/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common_runtime_test.h" #include #include #include #include #include #include "nativehelper/scoped_local_ref.h" #include "android-base/stringprintf.h" #include "art_field-inl.h" #include "base/file_utils.h" #include "base/logging.h" #include "base/macros.h" #include "base/mem_map.h" #include "base/mutex.h" #include "base/os.h" #include "base/runtime_debug.h" #include "base/stl_util.h" #include "base/unix_file/fd_file.h" #include "class_linker.h" #include "class_loader_utils.h" #include "compiler_callbacks.h" #include "dex/art_dex_file_loader.h" #include "dex/dex_file-inl.h" #include "dex/dex_file_loader.h" #include "dex/method_reference.h" #include "dex/primitive.h" #include "dex/type_reference.h" #include "gc/heap.h" #include "gc/space/image_space.h" #include "gc_root-inl.h" #include "gtest/gtest.h" #include "handle_scope-inl.h" #include "interpreter/unstarted_runtime.h" #include "jni/java_vm_ext.h" #include "jni/jni_internal.h" #include "mirror/class-alloc-inl.h" #include "mirror/class-inl.h" #include "mirror/class_loader-inl.h" #include "mirror/object_array-alloc-inl.h" #include "native/dalvik_system_DexFile.h" #include "noop_compiler_callbacks.h" #include "oat/aot_class_linker.h" #include "profile/profile_compilation_info.h" #include "runtime-inl.h" #include "runtime_intrinsics.h" #include "scoped_thread_state_change-inl.h" #include "thread.h" #include "well_known_classes-inl.h" namespace art HIDDEN { using android::base::StringPrintf; static bool unstarted_initialized_ = false; CommonRuntimeTestImpl::CommonRuntimeTestImpl() : class_linker_(nullptr), java_lang_dex_file_(nullptr), boot_class_path_(), callbacks_(), use_boot_image_(false) { } CommonRuntimeTestImpl::~CommonRuntimeTestImpl() { // Ensure the dex files are cleaned up before the runtime. loaded_dex_files_.clear(); runtime_.reset(); } void CommonRuntimeTestImpl::SetUp() { CommonArtTestImpl::SetUp(); std::string min_heap_string(StringPrintf("-Xms%zdm", gc::Heap::kDefaultInitialSize / MB)); std::string max_heap_string(StringPrintf("-Xmx%zdm", gc::Heap::kDefaultMaximumSize / MB)); RuntimeOptions options; std::string boot_class_path_string = GetClassPathOption("-Xbootclasspath:", GetLibCoreDexFileNames()); std::string boot_class_path_locations_string = GetClassPathOption("-Xbootclasspath-locations:", GetLibCoreDexLocations()); options.push_back(std::make_pair(boot_class_path_string, nullptr)); options.push_back(std::make_pair(boot_class_path_locations_string, nullptr)); if (use_boot_image_) { options.emplace_back("-Ximage:" + GetImageLocation(), nullptr); } options.push_back(std::make_pair("-Xcheck:jni", nullptr)); options.push_back(std::make_pair(min_heap_string, nullptr)); options.push_back(std::make_pair(max_heap_string, nullptr)); // Technically this is redundant w/ common_art_test, but still check. options.push_back(std::make_pair("-XX:SlowDebug=true", nullptr)); static bool gSlowDebugTestFlag = false; RegisterRuntimeDebugFlag(&gSlowDebugTestFlag); callbacks_.reset(new NoopCompilerCallbacks()); SetUpRuntimeOptions(&options); // Install compiler-callbacks if SetUpRuntimeOptions hasn't deleted them. if (callbacks_.get() != nullptr) { options.push_back(std::make_pair("compilercallbacks", callbacks_.get())); } PreRuntimeCreate(); { ScopedLogSeverity sls(LogSeverity::WARNING); if (!Runtime::Create(options, false)) { LOG(FATAL) << "Failed to create runtime"; UNREACHABLE(); } } PostRuntimeCreate(); runtime_.reset(Runtime::Current()); class_linker_ = runtime_->GetClassLinker(); // Runtime::Create acquired the mutator_lock_ that is normally given away when we // Runtime::Start, give it away now and then switch to a more managable