/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_GC_ACCOUNTING_SPACE_BITMAP_H_ #define ART_RUNTIME_GC_ACCOUNTING_SPACE_BITMAP_H_ #include #include #include #include #include #include "base/locks.h" #include "base/mem_map.h" #include "runtime_globals.h" namespace art HIDDEN { namespace mirror { class Class; class Object; } // namespace mirror namespace gc { namespace accounting { template class SpaceBitmap { public: using ScanCallback = void(mirror::Object* obj, void* finger, void* arg); using SweepCallback = void(size_t ptr_count, mirror::Object** ptrs, void* arg); // Initialize a space bitmap so that it points to a bitmap large enough to cover a heap at // heap_begin of heap_capacity bytes, where objects are guaranteed to be kAlignment-aligned. EXPORT static SpaceBitmap Create(const std::string& name, uint8_t* heap_begin, size_t heap_capacity); // Initialize a space bitmap using the provided mem_map as the live bits. Takes ownership of the // mem map. The address range covered starts at heap_begin and is of size equal to heap_capacity. // Objects are kAlignement-aligned. static SpaceBitmap CreateFromMemMap(const std::string& name, MemMap&& mem_map, uint8_t* heap_begin, size_t heap_capacity); EXPORT ~SpaceBitmap(); // Return the bitmap word index corresponding to memory offset (relative to // `HeapBegin()`) `offset`. // See also SpaceBitmap::OffsetBitIndex. // // is the difference from .base to a pointer address. // is the index of .bits that contains the bit representing // . static constexpr size_t OffsetToIndex(size_t offset) { return offset / kAlignment / kBitsPerIntPtrT; } // Return the memory offset (relative to `HeapBegin()`) corresponding to // bitmap word index `index`. template static constexpr T IndexToOffset(T index) { return static_cast(index * kAlignment * kBitsPerIntPtrT); } // Return the bit within the bitmap word index corresponding to // memory offset (relative to `HeapBegin()`) `offset`. // See also SpaceBitmap::OffsetToIndex. ALWAYS_INLINE static constexpr uintptr_t OffsetBitIndex(uintptr_t offset) { return (offset / kAlignment) % kBitsPerIntPtrT; } // Return the word-wide bit mask corresponding to `OffsetBitIndex(offset)`. // Bits are packed in the obvious way. static constexpr uintptr_t OffsetToMask(uintptr_t offset) { return static_cast(1) << OffsetBitIndex(offset); } // Set the bit corresponding to `obj` in the bitmap and return the previous value of that bit. bool Set(const mirror::Object* obj) ALWAYS_INLINE { return Modify(obj); } // Clear the bit corresponding to `obj` in the bitmap and return the previous value of that bit. bool Clear(const mirror::Object* obj) ALWAYS_INLINE { return Modify(obj); } // Returns true if the object was previously marked. bool AtomicTestAndSet(const mirror::Object* obj); // Fill the bitmap with zeroes. Returns the bitmap's memory to the system as a side-effect. // If `release_eagerly` is true, this method will also try to give back the // memory to the OS eagerly. void Clear(bool release_eagerly = true); // Clear a range covered by the bitmap using madvise if possible. void ClearRange(const mirror::Object* begin, const mirror::Object* end); // Test whether `obj` is part of the bitmap (i.e. return whether the bit // corresponding to `obj` has been set in the bitmap). // // Precondition: `obj` is within the range of pointers that this bitmap could // potentially cover (i.e. `this->HasAddress(obj)` is true) bool Test(const mirror::Object* obj) const; // Return true iff is within the range of pointers that this bitmap could potentially cover, // even if a bit has not been set for it. bool HasAddress(const void* obj) const { // If obj < heap_begin_ then offset underflows to some very large value past the end of the // bitmap. const uintptr_t offset = reinterpret_cast(obj) - heap_begin_; const size_t index = OffsetToIndex(offset); return index < bitmap_size_ / sizeof(intptr_t); } template void VisitRange(uintptr_t visit_begin, uintptr_t visit_end, const Visitor& visitor) const { for (; visit_begin < visit_end; visit_begin += kAlignment) { visitor(reinterpret_cast(visit_begin)); } } // Find first object while scanning bitmap backwards from visit_begin -> visit_end. // Covers [visit_end, visit_begin] range. mirror::Object* FindPrecedingObject(uintptr_t visit_begin, uintptr_t visit_end = 0) const; // Visit the live objects in the range [visit_begin, visit_end). If kVisitOnce // is true, then only the first live object will be visited. // TODO: Use lock annotations when clang is fixed. // REQUIRES(Locks::heap_bitmap_lock_) REQUIRES_SHARED(Locks::mutator_lock_); template void VisitMarkedRange(uintptr_t visit_begin, uintptr_t visit_end, Visitor&& visitor) const