/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_ #define ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_ #include "entrypoint_utils.h" #include #include "art_field-inl.h" #include "art_method-inl.h" #include "base/pointer_size.h" #include "base/sdk_version.h" #include "class_linker-inl.h" #include "common_throws.h" #include "dex/dex_file.h" #include "dex/invoke_type.h" #include "entrypoints/quick/callee_save_frame.h" #include "handle_scope-inl.h" #include "imt_conflict_table.h" #include "imtable-inl.h" #include "indirect_reference_table.h" #include "mirror/array-alloc-inl.h" #include "mirror/class-alloc-inl.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/throwable.h" #include "nth_caller_visitor.h" #include "oat/oat_file.h" #include "oat/stack_map.h" #include "reflective_handle_scope-inl.h" #include "runtime.h" #include "thread.h" #include "well_known_classes.h" namespace art HIDDEN { inline std::string GetResolvedMethodErrorString(ClassLinker* class_linker, ArtMethod* inlined_method, ArtMethod* parent_method, ArtMethod* outer_method, ObjPtr dex_cache, MethodInfo method_info) REQUIRES_SHARED(Locks::mutator_lock_) { const uint32_t method_index = method_info.GetMethodIndex(); std::stringstream error_ss; std::string separator = ""; error_ss << "BCP vector {"; for (const DexFile* df : class_linker->GetBootClassPath()) { error_ss << separator << df << "(" << df->GetLocation() << ")"; separator = ", "; } error_ss << "}. oat_dex_files vector: {"; separator = ""; for (const OatDexFile* odf_value : parent_method->GetDexFile()->GetOatDexFile()->GetOatFile()->GetOatDexFiles()) { error_ss << separator << odf_value << "(" << odf_value->GetDexFileLocation() << ")"; separator = ", "; } error_ss << "}. "; if (inlined_method != nullptr) { error_ss << "Inlined method: " << inlined_method->PrettyMethod() << " (" << inlined_method->GetDexFile()->GetLocation() << "/" << static_cast(inlined_method->GetDexFile()) << "). "; } else if (dex_cache != nullptr) { error_ss << "Could not find an inlined method from an .oat file, using dex_cache to print the " "inlined method: " << dex_cache->GetDexFile()->PrettyMethod(method_index) << " (" << dex_cache->GetDexFile()->GetLocation() << "/" << static_cast(dex_cache->GetDexFile()) << "). "; } else { error_ss << "Both inlined_method and dex_cache are null. This means that we had an OOB access " << "to either bcp_dex_files or oat_dex_files. "; } error_ss << "The outer method is: " << parent_method->PrettyMethod() << " (" << parent_method->GetDexFile()->GetLocation() << "/" << static_cast(parent_method->GetDexFile()) << "). The outermost method in the chain is: " << outer_method->PrettyMethod() << " (" << outer_method->GetDexFile()->GetLocation() << "/" << static_cast(outer_method->GetDexFile()) << "). MethodInfo: method_index=" << std::dec << method_index << ", is_in_bootclasspath=" << std::boolalpha << (method_info.GetDexFileIndexKind() == MethodInfo::kKindBCP) << std::noboolalpha << ", dex_file_index=" << std::dec << method_info.GetDexFileIndex() << "."; return error_ss.str(); } inline ArtMethod* GetResolvedMethod(ArtMethod* outer_method, const CodeInfo& code_info, const BitTableRange& inline_infos) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!outer_method->IsObsolete()); // This method is being used by artQuickResolutionTrampoline, before it sets up // the passed parameters in a GC friendly way. Therefore we must never be // suspended while executing it. ScopedAssertNoThreadSuspension sants(__FUNCTION__); { InlineInfo inline_info = inline_infos.back(); if (inline_info.EncodesArtMethod()) { return inline_info.GetArtMethod(); } uint32_t method_index = code_info.GetMethodIndexOf(inline_info); if (inline_info.GetDexPc() == static_cast(-1)) { // "charAt" special case. It is the only non-leaf method we inline across dex files. ArtMethod* inlined_method = WellKnownClasses::java_lang_String_charAt; DCHECK_EQ(inlined_method->GetDexMethodIndex(), method_index); return inlined_method; } } // Find which method did the call in the inlining hierarchy. ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ArtMethod* method = outer_method; for (InlineInfo inline_info : inline_infos) { DCHECK(!inline_info.EncodesArtMethod()); DCHECK_NE(inline_info.GetDexPc(), static_cast(-1)); MethodInfo method_info = code_info.GetMethodInfoOf(inline_info); uint32_t method_index = method_info.GetMethodIndex(); const uint32_t dex_file_index = method_info.GetDexFileIndex(); ArtMethod* inlined_method = nullptr; ObjPtr dex_cache = nullptr; if (method_info.HasDexFileIndex()) { if (method_info.GetDexFileIndexKind() == MethodInfo::kKindBCP) { ArrayRef bcp_dex_files(class_linker->GetBootClassPath()); DCHECK_LT(dex_file_index, bcp_dex_files.size()) << "OOB access to bcp_dex_files. Dumping info: " << GetResolvedMethodErrorString( class_linker, inlined_method, method, outer_method, dex_cache, method_info); const DexFile* dex_file = bcp_dex_files[dex_file_index]; DCHECK_NE(dex_file, nullptr); dex_cache = class_linker->FindDexCache(Thread::Current(), *dex_file); } else { ArrayRef oat_dex_files( outer_method->GetDexFile()->GetOatDexFile()->GetOatFile()->GetOatDexFiles()); DCHECK_LT(dex_file_index, oat_dex_files.size()) << "OOB access to oat_dex_files. Dumping info: " << GetResolvedMethodErrorString( class_linker, inlined_method, method, outer_method, dex_cache, method_info); const OatDexFile* odf = oat_dex_files[dex_file_index]; DCHECK_NE(odf, nullptr); dex_cache = class_linker->FindDexCache(Thread::Current(), *odf); } } else { dex_cache = outer_method->GetDexCache(); } inlined_method = class_linker->LookupResolvedMethod(method_index, dex_cache, dex_cache->GetClassLoader()); if (UNLIKELY(inlined_method == nullptr)) { LOG(FATAL) << GetResolvedMethodErrorString( class_linker, inlined_method, method, outer_method, dex_cache, method_info); UNREACHABLE(); } DCHECK(!inlined_method->IsRuntimeMethod()); DCHECK_EQ(inlined_method->GetDexFile() == outer_method->GetDexFile(), dex_file_index == MethodInfo::kSameDexFile) << GetResolvedMethodErrorString( class_linker, inlined_method, method, outer_method, dex_cache, method_info); method = inlined_method; } return method; } ALWAYS_INLINE inline ObjPtr CheckClassInitializedForObjectAlloc(ObjPtr klass, Thread* self, bool* slow_path) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_) { if (UNLIKELY(!klass->IsVisiblyInitialized())) { StackHandleScope<1> hs(self); Handle h_class(hs.NewHandle(klass)); // EnsureInitialized (the class initializer) might cause a GC. // may cause us to suspend meaning that another thread may try to // change the allocator while we are stuck in the entrypoints of // an old allocator. Also, the class initialization may fail. To // handle these cases we mark the slow path boolean as true so // that the caller knows to check the allocator type to see if it // has changed and to null-check the return value in case the // initialization fails. *slow_path = true; if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) { DCHECK(self->IsExceptionPending()); return nullptr; // Failure } else { DCHECK(!self->IsExceptionPending()); } return h_class.Get(); } return klass; } ALWAYS_INLINE inline ObjPtr CheckObjectAlloc(ObjPtr klass, Thread* self, bool* slow_path) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_) { if (UNLIKELY(!klass->IsInstantiable())) { self->ThrowNewException("Ljava/lang/InstantiationError;", klass->PrettyDescriptor().c_str()); *slow_path = true; return nullptr; // Failure } if (UNLIKELY(klass->IsClassClass())) { ThrowIllegalAccessError(nullptr, "Class %s is inaccessible", klass->PrettyDescriptor().c_str()); *slow_path = true; return nullptr; // Failure } return CheckClassInitializedForObjectAlloc(klass, self, slow_path); } // Allocate an instance of klass. Throws InstantationError if klass is not instantiable, // or IllegalAccessError if klass is j.l.Class. Performs a clinit check too. template ALWAYS_INLINE inline ObjPtr AllocObjectFromCode(ObjPtr klass, Thread* self, gc::AllocatorType allocator_type) { bool slow_path = false; klass = CheckObjectAlloc(klass, self, &slow_path); if (UNLIKELY(slow_path)) { if (klass == nullptr) { return nullptr; } // CheckObjectAlloc can cause thread suspension which means we may now be instrumented. return klass->Alloc( self, Runtime::Current()->GetHeap()->GetCurrentAllocator()); } DCHECK(klass != nullptr); return klass->Alloc(self, allocator_type); } // Given the context of a calling Method and a resolved class, create an instance. template