate) != 0; } // Returns true if the method is declared static. bool IsStatic() const { return IsStatic(GetAccessFlags()); } static bool IsStatic(uint32_t access_flags) { return (access_flags & kAccStatic) != 0; } // Returns true if the method is a constructor according to access flags. bool IsConstructor() const { return IsConstructor(GetAccessFlags()); } static bool IsConstructor(uint32_t access_flags) { return (access_flags & kAccConstructor) != 0; } // Returns true if the method is a class initializer according to access flags. bool IsClassInitializer() const { return IsClassInitializer(GetAccessFlags()); } static bool IsClassInitializer(uint32_t access_flags) { return IsConstructor(access_flags) && IsStatic(access_flags); } // Returns true if the method is static, private, or a constructor. bool IsDirect() const { return IsDirect(GetAccessFlags()); } static bool IsDirect(uint32_t access_flags) { constexpr uint32_t direct = kAccStatic | kAccPrivate | kAccConstructor; return (access_flags & direct) != 0; } // Returns true if the method is declared synchronized. bool IsSynchronized() const { return IsSynchronized(GetAccessFlags()); } static bool IsSynchronized(uint32_t access_flags) { constexpr uint32_t synchonized = kAccSynchronized | kAccDeclaredSynchronized; return (access_flags & synchonized) != 0; } // Returns true if the method is declared final. bool IsFinal() const { return IsFinal(GetAccessFlags()); } static bool IsFinal(uint32_t access_flags) { return (access_flags & kAccFinal) != 0; } // Returns true if the method is an intrinsic. bool IsIntrinsic() const { return IsIntrinsic(GetAccessFlags()); } static bool IsIntrinsic(uint32_t access_flags) { return (access_flags & kAccIntrinsic) != 0; } ALWAYS_INLINE void SetIntrinsic(uint32_t intrinsic) REQUIRES_SHARED(Locks::mutator_lock_); uint32_t GetIntrinsic() const { static const int kAccFlagsShift = CTZ(kAccIntrinsicBits); static_assert(IsPowerOfTwo((kAccIntrinsicBits >> kAccFlagsShift) + 1), "kAccIntrinsicBits are not continuous"); static_assert((kAccIntrinsic & kAccIntrinsicBits) == 0, "kAccIntrinsic overlaps kAccIntrinsicBits"); DCHECK(IsIntrinsic()); return (GetAccessFlags() & kAccIntrinsicBits) >> kAccFlagsShift; } void SetNotIntrinsic() REQUIRES_SHARED(Locks::mutator_lock_); // Returns true if the method is a copied method. bool IsCopied() const { return IsCopied(GetAccessFlags()); } static bool IsCopied(uint32_t access_flags) { // We do not have intrinsics for any default methods and therefore intrinsics are never copied. // So we are using a flag from the intrinsic flags range and need to check `kAccIntrinsic` too. static_assert((kAccCopied & kAccIntrinsicBits) != 0, "kAccCopied deliberately overlaps intrinsic bits"); const bool copied = (access_flags & (kAccIntrinsic | kAccCopied)) == kAccCopied; // (IsMiranda() || IsDefaultConflicting()) implies copied DCHECK(!(IsMiranda(access_flags) || IsDefaultConflicting(access_flags)) || copied) << "Miranda or default-conflict methods must always be copied."; return copied; } bool IsMiranda() const { return IsMiranda(GetAccessFlags()); } static bool IsMiranda(uint32_t access_flags) { // Miranda methods are marked as copied and abstract but not default. // We need to check the kAccIntrinsic too, see `IsCopied()`. static constexpr uint32_t kMask = kAccIntrinsic | kAccCopied | kAccAbstract | kAccDefault; static constexpr uint32_t kValue = kAccCopied | kAccAbstract; return (access_flags & kMask) == kValue; } // A default conflict method is a special sentinel method that stands for a conflict between // multiple default methods. It cannot be invoked, throwing an IncompatibleClassChangeError // if one attempts to do so. bool IsDefaultConflicting() const { return IsDefaultConflicting(GetAccessFlags()); } static bool IsDefaultConflicting(uint32_t access_flags) { // Default conflct methods are marked as copied, abstract and default. // We need to check the kAccIntrinsic too, see `IsCopied()`. static constexpr uint32_t kMask = kAccIntrinsic | kAccCopied | kAccAbstract | kAccDefault; static constexpr uint32_t kValue = kAccCopied | kAccAbstract | kAccDefault; return (access_flags & kMask) == kValue; } // Returns true if invoking this method will not throw an AbstractMethodError or // IncompatibleClassChangeError. bool IsInvokable() const { return IsInvokable(GetAccessFlags()); } static bool IsInvokable(uint32_t access_flags) { // Default conflicting methods are marked with `kAccAbstract` (as well as `kAccCopied` // and `kAccDefault`) but they are not considered abstract, see `IsAbstract()`. DCHECK_EQ((access_flags & kAccAbstract) == 0, !IsDefaultConflicting(access_flags) && !IsAbstract(access_flags)); return (access_flags & kAccAbstract) == 0; } // Returns true if the method is marked as pre-compiled. bool IsPreCompiled() const { return IsPreCompiled(GetAccessFlags()); } static bool IsPreCompiled(uint32_t access_flags) { // kAccCompileDontBother and kAccPreCompiled overlap with kAccIntrinsicBits. static_assert((kAccCompileDontBother & kAccIntrinsicBits) != 0); static_assert((kAccPreCompiled & kAccIntrinsicBits) != 0); static constexpr uint32_t kMask = kAccIntrinsic | kAccCompileDontBother | kAccPreCompiled; static constexpr uint32_t kValue = kAccCompileDontBother | kAccPreCompiled; return (access_flags & kMask) == kValue; } void SetPreCompiled() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsInvokable()); DCHECK(IsCompilable()); // kAccPreCompiled and kAccCompileDontBother overlaps with kAccIntrinsicBits. // We don't mark the intrinsics as precompiled, which means in JIT zygote // mode, compiled code for intrinsics will not be shared, and apps will // compile intrinsics themselves if needed. if (IsIntrinsic()) { return; } AddAccessFlags(kAccPreCompiled | kAccCompileDontBother); } void ClearPreCompiled() REQUIRES_SHARED(Locks::mutator_lock_) { ClearAccessFlags(kAccPreCompiled | kAccCompileDontBother); } // Returns true if the method resides in shared memory. bool IsMemorySharedMethod() { return IsMemorySharedMethod(GetAccessFlags()); } static bool IsMemorySharedMethod(uint32_t access_flags) { return (access_flags & kAccMemorySharedMethod) != 0; } void SetMemorySharedMethod() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!IsIntrinsic()); DCHECK(!IsAbstract()); AddAccessFlags(kAccMemorySharedMethod); } static uint32_t SetMemorySharedMethod(uint32_t access_flags) { DCHECK(!IsIntrinsic(access_flags)); DCHECK(!IsAbstract(access_flags)); return access_flags | kAccMemorySharedMethod; } void ClearMemorySharedMethod() REQUIRES_SHARED(Locks::mutator_lock_) { uint32_t access_flags = GetAccessFlags(); if (IsIntrinsic(access_flags) || IsAbstract(access_flags)) { return; } if (IsMemorySharedMethod(access_flags)) { ClearAccessFlags(kAccMemorySharedMethod); } } // Returns true if the method can be compiled. bool IsCompilable() const { return IsCompilable(GetAccessFlags()); } static bool IsCompilable(uint32_t access_flags) { if (IsIntrinsic(access_flags)) { // kAccCompileDontBother overlaps with kAccIntrinsicBits. return true; } if (IsPreCompiled(access_flags)) { return true; } return (access_flags & kAccCompileDontBother) == 0; } void ClearDontCompile() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!IsMiranda()); ClearAccessFlags(kAccCompileDontBother); } void SetDontCompile() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!IsMiranda()); AddAccessFlags(kAccCompileDontBother); } // This is set by the class linker. bool IsDefault() const { return IsDefault(GetAccessFlags()); } static bool IsDefault(uint32_t access_flags) { static_assert((kAccDefault & (kAccIntrinsic | kAccIntrinsicBits)) == 0, "kAccDefault conflicts with intrinsic modifier"); return (access_flags & kAccDefault) != 0; } // Returns true if the method is obsolete. bool IsObsolete() const { return IsObsolete(GetAccessFlags()); } static bool IsObsolete(uint32_t access_flags) { return (access_flags & kAccObsoleteMethod) != 0; } void SetIsObsolete() REQUIRES_SHARED(Locks::mutator_lock_) { AddAccessFlags(kAccObsoleteMethod); } // Returns true if the method is native. bool IsNative() const { return IsNative(GetAccessFlags()); } static bool IsNative(uint32_t access_flags) { return (access_flags & kAccNative) != 0; } // Checks to see if the method was annotated with @dalvik.annotation.optimization.FastNative. bool IsFastNative() const { return IsFastNative(GetAccessFlags()); } static bool IsFastNative(uint32_t access_flags) { // The presence of the annotation is checked by ClassLinker and recorded in access flags. // The kAccFastNative flag value is used with a different meaning for non-native methods, // so we need to check the kAccNative flag as well. constexpr uint32_t mask = kAccFastNative | kAccNative; return (access_flags & mask) == mask; } // Checks to see if the method was annotated with @dalvik.annotation.optimization.CriticalNative. bool IsCriticalNative() const { return IsCriticalNative(GetAccessFlags()); } static bool IsCriticalNative(uint32_t access_flags) { // The presence of the annotation is checked by ClassLinker and recorded in access flags. // The kAccCriticalNative flag value is used with a different meaning for non-native methods, // so we need to check the kAccNative flag as well. constexpr uint32_t mask = kAccCriticalNative | kAccNative; return (access_flags & mask) == mask; } // Returns true if the method