NO_THREAD_SAFETY_ANALYSIS; // Visit all of the set bits in HeapBegin(), HeapLimit(). template void VisitAllMarked(Visitor&& visitor) const { VisitMarkedRange(HeapBegin(), HeapLimit(), visitor); } // Visits set bits in address order. The callback is not permitted to change the bitmap bits or // max during the traversal. template void Walk(Visitor&& visitor) REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); // Walk through the bitmaps in increasing address order, and find the object pointers that // correspond to garbage objects. Call zero or more times with lists of these object // pointers. The callback is not permitted to increase the max of either bitmap. static void SweepWalk(const SpaceBitmap& live, const SpaceBitmap& mark, uintptr_t base, uintptr_t max, SweepCallback* thunk, void* arg); void CopyFrom(SpaceBitmap* source_bitmap); // Starting address of our internal storage. Atomic* Begin() const { return bitmap_begin_; } // Size of our internal storage size_t Size() const { return bitmap_size_; } // Size in bytes of the memory that the bitmaps spans. uint64_t HeapSize() const { return IndexToOffset(Size() / sizeof(intptr_t)); } void SetHeapSize(size_t bytes) { heap_limit_ = heap_begin_ + bytes; bitmap_size_ = ComputeBitmapSize(bytes); CHECK_EQ(HeapSize(), bytes); if (mem_map_.IsValid()) { mem_map_.SetSize(bitmap_size_); } } uintptr_t HeapBegin() const { return heap_begin_; } // The maximum address which the bitmap can span. (HeapBegin() <= object < HeapLimit()). uint64_t HeapLimit() const { return heap_limit_; } // Set the max address which can covered by the bitmap. void SetHeapLimit(uintptr_t new_end); std::string GetName() const { return name_; } void SetName(const std::string& name) { name_ = name; } std::string Dump() const; // Dump three bitmap words around obj. std::string DumpMemAround(mirror::Object* obj) const; // Helper function for computing bitmap size based on a 64 bit capacity. static size_t ComputeBitmapSize(uint64_t capacity); static size_t ComputeHeapSize(uint64_t bitmap_bytes); // TODO: heap_end_ is initialized so that the heap bitmap is empty, this doesn't require the -1, // however, we document that this is expected on heap_end_ SpaceBitmap() = default; SpaceBitmap(SpaceBitmap&&) noexcept = default; SpaceBitmap& operator=(SpaceBitmap&&) noexcept = default; bool IsValid() const { return bitmap_begin_ != nullptr; } // Copy a view of the other bitmap without taking ownership of the underlying data. void CopyView(SpaceBitmap& other) { bitmap_begin_ = other.bitmap_begin_; bitmap_size_ = other.bitmap_size_; heap_begin_ = other.heap_begin_; heap_limit_ = other.heap_limit_; name_ = other.name_; } private: // TODO: heap_end_ is initialized so that the heap bitmap is empty, this doesn't require the -1, // however, we document that this is expected on heap_end_ SpaceBitmap(const std::string& name, MemMap&& mem_map, uintptr_t* bitmap_begin, size_t bitmap_size, const void* heap_begin, size_t heap_capacity); // Change the value of the bit corresponding to `obj` in the bitmap // to `kSetBit` and return the previous value of that bit. template bool Modify(const mirror::Object* obj); // Backing storage for bitmap. MemMap mem_map_; // This bitmap itself, word sized for efficiency in scanning. Atomic* bitmap_begin_ = nullptr; // Size of this bitmap. size_t bitmap_size_ = 0u; // The start address of the memory covered by the bitmap, which corresponds to the word // containing the first bit in the bitmap. uintptr_t heap_begin_ = 0u; // The end address of the memory covered by the bitmap. This may not be on a word boundary. uintptr_t heap_limit_ = 0u; // Name of this bitmap. std::string name_; }; using ContinuousSpaceBitmap = SpaceBitmap; // We pick the lowest supported page size to ensure that it's a constexpr, so // that we can keep bitmap accesses optimized. However, this means that when the // large-object alignment is higher than kMinPageSize, then not all bits in the // bitmap are actually in use. // In practice, this happens when running with a kernel that uses 16kB as the // page size, where 1 out of every 4 bits of the bitmap is used. // TODO: In the future, we should consider alternative fixed alignments for // large objects, disassociated from the page size. This would allow us to keep // accesses optimized, while also packing the bitmap efficiently, and reducing // its size enough that it would no longer make sense to allocate it with // mmap(). using LargeObjectBitmap = SpaceBitmap; template std::ostream& operator << (std::ostream& stream, const SpaceBitmap& bitmap); } // namespace accounting } // namespace gc } // namespace art #endif // ART_RUNTIME_GC_ACCOUNTING_SPACE_BITMAP_H_