ScopedObjectAccess. Thread::Current()->TransitionFromRunnableToSuspended(ThreadState::kNative); // Get the boot class path from the runtime so it can be used in tests. boot_class_path_ = class_linker_->GetBootClassPath(); ASSERT_FALSE(boot_class_path_.empty()); java_lang_dex_file_ = boot_class_path_[0]; FinalizeSetup(); if (kIsDebugBuild) { // Ensure that we're really running with debug checks enabled. CHECK(gSlowDebugTestFlag); } } void CommonRuntimeTestImpl::FinalizeSetup() { // Initialize maps for unstarted runtime. This needs to be here, as running clinits needs this // set up. if (!unstarted_initialized_) { interpreter::UnstartedRuntime::Initialize(); unstarted_initialized_ = true; } else { interpreter::UnstartedRuntime::Reinitialize(); } { ScopedObjectAccess soa(Thread::Current()); runtime_->GetClassLinker()->RunEarlyRootClinits(soa.Self()); InitializeIntrinsics(); runtime_->RunRootClinits(soa.Self()); } runtime_->GetHeap()->VerifyHeap(); // Check for heap corruption before the test // Reduce timinig-dependent flakiness in OOME behavior (eg StubTest.AllocObject). runtime_->GetHeap()->SetMinIntervalHomogeneousSpaceCompactionByOom(0U); } void CommonRuntimeTestImpl::TearDown() { CommonArtTestImpl::TearDown(); if (runtime_ != nullptr) { runtime_->GetHeap()->VerifyHeap(); // Check for heap corruption after the test } } // Check that for target builds we have ART_TARGET_NATIVETEST_DIR set. #ifdef ART_TARGET #ifndef ART_TARGET_NATIVETEST_DIR #error "ART_TARGET_NATIVETEST_DIR not set." #endif // Wrap it as a string literal. #define ART_TARGET_NATIVETEST_DIR_STRING STRINGIFY(ART_TARGET_NATIVETEST_DIR) "/" #else #define ART_TARGET_NATIVETEST_DIR_STRING "" #endif std::vector CommonRuntimeTestImpl::GetDexFiles(jobject jclass_loader) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<1> hs(soa.Self()); Handle class_loader = hs.NewHandle( soa.Decode(jclass_loader)); return GetDexFiles(soa.Self(), class_loader); } std::vector CommonRuntimeTestImpl::GetDexFiles( Thread* self, Handle class_loader) { DCHECK((class_loader->GetClass() == WellKnownClasses::dalvik_system_PathClassLoader) || (class_loader->GetClass() == WellKnownClasses::dalvik_system_DelegateLastClassLoader)); std::vector ret; VisitClassLoaderDexFiles(self, class_loader, [&](const DexFile* cp_dex_file) { if (cp_dex_file == nullptr) { LOG(WARNING) << "Null DexFile"; } else { ret.push_back(cp_dex_file); } return true; }); return ret; } const DexFile* CommonRuntimeTestImpl::GetFirstDexFile(jobject jclass_loader) { std::vector tmp(GetDexFiles(jclass_loader)); DCHECK(!tmp.empty()); const DexFile* ret = tmp[0]; DCHECK(ret != nullptr); return ret; } jobject CommonRuntimeTestImpl::LoadMultiDex(const char* first_dex_name, const char* second_dex_name) { std::vector> first_dex_files = OpenTestDexFiles(first_dex_name); std::vector> second_dex_files = OpenTestDexFiles(second_dex_name); std::vector class_path; CHECK_NE(0U, first_dex_files.size()); CHECK_NE(0U, second_dex_files.size()); for (auto& dex_file : first_dex_files) { class_path.push_back(dex_file.get()); loaded_dex_files_.push_back(std::move(dex_file)); } for (auto& dex_file : second_dex_files) { class_path.push_back(dex_file.get()); loaded_dex_files_.push_back(std::move(dex_file)); } Thread* self = Thread::Current(); jobject class_loader = Runtime::Current()->GetClassLinker()->CreatePathClassLoader(self, class_path); self->SetClassLoaderOverride(class_loader); return class_loader; } jobject CommonRuntimeTestImpl::LoadDex(const char* dex_name) { jobject class_loader = LoadDexInPathClassLoader(dex_name, nullptr); Thread::Current()->SetClassLoaderOverride(class_loader); return class_loader; } jobject CommonRuntimeTestImpl::LoadDexInWellKnownClassLoader(ScopedObjectAccess& soa, const