is managed (not native). bool IsManaged() const { return IsManaged(GetAccessFlags()); } static bool IsManaged(uint32_t access_flags) { return !IsNative(access_flags); } // Returns true if the method is managed (not native) and invokable. bool IsManagedAndInvokable() const { return IsManagedAndInvokable(GetAccessFlags()); } static bool IsManagedAndInvokable(uint32_t access_flags) { return IsManaged(access_flags) && IsInvokable(access_flags); } // Returns true if the method is abstract. bool IsAbstract() const { return IsAbstract(GetAccessFlags()); } static bool IsAbstract(uint32_t access_flags) { // Default confliciting methods have `kAccAbstract` set but they are not actually abstract. return (access_flags & kAccAbstract) != 0 && !IsDefaultConflicting(access_flags); } // Returns true if the method is declared synthetic. bool IsSynthetic() const { return IsSynthetic(GetAccessFlags()); } static bool IsSynthetic(uint32_t access_flags) { return (access_flags & kAccSynthetic) != 0; } // Returns true if the method is declared varargs. bool IsVarargs() const { return IsVarargs(GetAccessFlags()); } static bool IsVarargs(uint32_t access_flags) { return (access_flags & kAccVarargs) != 0; } bool IsProxyMethod() REQUIRES_SHARED(Locks::mutator_lock_); bool IsSignaturePolymorphic() REQUIRES_SHARED(Locks::mutator_lock_); bool SkipAccessChecks() const { // The kAccSkipAccessChecks flag value is used with a different meaning for native methods, // so we need to check the kAccNative flag as well. return (GetAccessFlags() & (kAccSkipAccessChecks | kAccNative)) == kAccSkipAccessChecks; } void SetSkipAccessChecks() REQUIRES_SHARED(Locks::mutator_lock_) { // SkipAccessChecks() is applicable only to non-native methods. DCHECK(!IsNative()); AddAccessFlags(kAccSkipAccessChecks); } void ClearSkipAccessChecks() REQUIRES_SHARED(Locks::mutator_lock_) { // SkipAccessChecks() is applicable only to non-native methods. DCHECK(!IsNative()); ClearAccessFlags(kAccSkipAccessChecks); } // Returns true if the method has previously been warm. bool PreviouslyWarm() const { return PreviouslyWarm(GetAccessFlags()); } static bool PreviouslyWarm(uint32_t access_flags) { // kAccPreviouslyWarm overlaps with kAccIntrinsicBits. Return true for intrinsics. constexpr uint32_t mask = kAccPreviouslyWarm | kAccIntrinsic; return (access_flags & mask) != 0u; } void SetPreviouslyWarm() REQUIRES_SHARED(Locks::mutator_lock_) { if (IsIntrinsic()) { // kAccPreviouslyWarm overlaps with kAccIntrinsicBits. return; } AddAccessFlags(kAccPreviouslyWarm); } // Should this method be run in the interpreter and count locks (e.g., failed structured- // locking verification)? bool MustCountLocks() const { return MustCountLocks(GetAccessFlags()); } static bool MustCountLocks(uint32_t access_flags) { if (IsIntrinsic(access_flags)) { return false; } return (access_flags & kAccMustCountLocks) != 0; } void ClearMustCountLocks() REQUIRES_SHARED(Locks::mutator_lock_) { ClearAccessFlags(kAccMustCountLocks); } void SetMustCountLocks() REQUIRES_SHARED(Locks::mutator_lock_) { ClearAccessFlags(kAccSkipAccessChecks); AddAccessFlags(kAccMustCountLocks); } // Returns true if the method is using the nterp entrypoint fast path. bool HasNterpEntryPointFastPathFlag() const { return HasNterpEntryPointFastPathFlag(GetAccessFlags()); } static bool HasNterpEntryPointFastPathFlag(uint32_t access_flags) { constexpr uint32_t mask = kAccNative | kAccNterpEntryPointFastPathFlag; return (access_flags & mask) == kAccNterpEntryPointFastPathFlag; } void SetNterpEntryPointFastPathFlag() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!IsNative()); AddAccessFlags(kAccNterpEntryPointFastPathFlag); } void ClearNterpEntryPointFastPathFlag() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!IsNative()); ClearAccessFlags(kAccNterpEntryPointFastPathFlag); } void SetNterpInvokeFastPathFlag() REQUIRES_SHARED(Locks::mutator_lock_) { AddAccessFlags(kAccNterpInvokeFastPathFlag); } void ClearNterpInvokeFastPathFlag() REQUIRES_SHARED(Locks::mutator_lock_) { ClearAccessFlags(kAccNterpInvokeFastPathFlag); } static uint32_t ClearNterpFastPathFlags(uint32_t access_flags) { // `kAccNterpEntryPointFastPathFlag` has a different use for native methods. if (!IsNative(access_flags)) { access_flags &= ~kAccNterpEntryPointFastPathFlag; } access_flags &= ~kAccNterpInvokeFastPathFlag; return access_flags; } // Returns whether the method is a string constructor. The method must not // be a class initializer. (Class initializers are called from a different // context where we do not need to check for string constructors.) bool IsStringConstructor() REQUIRES_SHARED(Locks::mutator_lock_); // Returns true if this method