/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "exec_utils.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "android-base/file.h" #include "android-base/parseint.h" #include "android-base/scopeguard.h" #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "android-base/unique_fd.h" #include "base/macros.h" #include "base/pidfd.h" #include "base/utils.h" #include "runtime.h" namespace art HIDDEN { namespace { using ::android::base::ParseInt; using ::android::base::ReadFileToString; using ::android::base::StringPrintf; using ::android::base::unique_fd; std::string ToCommandLine(const std::vector& args) { return android::base::Join(args, ' '); } // Fork and execute a command specified in a subprocess. // If there is a runtime (Runtime::Current != nullptr) then the subprocess is created with the // same environment that existed when the runtime was started. // Returns the process id of the child process on success, -1 otherwise. pid_t ExecWithoutWait(const std::vector& arg_vector, bool new_process_group, std::string* error_msg) { // Convert the args to char pointers. const char* program = arg_vector[0].c_str(); std::vector args; args.reserve(arg_vector.size() + 1); for (const auto& arg : arg_vector) { args.push_back(const_cast(arg.c_str())); } args.push_back(nullptr); // fork and exec pid_t pid = fork(); if (pid == 0) { // no allocation allowed between fork and exec if (new_process_group) { setpgid(0, 0); } // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc. // Use the snapshot of the environment from the time the runtime was created. char** envp = (Runtime::Current() == nullptr) ? nullptr : Runtime::Current()->GetEnvSnapshot(); if (envp == nullptr) { execv(program, &args[0]); } else { execve(program, &args[0], envp); } // This should be regarded as a crash rather than a normal return. PLOG(FATAL) << "Failed to execute (" << ToCommandLine(arg_vector) << ")"; UNREACHABLE(); } else if (pid == -1) { *error_msg = StringPrintf("Failed to execute (%s) because fork failed: %s", ToCommandLine(arg_vector).c_str(), strerror(errno)); return -1; } else { return pid; } } ExecResult WaitChild(pid_t pid, const std::vector& arg_vector, bool no_wait, std::string* error_msg) { siginfo_t info; // WNOWAIT leaves the child in a waitable state. The call is still blocking. int options = WEXITED | (no_wait ? WNOWAIT : 0); if (TEMP_FAILURE_RETRY(waitid(P_PID, pid, &info, options)) != 0) { *error_msg = StringPrintf("waitid failed for (%s) pid %d: %s", ToCommandLine(arg_vector).c_str(), pid, strerror(errno)); return {.status = ExecResult::kUnknown}; } if (info.si_pid != pid) { *error_msg = StringPrintf("waitid failed for (%s): wanted pid %d, got %d: %s", ToCommandLine(arg_vector).c_str(), pid, info.si_pid, strerror(errno)); return {.status = ExecResult::kUnknown}; } if (info.si_code != CLD_EXITED) { *error_msg = StringPrintf("Failed to execute (%s) because the child process is terminated by signal %d", ToCommandLine(arg_vector).c_str(), info.si_status); return {.status = ExecResult::kSignaled, .signal = info.si_status}; } return {.status = ExecResult::kExited, .exit_code = info.si_status}; } // A fallback implementation of `WaitChildWithTimeout` that creates a thread to wait instead of // relying on `pidfd_open`. ExecResult WaitChildWithTimeoutFallback(pid_t pid, const std::vector& arg_vector, int timeout_ms, std::string* error_msg) { bool child_exited = false; bool timed_out = false; std::condition_variable cv; std::mutex m; std::thread wait_thread([&]() { std::unique_lock lock(m); if (!cv.wait_for(lock, std::chrono::milliseconds(timeout_ms), [&] { return child_exited; })) { timed_out = true; kill(pid, SIGKILL); } }); ExecResult result = WaitChild(pid, arg_vector, /*no_wait=*/true, error_msg); { std::unique_lock lock(m); child_exited = true; } cv.notify_all(); wait_thread.join(); // The timeout error should have a higher priority than any other error. if (timed_out) { *error_msg = StringPrintf("Failed to execute (%s) because the child process timed out after %dms", ToCommandLine(arg_vector).c_str(), timeout_ms); return ExecResult{.status = ExecResult::kTimedOut}; } return result; } // Waits for the child process to finish and leaves the child in a waitable state. ExecResult WaitChildWithTimeout(pid_t pid, unique_fd pidfd, const std::vector& arg_vector, int timeout_ms, std::string* error_msg) { auto cleanup = android::base::make_scope_guard([&]() { kill(pid, SIGKILL); std::string ignored_error_msg; WaitChild(pid, arg_vector, /*no_wait=*/true, &ignored_error_msg); }); struct pollfd pfd; pfd.fd = pidfd.get(); pfd.events = POLLIN; int poll_ret = TEMP_FAILURE_RETRY(poll(&pfd, /*nfds=*/1, timeout_ms)); pidfd.reset(); if (poll_ret < 0) { *error_msg = StringPrintf("poll failed for pid %d: %s", pid, strerror(errno)); return {.status = ExecResult::kUnknown}; } if (poll_ret == 0) { *error_msg = StringPrintf("Failed to execute (%s) because the child process timed out after %dms", ToCommandLine(arg_vector).c_str(), timeout_ms); return {.status = ExecResult::kTimedOut}; } cleanup.Disable(); return WaitChild(pid, arg_vector, /*no_wait=*/true, error_msg); } bool ParseProcStat(const std::string& stat_content, int64_t uptime_ms, int64_t ticks_per_sec, /*out*/ ProcessStat* stat) { size_t pos = stat_content.rfind(") "); if (pos == std::string::npos) { return false; } std::vector stat_fields; // Skip the first two fields. The second field is the parenthesized process filename, which can // contain anything, including spaces. Split(std::string_view(stat_content).substr(pos + 2), ' ', &stat_fields); constexpr int kSkippedFields = 2; int64_t utime, stime, cutime, cstime, starttime; if (stat_fields.size() < 22 - kSkippedFields || !ParseInt(stat_fields[13 - kSkippedFields], &utime) || !ParseInt(stat_fields[14 - kSkippedFields], &stime) || !ParseInt(stat_fields[15 - kSkippedFields], &cutime) || !ParseInt(stat_fields[16 - kSkippedFields], &cstime) || !ParseInt(stat_fields[21 - kSkippedFields], &starttime)) { return false; } if (starttime == 0) { // The start time is the time the process started after system boot, so it's not supposed to be // zero unless the process is `init`. return false; } stat->cpu_time_ms = (utime + stime + cutime + cstime) * 1000 / ticks_per_sec; stat->wall_time_ms = uptime_ms - starttime * 1000 / ticks_per_sec; return true; } } // namespace int ExecUtils::ExecAndReturnCode(const std::vector& arg_vector, std::string* error_msg) const { return ExecAndReturnResult(arg_vector, /*timeout_sec=*/-1, error_msg).exit_code; } ExecResult ExecUtils::ExecAndReturnResult(const std::vector& arg_vector, int timeout_sec, std::string* error_msg) const { return ExecAndReturnResult(arg_vector, timeout_sec, ExecCallbacks(), /*new_process_group=*/false, /*stat=*/nullptr, error_msg); } ExecResult ExecUtils::ExecAndReturnResult(const std::vector& arg_vector, int timeout_sec, const ExecCallbacks& callbacks, bool new_process_group, /*out*/ ProcessStat* stat, /*out*/ std::string* error_msg) const { if (timeout_sec > INT_MAX / 1000) { *error_msg = "Timeout too large"; return {.status = ExecResult::kStartFailed}; } // Start subprocess. pid_t pid = ExecWithoutWait(arg_vector, new_process_group, error_msg); if (pid == -1) { return {.status = ExecResult::kStartFailed}; } callbacks.on_start(pid); // Wait for subprocess to finish. ExecResult result; if (timeout_sec >= 0) { unique_fd pidfd = PidfdOpen(pid); if (pidfd.get() >= 0) { result = WaitChildWithTimeout(pid, std::move(pidfd), arg_vector, timeout_sec * 1000, error_msg); } else { LOG(DEBUG) << StringPrintf( "pidfd_open failed for pid %d: %s, falling back", pid, strerror(errno)); result = WaitChildWithTimeoutFallback(pid, arg_vector, timeout_sec * 1000, error_msg); } } else { result = WaitChild(pid, arg_vector, /*no_wait=*/true, error_msg); } if (stat != nullptr) { std::string local_error_msg; if (!GetStat(pid, stat, &local_error_msg)) { LOG(ERROR) << "Failed to get process stat: " << local_error_msg; } } callbacks.on_end(pid); std::string local_error_msg; // TODO(jiakaiz): Use better logic to detect waitid failure. if (WaitChild(pid, arg_vector, /*no_wait=*/false, &local_error_msg).status == ExecResult::kUnknown) { LOG(ERROR) << "Failed to clean up child process '" << arg_vector[0] << "': " << local_error_msg; } return result; } bool ExecUtils::Exec(const std::vector& arg_vector, std::string* error_msg) const { int status = ExecAndReturnCode(arg_vector, error_msg); if (status < 0) { // Internal error. The error message is already set. return false; } if (status > 0) { *error_msg = StringPrintf("Failed to execute (%s) because the child process returns non-zero exit code", ToCommandLine(arg_vector).c_str()); return false; } return true; } unique_fd ExecUtils::PidfdOpen(pid_t pid) const { return art::PidfdOpen(pid, /*flags=*/0); } std::string ExecUtils::GetProcStat(pid_t pid) const { std::string stat_content; if (!ReadFileToString(StringPrintf("/proc/%d/stat", pid), &stat_content)) { stat_content = ""; } return stat_content; } std::optional ExecUtils::GetUptimeMs(std::string* error_msg) const { timespec t; if (clock_gettime(CLOCK_MONOTONIC, &t) != 0) { *error_msg = ART_FORMAT("Failed to get uptime: {}", strerror(errno)); return std::nullopt; } return t.tv_sec * 1000 + t.tv_nsec / 1000000; } int64_t ExecUtils::GetTicksPerSec() const { return sysconf(_SC_CLK_TCK); } bool ExecUtils::GetStat(pid_t pid, /*out*/ ProcessStat* stat, /*out*/ std::string* error_msg) const { std::optional uptime_ms = GetUptimeMs(error_msg); if (!uptime_ms.has_value()) { return false; } std::string stat_content = GetProcStat(pid); if (stat_content.empty()) { *error_msg = StringPrintf("Failed to read /proc/%d/stat: %s", pid, strerror(errno)); return false; } int64_t ticks_per_sec = GetTicksPerSec(); if (!ParseProcStat(stat_content, *uptime_ms, ticks_per_sec, stat)) { *error_msg = StringPrintf("Failed to parse /proc/%d/stat '%s'", pid, stat_content.c_str()); return false; } return true; } } // namespace art