std::vector& dex_names, ObjPtr loader_class, jobject parent_loader, jobject shared_libraries, jobject shared_libraries_after) { std::vector class_path; for (const std::string& dex_name : dex_names) { std::vector> dex_files = OpenTestDexFiles(dex_name.c_str()); CHECK_NE(0U, dex_files.size()); for (auto& dex_file : dex_files) { class_path.push_back(dex_file.get()); loaded_dex_files_.push_back(std::move(dex_file)); } } StackHandleScope<4> hs(soa.Self()); Handle h_loader_class = hs.NewHandle(loader_class); Handle h_parent_loader = hs.NewHandle(soa.Decode(parent_loader)); Handle> h_shared_libraries = hs.NewHandle(soa.Decode>(shared_libraries)); Handle> h_shared_libraries_after = hs.NewHandle(soa.Decode>(shared_libraries_after)); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ObjPtr result = class_linker->CreateWellKnownClassLoader( soa.Self(), class_path, h_loader_class, h_parent_loader, h_shared_libraries, h_shared_libraries_after); { // Verify we build the correct chain. // Verify that the result has the correct class. CHECK_EQ(h_loader_class.Get(), result->GetClass()); // Verify that the parent is not null. The boot class loader will be set up as a // proper object. ObjPtr actual_parent(result->GetParent()); CHECK(actual_parent != nullptr); if (parent_loader != nullptr) { // We were given a parent. Verify that it's what we expect. CHECK_EQ(h_parent_loader.Get(), actual_parent); } else { // No parent given. The parent must be the BootClassLoader. CHECK(class_linker->IsBootClassLoader(actual_parent)); } } return soa.Env()->GetVm()->AddGlobalRef(soa.Self(), result); } jobject CommonRuntimeTestImpl::LoadDexInPathClassLoader(const std::string& dex_name, jobject parent_loader, jobject shared_libraries, jobject shared_libraries_after) { return LoadDexInPathClassLoader(std::vector{ dex_name }, parent_loader, shared_libraries, shared_libraries_after); } jobject CommonRuntimeTestImpl::LoadDexInPathClassLoader(const std::vector& names, jobject parent_loader, jobject shared_libraries, jobject shared_libraries_after) { ScopedObjectAccess soa(Thread::Current()); return LoadDexInWellKnownClassLoader(soa, names, WellKnownClasses::dalvik_system_PathClassLoader.Get(), parent_loader, shared_libraries, shared_libraries_after); } jobject CommonRuntimeTestImpl::LoadDexInDelegateLastClassLoader(const std::string& dex_name, jobject parent_loader) { ScopedObjectAccess soa(Thread::Current()); return LoadDexInWellKnownClassLoader( soa, { dex_name }, WellKnownClasses::dalvik_system_DelegateLastClassLoader.Get(), parent_loader); } jobject CommonRuntimeTestImpl::LoadDexInInMemoryDexClassLoader(const std::string& dex_name, jobject parent_loader) { ScopedObjectAccess soa(Thread::Current()); return LoadDexInWellKnownClassLoader( soa, { dex_name }, WellKnownClasses::dalvik_system_InMemoryDexClassLoader.Get(), parent_loader); } void CommonRuntimeTestImpl::FillHeap(Thread* self, ClassLinker* class_linker, VariableSizedHandleScope* handle_scope) { DCHECK(handle_scope != nullptr); Runtime::Current()->GetHeap()->SetIdealFootprint(1 * GB); // Class java.lang.Object. Handle c(handle_scope->NewHandle( class_linker->FindSystemClass(self, "Ljava/lang/Object;"))); // Array helps to fill memory faster. Handle ca(handle_scope->NewHandle( class_linker->FindSystemClass(self, "[Ljava/lang/Object;"))); // Start allocating with ~128K size_t length = 128 * KB; while (length > 40) { const int32_t array_length = length / 4; // Object[] has elements of size 4. MutableHandle h(handle_scope->NewHandle( mirror::ObjectArray::Alloc(self, ca.Get(), array_length))); if (self->IsExceptionPending() || h == nullptr) { self->ClearException(); // Try a smaller length length = length / 2; // Use at most a quarter the reported