could be overridden by a default method. bool IsOverridableByDefaultMethod() REQUIRES_SHARED(Locks::mutator_lock_); bool CheckIncompatibleClassChange(InvokeType type) REQUIRES_SHARED(Locks::mutator_lock_); // Throws the error that would result from trying to invoke this method (i.e. // IncompatibleClassChangeError, AbstractMethodError, or IllegalAccessError). // Only call if !IsInvokable(); void ThrowInvocationTimeError(ObjPtr receiver) REQUIRES_SHARED(Locks::mutator_lock_); uint16_t GetMethodIndex() REQUIRES_SHARED(Locks::mutator_lock_); // Doesn't do erroneous / unresolved class checks. uint16_t GetMethodIndexDuringLinking() REQUIRES_SHARED(Locks::mutator_lock_); size_t GetVtableIndex() REQUIRES_SHARED(Locks::mutator_lock_) { return GetMethodIndex(); } void SetMethodIndex(uint16_t new_method_index) REQUIRES_SHARED(Locks::mutator_lock_) { // Not called within a transaction. method_index_ = new_method_index; } static constexpr MemberOffset DexMethodIndexOffset() { return MemberOffset(OFFSETOF_MEMBER(ArtMethod, dex_method_index_)); } static constexpr MemberOffset MethodIndexOffset() { return MemberOffset(OFFSETOF_MEMBER(ArtMethod, method_index_)); } static constexpr MemberOffset ImtIndexOffset() { return MemberOffset(OFFSETOF_MEMBER(ArtMethod, imt_index_)); } // Number of 32bit registers that would be required to hold all the arguments static size_t NumArgRegisters(std::string_view shorty); ALWAYS_INLINE uint32_t GetDexMethodIndex() const { return dex_method_index_; } void SetDexMethodIndex(uint32_t new_idx) REQUIRES_SHARED(Locks::mutator_lock_) { // Not called within a transaction. dex_method_index_ = new_idx; } // Lookup the Class from the type index into this method's dex cache. ObjPtr LookupResolvedClassFromTypeIndex(dex::TypeIndex type_idx) REQUIRES_SHARED(Locks::mutator_lock_); // Resolve the Class from the type index into this method's dex cache. ObjPtr ResolveClassFromTypeIndex(dex::TypeIndex type_idx) REQUIRES_SHARED(Locks::mutator_lock_); // Returns true if this method has the same name and signature of the other method. bool HasSameNameAndSignature(ArtMethod* other) REQUIRES_SHARED(Locks::mutator_lock_); // Find the method that this method overrides. ArtMethod* FindOverriddenMethod(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Find the method index for this method within other_dexfile. If this method isn't present then // return dex::kDexNoIndex. The name_and_signature_idx MUST refer to a MethodId with the same // name and signature in the other_dexfile, such as the method index used to resolve this method // in the other_dexfile. uint32_t FindDexMethodIndexInOtherDexFile(const DexFile& other_dexfile, uint32_t name_and_signature_idx) REQUIRES_SHARED(Locks::mutator_lock_); void Invoke(Thread* self, uint32_t* args, uint32_t args_size, JValue* result, const char* shorty) REQUIRES_SHARED(Locks::mutator_lock_); template typename detail::ShortyTraits::Type InvokeStatic(Thread* self, typename detail::ShortyTraits::Type... args) REQUIRES_SHARED(Locks::mutator_lock_); template typename detail::ShortyTraits::Type InvokeInstance(Thread* self, ObjPtr receiver, typename detail::ShortyTraits::Type... args) REQUIRES_SHARED(Locks::mutator_lock_); template typename detail::ShortyTraits::Type InvokeFinal(Thread* self, ObjPtr receiver, typename detail::ShortyTraits::Type... args) REQUIRES_SHARED(Locks::mutator_lock_); template typename detail::ShortyTraits::Type InvokeVirtual(Thread* self, ObjPtr receiver, typename detail::ShortyTraits::Type... args) REQUIRES_SHARED(Locks::mutator_lock_); template typename detail::ShortyTraits::Type InvokeInterface(Thread* self, ObjPtr receiver, typename detail::ShortyTraits::Type... args) REQUIRES_SHARED(Locks::mutator_lock_); template Handle NewObject(HandleScopeType& hs, Thread* self, typename detail::HandleShortyTraits::Type... args) REQUIRES_SHARED(Locks::mutator_lock_); template ObjPtr NewObject(Thread* self, typename detail::HandleShortyTraits::Type... args) REQUIRES_SHARED(Locks::mutator_lock_); // Returns true if the method needs a class initialization check according to access flags. // Only static methods other than the class initializer need this check. // The caller is responsible for performing the actual check. bool NeedsClinitCheckBeforeCall() const { return NeedsClinitCheckBeforeCall(GetAccessFlags()); } static bool NeedsClinitCheckBeforeCall(uint32_t access_flags) { // The class initializer is special as it is invoked during initialization // and does not need the check. return IsStatic(access_flags) && !IsConstructor(access_flags); } // Check if the method needs a class initialization check before call // and its declaring class is not yet