ALWAYS_INLINE inline ObjPtr AllocObjectFromCodeResolved(ObjPtr klass, Thread* self, gc::AllocatorType allocator_type) { DCHECK(klass != nullptr); bool slow_path = false; klass = CheckClassInitializedForObjectAlloc(klass, self, &slow_path); if (UNLIKELY(slow_path)) { if (klass == nullptr) { return nullptr; } gc::Heap* heap = Runtime::Current()->GetHeap(); // Pass in kNoAddFinalizer since the object cannot be finalizable. // CheckClassInitializedForObjectAlloc can cause thread suspension which means we may now be // instrumented. return klass->Alloc( self, heap->GetCurrentAllocator()); } // Pass in kNoAddFinalizer since the object cannot be finalizable. return klass->Alloc(self, allocator_type); } // Given the context of a calling Method and an initialized class, create an instance. template ALWAYS_INLINE inline ObjPtr AllocObjectFromCodeInitialized(ObjPtr klass, Thread* self, gc::AllocatorType allocator_type) { DCHECK(klass != nullptr); // Pass in kNoAddFinalizer since the object cannot be finalizable. return klass->Alloc(self, allocator_type); } ALWAYS_INLINE inline ObjPtr CheckArrayAlloc(dex::TypeIndex type_idx, int32_t component_count, ArtMethod* method, bool* slow_path) { if (UNLIKELY(component_count < 0)) { ThrowNegativeArraySizeException(component_count); *slow_path = true; return nullptr; // Failure } ObjPtr klass = method->GetDexCache()->GetResolvedType(type_idx); if (UNLIKELY(klass == nullptr)) { // Not in dex cache so try to resolve ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); klass = class_linker->ResolveType(type_idx, method); *slow_path = true; if (klass == nullptr) { // Error DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; // Failure } CHECK(klass->IsArrayClass()) << klass->PrettyClass(); } if (!method->SkipAccessChecks()) { ObjPtr referrer = method->GetDeclaringClass(); if (UNLIKELY(!referrer->CanAccess(klass))) { ThrowIllegalAccessErrorClass(referrer, klass); *slow_path = true; return nullptr; // Failure } } return klass; } // Given the context of a calling Method, use its DexCache to resolve a type to an array Class. If // it cannot be resolved, throw an error. If it can, use it to create an array. // When verification/compiler hasn't been able to verify access, optionally perform an access // check. template ALWAYS_INLINE inline ObjPtr AllocArrayFromCode(dex::TypeIndex type_idx, int32_t component_count, ArtMethod* method, Thread* self, gc::AllocatorType allocator_type) { bool slow_path = false; ObjPtr klass = CheckArrayAlloc(type_idx, component_count, method, &slow_path); if (UNLIKELY(slow_path)) { if (klass == nullptr) { return nullptr; } gc::Heap* heap = Runtime::Current()->GetHeap(); // CheckArrayAlloc can cause thread suspension which means we may now be instrumented. return mirror::Array::Alloc(self, klass, component_count, klass->GetComponentSizeShift(), heap->GetCurrentAllocator()); } return mirror::Array::Alloc(self, klass, component_count, klass->GetComponentSizeShift(), allocator_type); } template ALWAYS_INLINE inline ObjPtr AllocArrayFromCodeResolved(ObjPtr klass, int32_t component_count, Thread* self, gc::AllocatorType allocator_type) { DCHECK(klass != nullptr); if (UNLIKELY(component_count < 0)) { ThrowNegativeArraySizeException(component_count); return nullptr; // Failure } // No need to retry a slow-path allocation as the above code won't cause a GC or thread // suspension. return mirror::Array::Alloc(self, klass, component_count, klass->GetComponentSizeShift(), allocator_type); } FLATTEN inline ArtField* ResolveFieldWithAccessChecks(Thread* self, ClassLinker* class_linker, uint16_t field_index, ArtMethod* caller, bool is_static, bool is_put, size_t resolve_field_type) // Resolve if not zero REQUIRES_SHARED(Locks::mutator_lock_) { if (caller->SkipAccessChecks()) { return class_linker->ResolveField(field_index, caller, is_static); } caller = caller->GetInterfaceMethodIfProxy(class_linker->GetImagePointerSize()); StackHandleScope<2> hs(self); Handle h_dex_cache(hs.NewHandle(caller->GetDexCache())); Handle h_class_loader(hs.NewHandle(caller->GetClassLoader())); ArtField* resolved_field = class_linker->ResolveFieldJLS(field_index, h_dex_cache, h_class_loader); if (resolved_field == nullptr) { return nullptr; } ObjPtr fields_class = resolved_field->GetDeclaringClass(); if (UNLIKELY(resolved_field->IsStatic() != is_static)) { ThrowIncompatibleClassChangeErrorField(resolved_field, is_static, caller); return nullptr; } ObjPtr referring_class = caller->GetDeclaringClass(); if (UNLIKELY(!referring_class->CheckResolvedFieldAccess(fields_class, resolved_field, caller->GetDexCache(), field_index))) { DCHECK(self->IsExceptionPending()); return nullptr; } if (UNLIKELY(is_put && !resolved_field->CanBeChangedBy(caller))) { ThrowIllegalAccessErrorFinalField(caller, resolved_field); return nullptr; } if (resolve_field_type != 0u) { StackArtFieldHandleScope<1> rhs(self); ReflectiveHandle field_handle(rhs.NewHandle(resolved_field)); if (resolved_field->ResolveType().IsNull()) { DCHECK(self->IsExceptionPending()); return nullptr; } resolved_field = field_handle.Get(); } return resolved_field; } template inline ArtField* FindFieldFromCode(uint32_t field_idx, ArtMethod* referrer, Thread* self, bool should_resolve_type = false) { constexpr bool is_set = (type & FindFieldFlags::WriteBit) != 0; constexpr bool is_static = (type & FindFieldFlags::StaticBit) != 0; ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ArtField* resolved_field = ResolveFieldWithAccessChecks( self, class_linker, field_idx, referrer, is_static, is_set, should_resolve_type ? 1u : 0u); if (!is_static || resolved_field == nullptr) { // instance fields must be being accessed on an initialized class return resolved_field; } else { ObjPtr fields_class = resolved_field->GetDeclaringClass(); // If the class is initialized we're done. if (LIKELY(fields_class->IsVisiblyInitialized())) { return resolved_field; } else { StackHandleScope<1> hs(self); StackArtFieldHandleScope<1> rhs(self); ReflectiveHandle resolved_field_handle(rhs.NewHandle(resolved_field)); if (LIKELY(class_linker->EnsureInitialized(self, hs.NewHandle(fields_class), true, true))) { // Otherwise let's ensure the class is initialized before resolving the field. return resolved_field_handle.Get(); } DCHECK(self->IsExceptionPending()); // Throw exception and unwind return nullptr; // Failure. } } } // NOLINTBEGIN(bugprone-macro-parentheses) // Explicit template declarations of FindFieldFromCode for all field access types. #define EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type) \ template REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE \ ArtField* FindFieldFromCode<_type>(uint32_t field_idx, \ ArtMethod* referrer, \ Thread* self, \ bool should_resolve_type = false) \ EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(InstanceObjectRead); EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(InstanceObjectWrite); EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(InstancePrimitiveRead); EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(InstancePrimitiveWrite); EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(StaticObjectRead); EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(StaticObjectWrite); EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(StaticPrimitiveRead); EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(StaticPrimitiveWrite); #undef EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL // NOLINTEND(bugprone-macro-parentheses) static inline bool IsStringInit(const DexFile* dex_file, uint32_t method_idx) REQUIRES_SHARED(Locks::mutator_lock_) { const dex::MethodId& method_id = dex_file->GetMethodId(method_idx); const std::string_view class_name = dex_file->GetTypeDescriptorView(method_id.class_idx_); const std::string_view method_name = dex_file->GetMethodNameView(method_id); // Instead of calling ResolveMethod() which has suspend point and can trigger // GC, look up the method symbolically. // Compare method's class name and method name against string init. // It's ok since it's not allowed to create your own java/lang/String. // TODO: verify that assumption. if (class_name == "Ljava/lang/String;" && method_name == "") { return true; } return false; } static inline bool IsStringInit(const Instruction& instr, ArtMethod* caller) REQUIRES_SHARED(Locks::mutator_lock_) { if (instr.Opcode() == Instruction::INVOKE_DIRECT || instr.Opcode() == Instruction::INVOKE_DIRECT_RANGE) { uint16_t callee_method_idx = (instr.Opcode() == Instruction::INVOKE_DIRECT_RANGE) ? instr.VRegB_3rc() : instr.VRegB_35c(); return IsStringInit(caller->GetDexFile(), callee_method_idx); } return false; } extern "C" size_t NterpGetMethod(Thread* self, ArtMethod* caller, const uint16_t* dex_pc_ptr); template ArtMethod* FindMethodToCall(Thread* self, ArtMethod* caller, ObjPtr* this_object, const Instruction& inst, bool only_lookup_tls_cache, /*out*/ bool* string_init) REQUIRES_SHARED(Locks::mutator_lock_) { PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); // Try to find the method in thread-local cache. size_t tls_value = 0u; if (!self->GetInterpreterCache()->Get(self, &inst, &tls_value)) { if (only_lookup_tls_cache) { return nullptr; } DCHECK(!self->IsExceptionPending()); // NterpGetMethod can suspend, so save this_object. StackHandleScope<1> hs(self); HandleWrapperObjPtr h_this(hs.NewHandleWrapper(this_object)); tls_value = NterpGetMethod(self, caller, reinterpret_cast(&inst)); if (self->IsExceptionPending()) { return nullptr; } } if (type != kStatic && UNLIKELY((*this_object) == nullptr)) { if (UNLIKELY(IsStringInit(inst, caller))) { // Hack for String init: // // We assume that the input of String. in verified code is always // an uninitialized reference. If it is a null constant, it must have been // optimized out by the compiler and we arrive here after deoptimization. // Do not throw NullPointerException. } else { // Maintain interpreter-like semantics where NullPointerException is thrown // after potential NoSuchMethodError from class linker. const uint32_t method_idx = inst.VRegB(); ThrowNullPointerExceptionForMethodAccess(method_idx, type); return nullptr; } } static constexpr size_t kStringInitMethodFlag = 0b1; static constexpr size_t kInvokeInterfaceOnObjectMethodFlag = 0b1; static constexpr size_t kMethodMask = ~0b11; ArtMethod* called_method = nullptr; switch (type) { case kDirect: case kSuper: case kStatic: // Note: for the interpreter, the String. special casing for invocation is handled // in DoCallCommon. *string_init = ((tls_value & kStringInitMethodFlag) != 0); DCHECK_EQ(*string_init, IsStringInit(inst, caller)); called_method = reinterpret_cast(tls_value & kMethodMask); break; case kInterface: if ((tls_value & kInvokeInterfaceOnObjectMethodFlag) != 0) { // invokeinterface on a j.l.Object method. uint16_t method_index = tls_value >> 16; called_method = (*this_object)->GetClass()->GetVTableEntry(method_index, pointer_size); } else { ArtMethod* interface_method = reinterpret_cast(tls_value & kMethodMask); called_method = (*this_object)->GetClass()->GetImt(pointer_size)->Get( interface_method->GetImtIndex(), pointer_size); if (called_method->IsRuntimeMethod()) { called_method = (*this_object)->GetClass()->FindVirtualMethodForInterface( interface_method, pointer_size); if (UNLIKELY(called_method == nullptr)) { ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch( interface_method, *this_object, caller); return nullptr; } } } break; case kVirtual: called_method = (*this_object)->GetClass()->GetVTableEntry(tls_value, pointer_size); break; } if (UNLIKELY(!called_method->IsInvokable())) { called_method->ThrowInvocationTimeError((type == kStatic) ? nullptr : *this_object); return nullptr; } DCHECK(!called_method->IsRuntimeMethod()) << called_method->PrettyMethod(); return called_method; } template ALWAYS_INLINE ArtMethod* FindSuperMethodToCall(uint32_t method_idx, ArtMethod* resolved_method, ArtMethod* referrer, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { // TODO This lookup is quite slow. // NB This is actually quite tricky to do any other way. We cannot use GetDeclaringClass since // that will actually not be what we want in some cases where there are miranda methods or // defaults. What we actually need is a GetContainingClass that says which classes virtuals // this method is coming from. ClassLinker* linker = Runtime::Current()->GetClassLinker(); dex::TypeIndex type_idx = referrer->GetDexFile()->GetMethodId(method_idx).class_idx_; ObjPtr referenced_class = linker->ResolveType(type_idx, referrer); if (UNLIKELY(referenced_class == nullptr)) { DCHECK(self->IsExceptionPending()); return nullptr; } if (access_check) { if (!referenced_class->IsAssignableFrom(referrer->GetDeclaringClass())) { ThrowNoSuchMethodError(kSuper, resolved_method->GetDeclaringClass(), resolved_method->GetName(), resolved_method->GetSignature()); return nullptr; } } if (referenced_class->IsInterface()) { // TODO We can do better than this for a (compiled) fastpath. ArtMethod* found_method = referenced_class->FindVirtualMethodForInterfaceSuper( resolved_method, linker->GetImagePointerSize()); DCHECK(found_method != nullptr); return found_method; } DCHECK(resolved_method->IsCopied() || !resolved_method->GetDeclaringClass()->IsInterface()); uint16_t vtable_index = resolved_method->GetMethodIndex(); ObjPtr super_class = referrer->GetDeclaringClass()->GetSuperClass(); if (access_check) { DCHECK(super_class == nullptr || super_class->HasVTable()); // Check existence of super class. if (super_class == nullptr || vtable_index >= static_cast(super_class->GetVTableLength())) { // Behavior to agree with that of the verifier. ThrowNoSuchMethodError(kSuper, resolved_method->GetDeclaringClass(), resolved_method->GetName(), resolved_method->GetSignature()); return nullptr; // Failure. } } DCHECK(super_class != nullptr); DCHECK(super_class->HasVTable()); return super_class->GetVTableEntry(vtable_index, linker->GetImagePointerSize()); } inline ObjPtr ResolveVerifyAndClinit(dex::TypeIndex type_idx, ArtMethod* referrer, Thread* self, bool can_run_clinit, bool verify_access) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ObjPtr klass = class_linker->ResolveType(type_idx, referrer); if (UNLIKELY(klass == nullptr)) { CHECK(self->IsExceptionPending()); return nullptr; // Failure - Indicate to caller to deliver exception } // Perform access check if necessary. ObjPtr referring_class = referrer->GetDeclaringClass(); if (verify_access && UNLIKELY(!referring_class->CanAccess(klass))) { ThrowIllegalAccessErrorClass(referring_class, klass); return nullptr; // Failure - Indicate to caller to deliver exception } // If we're just implementing const-class, we shouldn't call . if (!can_run_clinit) { return klass; } // If we are the of this class, just return our storage. // // Do not set the DexCache InitializedStaticStorage, since that implies has finished // running. if (klass == referring_class && referrer->IsConstructor() && referrer->IsStatic()) { return klass; } StackHandleScope<1> hs(self); Handle h_class(hs.NewHandle(klass)); if (!class_linker->EnsureInitialized(self, h_class, true, true)) { CHECK(self->IsExceptionPending()); return nullptr; // Failure - Indicate to caller to deliver exception } return h_class.Get(); } template inline INT_TYPE art_float_to_integral(FLOAT_TYPE f) { const INT_TYPE kMaxInt = static_cast(std::numeric_limits::max()); const INT_TYPE kMinInt = static_cast(std::numeric_limits::min()); const FLOAT_TYPE kMaxIntAsFloat = static_cast(kMaxInt); const FLOAT_TYPE kMinIntAsFloat = static_cast(kMinInt); if (LIKELY(f > kMinIntAsFloat)) { if (LIKELY(f < kMaxIntAsFloat)) { return static_cast(f); } else { return kMaxInt; } } else { return (f != f) ? 0 : kMinInt; // f != f implies NaN } } inline ObjPtr GetGenericJniSynchronizationObject(Thread* self, ArtMethod* called) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!called->IsCriticalNative()); DCHECK(!called->IsFastNative()); DCHECK(self->GetManagedStack()->GetTopQuickFrame() != nullptr); DCHECK_EQ(*self->GetManagedStack()->GetTopQuickFrame(), called); // We do not need read barriers here. // On method entry, all reference arguments are to-space references and we mark the // declaring class of a static native method if needed. When visiting thread roots at // the start of a GC, we visit all these references to ensure they point to the to-space. if (called->IsStatic()) { // Static methods synchronize on the declaring class object. return called->GetDeclaringClass(); } else { // Instance methods synchronize on the `this` object. // The `this` reference is stored in the first out vreg in the caller's frame. uint8_t* sp = reinterpret_cast(self->GetManagedStack()->GetTopQuickFrame()); size_t frame_size = RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs); StackReference* this_ref = reinterpret_cast*>( sp + frame_size + static_cast(kRuntimePointerSize)); return this_ref->AsMirrorPtr(); } } } // namespace art #endif // ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_