free space. size_t mem = Runtime::Current()->GetHeap()->GetFreeMemory(); if (length * 4 > mem) { length = mem / 4; } } } // Allocate simple objects till it fails. while (!self->IsExceptionPending()) { handle_scope->NewHandle(c->AllocObject(self)); } self->ClearException(); } void CommonRuntimeTestImpl::SetUpRuntimeOptionsForFillHeap(RuntimeOptions *options) { // Use a smaller heap bool found = false; for (std::pair& pair : *options) { if (pair.first.find("-Xmx") == 0) { pair.first = "-Xmx4M"; // Smallest we can go. found = true; } } if (!found) { options->emplace_back("-Xmx4M", nullptr); } } void CommonRuntimeTestImpl::MakeInterpreted(ObjPtr klass) { PointerSize pointer_size = class_linker_->GetImagePointerSize(); for (ArtMethod& method : klass->GetMethods(pointer_size)) { Runtime::Current()->GetInstrumentation()->InitializeMethodsCode(&method, /*aot_code=*/ nullptr); } } bool CommonRuntimeTestImpl::StartDex2OatCommandLine(/*out*/std::vector* argv, /*out*/std::string* error_msg, bool use_runtime_bcp_and_image) { DCHECK(argv != nullptr); DCHECK(argv->empty()); Runtime* runtime = Runtime::Current(); if (use_runtime_bcp_and_image && runtime->GetHeap()->GetBootImageSpaces().empty()) { *error_msg = "No image location found for Dex2Oat."; return false; } argv->push_back(runtime->GetCompilerExecutable()); if (runtime->IsJavaDebuggable()) { argv->push_back("--debuggable"); } runtime->AddCurrentRuntimeFeaturesAsDex2OatArguments(argv); if (use_runtime_bcp_and_image) { argv->push_back("--runtime-arg"); argv->push_back(GetClassPathOption("-Xbootclasspath:", GetLibCoreDexFileNames())); argv->push_back("--runtime-arg"); argv->push_back(GetClassPathOption("-Xbootclasspath-locations:", GetLibCoreDexLocations())); const std::vector& image_spaces = runtime->GetHeap()->GetBootImageSpaces(); DCHECK(!image_spaces.empty()); argv->push_back("--boot-image=" + image_spaces[0]->GetImageLocation()); } std::vector compiler_options = runtime->GetCompilerOptions(); argv->insert(argv->end(), compiler_options.begin(), compiler_options.end()); return true; } bool CommonRuntimeTestImpl::CompileBootImage(const std::vector& extra_args, const std::string& image_file_name_prefix, ArrayRef dex_files, ArrayRef dex_locations, std::string* error_msg, const std::string& use_fd_prefix) { Runtime* const runtime = Runtime::Current(); std::vector argv { runtime->GetCompilerExecutable(), "--runtime-arg", "-Xms64m", "--runtime-arg", "-Xmx64m", "--runtime-arg", "-Xverify:softfail", "--force-determinism", }; CHECK_EQ(dex_files.size(), dex_locations.size()); for (const std::string& dex_file : dex_files) { argv.push_back("--dex-file=" + dex_file); } for (const std::string& dex_location : dex_locations) { argv.push_back("--dex-location=" + dex_location); } if (runtime->IsJavaDebuggable()) { argv.push_back("--debuggable"); } runtime->AddCurrentRuntimeFeaturesAsDex2OatArguments(&argv); if (!kIsTargetBuild) { argv.push_back("--host"); } std::unique_ptr art_file; std::unique_ptr vdex_file; std::unique_ptr oat_file; if (!use_fd_prefix.empty()) { art_file.reset(OS::CreateEmptyFile((use_fd_prefix + ".art").c_str())); vdex_file.reset(OS::CreateEmptyFile((use_fd_prefix + ".vdex").c_str())); oat_file.reset(OS::CreateEmptyFile((use_fd_prefix + ".oat").c_str())); argv.push_back("--image-fd=" + std::to_string(art_file->Fd())); argv.push_back("--output-vdex-fd=" + std::to_string(vdex_file->Fd())); argv.push_back("--oat-fd=" + std::to_string(oat_file->Fd())); argv.push_back("--oat-location=" + image_file_name_prefix + ".oat"); } else { argv.push_back("--image=" + image_file_name_prefix + ".art"); argv.push_back("--oat-file=" + image_file_name_prefix + ".oat"); argv.push_back("--oat-location=" + image_file_name_prefix + ".oat"); } std::vector compiler_options = runtime->GetCompilerOptions(); argv.insert(argv.end(), compiler_options.begin(), compiler_options.end()); // We must set --android-root. const char* android_root = getenv("ANDROID_ROOT"); CHECK(android_root != nullptr); argv.push_back("--android-root=" + std::string(android_root)); argv.insert(argv.end(), extra_args.begin(), extra_args.end()); bool result = RunDex2Oat(argv, error_msg); if (art_file != nullptr) { CHECK_EQ(0, art_file->FlushClose()); } if (vdex_file != nullptr) { CHECK_EQ(0, vdex_file->FlushClose()); } if (oat_file != nullptr) { CHECK_EQ(0, oat_file->FlushClose()); } return result; } bool CommonRuntimeTestImpl::RunDex2Oat(const std::vector& args, std::string* error_msg) { // We only want fatal logging for the error message. auto post_fork_fn = []() { return setenv("ANDROID_LOG_TAGS", "*:f", 1) == 0; }; ForkAndExecResult res = ForkAndExec(args, post_fork_fn, error_msg); if (res.stage != ForkAndExecResult::kFinished) { *error_msg = strerror(errno); return false; } return res.StandardSuccess(); } std::string CommonRuntimeTestImpl::GetImageLocation() { return GetImageDirectory() + "/boot.art"; } std::string CommonRuntimeTestImpl::GetSystemImageFile() { std::string isa = GetInstructionSetString(kRuntimeISA); return GetImageDirectory() + "/" + isa + "/boot.art"; } void CommonRuntimeTestImpl::VisitDexes(ArrayRef dexes, const std::function& method_visitor, const std::function& class_visitor, size_t method_frequency, size_t class_frequency) { size_t method_counter = 0; size_t class_counter = 0; for (const std::string& dex : dexes) { std::vector> dex_files; std::string error_msg; ArtDexFileLoader dex_file_loader(dex); CHECK(dex_file_loader.Open(/*verify*/ true, /*verify_checksum*/ false, &error_msg, &dex_files)) << error_msg; for (const std::unique_ptr& dex_file : dex_files) { for (size_t i = 0; i < dex_file->NumMethodIds(); ++i) { if (++method_counter % method_frequency == 0) { method_visitor(MethodReference(dex_file.get(), i)); } } for (size_t i = 0; i < dex_file->NumTypeIds(); ++i) { if (++class_counter % class_frequency == 0) { class_visitor(TypeReference(dex_file.get(), dex::TypeIndex(i))); } } } } } void CommonRuntimeTestImpl::GenerateProfile(ArrayRef dexes, File* out_file, size_t method_frequency, size_t type_frequency, bool for_boot_image) { ProfileCompilationInfo profile(for_boot_image); VisitDexes( dexes, [&profile](MethodReference ref) { uint32_t flags = ProfileCompilationInfo::MethodHotness::kFlagHot | ProfileCompilationInfo::MethodHotness::kFlagStartup; EXPECT_TRUE(profile.AddMethod( ProfileMethodInfo(ref), static_cast(flags))); }, [&profile](TypeReference ref) { std::set classes; classes.insert(ref.TypeIndex()); EXPECT_TRUE(profile.AddClassesForDex(ref.dex_file, classes.begin(), classes.end())); }, method_frequency, type_frequency); profile.Save(out_file->Fd()); EXPECT_EQ(out_file->Flush(), 0); } CheckJniAbortCatcher::CheckJniAbortCatcher() : vm_(Runtime::Current()->GetJavaVM()) { vm_->SetCheckJniAbortHook(Hook, &actual_); } CheckJniAbortCatcher::~CheckJniAbortCatcher() { vm_->SetCheckJniAbortHook(nullptr, nullptr); EXPECT_TRUE(actual_.empty()) << actual_; } void CheckJniAbortCatcher::Check(const std::string& expected_text) { Check(expected_text.c_str()); } void CheckJniAbortCatcher::Check(const char* expected_text) { EXPECT_TRUE(actual_.find(expected_text) != std::string::npos) << "\n" << "Expected to find: " << expected_text << "\n" << "In the output : " << actual_; actual_.clear(); } void CheckJniAbortCatcher::Hook(void* data, const std::string& reason) { // We use += because when we're hooking the aborts like this, multiple problems can be found. *reinterpret_cast(data) += reason; } } // namespace art