visibly initialized. // (The class needs to be visibly initialized before we can use entrypoints // to compiled code for static methods. See b/18161648 .) template bool StillNeedsClinitCheck() REQUIRES_SHARED(Locks::mutator_lock_); // Similar to `StillNeedsClinitCheck()` but the method's declaring class may // be dead but not yet reclaimed by the GC, so we cannot do a full read barrier // but we still want to check the class status in the to-space class if any. // Note: JIT can hold and use such methods during managed heap GC. bool StillNeedsClinitCheckMayBeDead() REQUIRES_SHARED(Locks::mutator_lock_); // Check if the declaring class has been verified and look at the to-space // class object, if any, as in `StillNeedsClinitCheckMayBeDead()`. bool IsDeclaringClassVerifiedMayBeDead() REQUIRES_SHARED(Locks::mutator_lock_); const void* GetEntryPointFromQuickCompiledCode() const { return GetEntryPointFromQuickCompiledCodePtrSize(kRuntimePointerSize); } ALWAYS_INLINE const void* GetEntryPointFromQuickCompiledCodePtrSize(PointerSize pointer_size) const { return GetNativePointer( EntryPointFromQuickCompiledCodeOffset(pointer_size), pointer_size); } void SetEntryPointFromQuickCompiledCode(const void* entry_point_from_quick_compiled_code) REQUIRES_SHARED(Locks::mutator_lock_) { SetEntryPointFromQuickCompiledCodePtrSize(entry_point_from_quick_compiled_code, kRuntimePointerSize); } ALWAYS_INLINE void SetEntryPointFromQuickCompiledCodePtrSize( const void* entry_point_from_quick_compiled_code, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); static constexpr MemberOffset DataOffset(PointerSize pointer_size) { return MemberOffset(PtrSizedFieldsOffset(pointer_size) + OFFSETOF_MEMBER( PtrSizedFields, data_) / sizeof(void*) * static_cast(pointer_size)); } static constexpr MemberOffset EntryPointFromJniOffset(PointerSize pointer_size) { return DataOffset(pointer_size); } static constexpr MemberOffset EntryPointFromQuickCompiledCodeOffset(PointerSize pointer_size) { return MemberOffset(PtrSizedFieldsOffset(pointer_size) + OFFSETOF_MEMBER( PtrSizedFields, entry_point_from_quick_compiled_code_) / sizeof(void*) * static_cast(pointer_size)); } ImtConflictTable* GetImtConflictTable(PointerSize pointer_size) const { DCHECK(IsRuntimeMethod()); return reinterpret_cast(GetDataPtrSize(pointer_size)); } ALWAYS_INLINE void SetImtConflictTable(ImtConflictTable* table, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsRuntimeMethod()); SetDataPtrSize(table, pointer_size); } ALWAYS_INLINE bool HasSingleImplementation() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE void SetHasSingleImplementation(bool single_impl) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!IsIntrinsic()) << "conflict with intrinsic bits"; if (single_impl) { AddAccessFlags(kAccSingleImplementation); } else { ClearAccessFlags(kAccSingleImplementation); } } ALWAYS_INLINE bool HasSingleImplementationFlag() const { return (GetAccessFlags() & kAccSingleImplementation) != 0; } static uint32_t SetHasSingleImplementation(uint32_t access_flags, bool single_impl) { DCHECK(!IsIntrinsic(access_flags)) << "conflict with intrinsic bits"; if (single_impl) { return access_flags | kAccSingleImplementation; } else { return access_flags & ~kAccSingleImplementation; } } // Takes a method and returns a 'canonical' one if the method is default (and therefore // potentially copied from some other class). For example, this ensures that the debugger does not // get confused as to which method we are in. ArtMethod* GetCanonicalMethod(PointerSize pointer_size = kRuntimePointerSize) REQUIRES_SHARED(Locks::mutator_lock_); ArtMethod* GetSingleImplementation(PointerSize pointer_size); ALWAYS_INLINE void SetSingleImplementation(ArtMethod* method, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!IsNative()); // Non-abstract method's single implementation is just itself. DCHECK(IsAbstract()); DCHECK(method == nullptr || method->IsInvokable()); SetDataPtrSize(method, pointer_size); } void* GetEntryPointFromJni() const { DCHECK(IsNative()); return GetEntryPointFromJniPtrSize(kRuntimePointerSize); } ALWAYS_INLINE void* GetEntryPointFromJniPtrSize(PointerSize pointer_size) const { return GetDataPtrSize(pointer_size); } void SetEntryPointFromJni(const void* entrypoint) REQUIRES_SHARED(Locks::mutator_lock_) { // The resolution method also has a JNI entrypoint for direct calls from // compiled code to the JNI dlsym lookup stub for @CriticalNative. DCHECK(IsNative() || IsRuntimeMethod()); SetEntryPointFromJniPtrSize(entrypoint, kRuntimePointerSize); } ALWAYS_INLINE void SetEntryPointFromJniPtrSize(const void* entrypoint, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { SetDataPtrSize(entrypoint, pointer_size); } ALWAYS_INLINE void* GetDataPtrSize(PointerSize pointer_size) const { DCHECK(IsImagePointerSize(pointer_size)); return GetNativePointer(DataOffset(pointer_size), pointer_size); } ALWAYS_INLINE void SetDataPtrSize(const void* data, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsImagePointerSize(pointer_size)); SetNativePointer(DataOffset(pointer_size), data, pointer_size); } // Is this a CalleSaveMethod or ResolutionMethod and therefore doesn't adhere to normal // conventions for a method of managed code. Returns false for Proxy methods. ALWAYS_INLINE bool IsRuntimeMethod() const { return dex_method_index_ == kRuntimeMethodDexMethodIndex; } bool HasCodeItem() REQUIRES_SHARED(Locks::mutator_lock_) { uint32_t access_flags = GetAccessFlags(); return !IsNative(access_flags) && !IsAbstract(access_flags) && !IsDefaultConflicting(access_flags) && !IsRuntimeMethod() && !IsProxyMethod(); } // We need to explicitly indicate whether the code item is obtained from the compact dex file, // because in JVMTI, we obtain the code item from the standard dex file to update the method. void SetCodeItem(const dex::CodeItem* code_item, bool is_compact_dex_code_item) REQUIRES_SHARED(Locks::mutator_lock_); // Is this a hand crafted method used for something like describing callee saves? bool IsCalleeSaveMethod() REQUIRES_SHARED(Locks::mutator_lock_); bool IsResolutionMethod() REQUIRES_SHARED(Locks::mutator_lock_); bool IsImtUnimplementedMethod() REQUIRES_SHARED(Locks::mutator_lock_); // Find the catch block for the given exception type and dex_pc. When a catch block is found, // indicates whether the found catch block is responsible for clearing the exception or whether // a move-exception instruction is present. uint32_t FindCatchBlock(Handle exception_type, uint32_t dex_pc, bool* has_no_move_exception) REQUIRES_SHARED(Locks::mutator_lock_); // NO_THREAD_SAFETY_ANALYSIS since we don't know what the callback requires. template void VisitRoots(RootVisitorType& visitor, PointerSize pointer_size) NO_THREAD_SAFETY_ANALYSIS; const DexFile* GetDexFile() REQUIRES_SHARED(Locks::mutator_lock_); const char* GetDeclaringClassDescriptor() REQUIRES_SHARED(Locks::mutator_lock_); std::string_view GetDeclaringClassDescriptorView() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE const char* GetShorty() REQUIRES_SHARED(Locks::mutator_lock_); const char* GetShorty(uint32_t* out_length) REQUIRES_SHARED(Locks::mutator_lock_); std::string_view GetShortyView() REQUIRES_SHARED(Locks::mutator_lock_); const Signature GetSignature() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE const char* GetName() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE std::string_view GetNameView() REQUIRES_SHARED(Locks::mutator_lock_); ObjPtr ResolveNameString() REQUIRES_SHARED(Locks::mutator_lock_); bool NameEquals(ObjPtr name) REQUIRES_SHARED(Locks::mutator_lock_); const dex::CodeItem* GetCodeItem() REQUIRES_SHARED(Locks::mutator_lock_); int32_t GetLineNumFromDexPC(uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_); const dex::ProtoId& GetPrototype() REQUIRES_SHARED(Locks::mutator_lock_); const dex::TypeList* GetParameterTypeList() REQUIRES_SHARED(Locks::mutator_lock_); const char* GetDeclaringClassSourceFile() REQUIRES_SHARED(Locks::mutator_lock_); uint16_t GetClassDefIndex() REQUIRES_SHARED(Locks::mutator_lock_); const dex::ClassDef& GetClassDef() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE size_t GetNumberOfParameters() REQUIRES_SHARED(Locks::mutator_lock_); const char* GetReturnTypeDescriptor() REQUIRES_SHARED(Locks::mutator_lock_); std::string_view GetReturnTypeDescriptorView() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE Primitive::Type GetReturnTypePrimitive() REQUIRES_SHARED(Locks::mutator_lock_); const char* GetTypeDescriptorFromTypeIdx(dex::TypeIndex type_idx) REQUIRES_SHARED(Locks::mutator_lock_); // Lookup return type. ObjPtr LookupResolvedReturnType() REQUIRES_SHARED(Locks::mutator_lock_); // Resolve return type. May cause thread suspension due to GetClassFromTypeIdx // calling ResolveType this caused a large number of bugs at call sites. ObjPtr ResolveReturnType() REQUIRES_SHARED(Locks::mutator_lock_); ObjPtr GetClassLoader() REQUIRES_SHARED(Locks::mutator_lock_); template ObjPtr GetDexCache() REQUIRES_SHARED(Locks::mutator_lock_); template ObjPtr GetObsoleteDexCache() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArtMethod* GetInterfaceMethodForProxyUnchecked(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArtMethod* GetInterfaceMethodIfProxy(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ArtMethod* GetNonObsoleteMethod() REQUIRES_SHARED(Locks::mutator_lock_); // May cause thread suspension due to class resolution. bool EqualParameters(Handle> params) REQUIRES_SHARED(Locks::mutator_lock_); // Size of an instance of this native class. static constexpr size_t Size(PointerSize pointer_size) { return PtrSizedFieldsOffset(pointer_size) + (sizeof(PtrSizedFields) / sizeof(void*)) * static_cast(pointer_size); } // Alignment of an instance of this native class. static constexpr size_t Alignment(PointerSize pointer_size) { // The ArtMethod alignment is the same as image pointer size. This differs from // alignof(ArtMethod) if cross-compiling with pointer_size != sizeof(void*). return static_cast(pointer_size); } void CopyFrom(ArtMethod* src, PointerSize image_pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE void ResetCounter(uint16_t new_value); ALWAYS_INLINE void UpdateCounter(int32_t new_samples); ALWAYS_INLINE void SetHotCounter(); ALWAYS_INLINE bool CounterIsHot(); ALWAYS_INLINE uint16_t GetCounter(); ALWAYS_INLINE bool CounterHasChanged(uint16_t threshold); ALWAYS_INLINE static constexpr uint16_t MaxCounter() { return std::numeric_limits::max(); } ALWAYS_INLINE uint32_t GetImtIndex() REQUIRES_SHARED(Locks::mutator_lock_); void CalculateAndSetImtIndex() REQUIRES_SHARED(Locks::mutator_lock_); static constexpr MemberOffset HotnessCountOffset() { return MemberOffset(OFFSETOF_MEMBER(ArtMethod, hotness_count_)); } // Returns the method header for the compiled code containing 'pc'. Note that runtime // methods will return null for this method, as they are not oat based. const OatQuickMethodHeader* GetOatQuickMethodHeader(uintptr_t pc) REQUIRES_SHARED(Locks::mutator_lock_); // Get compiled code for the method, return null if no code exists. const void* GetOatMethodQuickCode(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Returns a human-readable signature for 'm'. Something like "a.b.C.m" or // "a.b.C.m(II)V" (depending on the value of 'with_signature'). static std::string PrettyMethod(ArtMethod* m, bool with_signature = true) REQUIRES_SHARED(Locks::mutator_lock_); std::string PrettyMethod(bool with_signature = true) REQUIRES_SHARED(Locks::mutator_lock_); // Returns the JNI native function name for the non-overloaded method 'm'. std::string JniShortName() REQUIRES_SHARED(Locks::mutator_lock_); // Returns the JNI native function name for the overloaded method 'm'. std::string JniLongName() REQUIRES_SHARED(Locks::mutator_lock_); // Update entry points by passing them through the visitor. template ALWAYS_INLINE void UpdateEntrypoints(const Visitor& visitor, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Visit the individual members of an ArtMethod. Used by imgdiag. // As imgdiag does not support mixing instruction sets or pointer sizes (e.g., using imgdiag32 // to inspect 64-bit images, etc.), we can go beneath the accessors directly to the class members. template void VisitMembers(VisitorFunc& visitor) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsImagePointerSize(kRuntimePointerSize)); visitor(this, &declaring_class_, "declaring_class_"); visitor(this, &access_flags_, "access_flags_"); visitor(this, &dex_method_index_, "dex_method_index_"); visitor(this, &method_index_, "method_index_"); visitor(this, &hotness_count_, "hotness_count_"); visitor(this, &ptr_sized_fields_.data_, "ptr_sized_fields_.data_"); visitor(this, &ptr_sized_fields_.entry_point_from_quick_compiled_code_, "ptr_sized_fields_.entry_point_from_quick_compiled_code_"); } // Returns the dex instructions of the code item for the art method. Returns an empty array for // the null code item case. ALWAYS_INLINE CodeItemInstructionAccessor DexInstructions() REQUIRES_SHARED(Locks::mutator_lock_); // Returns the dex code item data section of the DexFile for the art method. ALWAYS_INLINE CodeItemDataAccessor DexInstructionData() REQUIRES_SHARED(Locks::mutator_lock_); // Returns the dex code item debug info section of the DexFile for the art method. ALWAYS_INLINE CodeItemDebugInfoAccessor DexInstructionDebugInfo() REQUIRES_SHARED(Locks::mutator_lock_); GcRoot& DeclaringClassRoot() { return declaring_class_; } protected: // Field order required by test "ValidateFieldOrderOfJavaCppUnionClasses". // The class we are a part of. GcRoot declaring_class_; // Access flags; low 16 bits are defined by spec. // Getting and setting this flag needs to be atomic when concurrency is // possible, e.g. after this method's class is linked. Such as when setting // verifier flags and single-implementation flag. std::atomic access_flags_; /* Dex file fields. The defining dex file is available via declaring_class_->dex_cache_ */ // Index into method_ids of the dex file associated with this method. uint32_t dex_method_index_; /* End of dex file fields. */ // Entry within a dispatch table for this method. For static/direct methods the index is into // the declaringClass.directMethods, for virtual methods the vtable and for interface methods the // interface's method array in `IfTable`s of implementing classes. uint16_t method_index_; union { // Non-abstract methods: The hotness we measure for this method. Not atomic, // as we allow missing increments: if the method is hot, we will see it eventually. uint16_t hotness_count_; // Abstract methods: IMT index. uint16_t imt_index_; }; // Fake padding field gets inserted here. // Must be the last fields in the method. struct PtrSizedFields { // Depending on the method type, the data is // - native method: pointer to the JNI function registered to this method // or a function to resolve the JNI function, // - resolution method: pointer to a function to resolve the method and // the JNI function for @CriticalNative. // - conflict method: ImtConflictTable, // - abstract/interface method: the single-implementation if any, // - proxy method: the original interface method or constructor, // - default conflict method: null // - other methods: during AOT the code item offset, at runtime a pointer // to the code item. void* data_; // Method dispatch from quick compiled code invokes this pointer which may cause bridging into // the interpreter. void* entry_point_from_quick_compiled_code_; } ptr_sized_fields_; private: uint16_t FindObsoleteDexClassDefIndex() REQUIRES_SHARED(Locks::mutator_lock_); static constexpr size_t PtrSizedFieldsOffset(PointerSize pointer_size) { // Round up to pointer size for padding field. Tested in art_method.cc. return RoundUp(offsetof(ArtMethod, hotness_count_) + sizeof(hotness_count_), static_cast(pointer_size)); } // Compare given pointer size to the image pointer size. static bool IsImagePointerSize(PointerSize pointer_size); dex::TypeIndex GetReturnTypeIndex() REQUIRES_SHARED(Locks::mutator_lock_); template ALWAYS_INLINE T GetNativePointer(MemberOffset offset, PointerSize pointer_size) const { static_assert(std::is_pointer::value, "T must be a pointer type"); const auto addr = reinterpret_cast(this) + offset.Uint32Value(); if (pointer_size == PointerSize::k32) { return reinterpret_cast(*reinterpret_cast(addr)); } else { auto v = *reinterpret_cast(addr); return reinterpret_cast(dchecked_integral_cast(v)); } } template ALWAYS_INLINE void SetNativePointer(MemberOffset offset, T new_value, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { static_assert(std::is_pointer::value, "T must be a pointer type"); const auto addr = reinterpret_cast(this) + offset.Uint32Value(); if (pointer_size == PointerSize::k32) { uintptr_t ptr = reinterpret_cast(new_value); *reinterpret_cast(addr) = dchecked_integral_cast(ptr); } else { *reinterpret_cast(addr) = reinterpret_cast(new_value); } } static inline bool IsValidIntrinsicUpdate(uint32_t modifier) { return (((modifier & kAccIntrinsic) == kAccIntrinsic) && ((modifier & ~(kAccIntrinsic | kAccIntrinsicBits)) == 0) && ((modifier & kAccIntrinsicBits) != 0)); // b/228049006: ensure intrinsic is not `kNone` } static inline bool OverlapsIntrinsicBits(uint32_t modifier) { return (modifier & kAccIntrinsicBits) != 0; } // This setter guarantees atomicity. void AddAccessFlags(uint32_t flag) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_IMPLIES(IsIntrinsic(), !OverlapsIntrinsicBits(flag) || IsValidIntrinsicUpdate(flag)); // None of the readers rely ordering. access_flags_.fetch_or(flag, std::memory_order_relaxed); } // This setter guarantees atomicity. void ClearAccessFlags(uint32_t flag) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_IMPLIES(IsIntrinsic(), !OverlapsIntrinsicBits(flag) || IsValidIntrinsicUpdate(flag)); access_flags_.fetch_and(~flag, std::memory_order_relaxed); } // Helper method for checking the class status of a possibly dead declaring class. // See `StillNeedsClinitCheckMayBeDead()` and `IsDeclaringClassVerifierMayBeDead()`. ObjPtr GetDeclaringClassMayBeDead() REQUIRES_SHARED(Locks::mutator_lock_); // Used by GetName and GetNameView to share common code. const char* GetRuntimeMethodName() REQUIRES_SHARED(Locks::mutator_lock_); friend class RuntimeImageHelper; // For SetNativePointer. DISALLOW_COPY_AND_ASSIGN(ArtMethod); // Need to use CopyFrom to deal with 32 vs 64 bits. }; class MethodCallback { public: virtual ~MethodCallback() {} virtual void RegisterNativeMethod(ArtMethod* method, const void* original_implementation, /*out*/void** new_implementation) REQUIRES_SHARED(Locks::mutator_lock_) = 0; }; } // namespace art #endif // ART_RUNTIME_ART_METHOD_H_