/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_GC_SPACE_REGION_SPACE_H_ #define ART_RUNTIME_GC_SPACE_REGION_SPACE_H_ #include "base/macros.h" #include "base/mutex.h" #include "space.h" #include "thread.h" #include #include namespace art HIDDEN { namespace gc { namespace accounting { class ReadBarrierTable; } // namespace accounting namespace space { // Cyclic region allocation strategy. If `true`, region allocation // will not try to allocate a new region from the beginning of the // region space, but from the last allocated region. This allocation // strategy reduces region reuse and should help catch some GC bugs // earlier. However, cyclic region allocation can also create memory // fragmentation at the region level (see b/33795328); therefore, we // only enable it in debug mode. static constexpr bool kCyclicRegionAllocation = kIsDebugBuild; // A space that consists of equal-sized regions. class RegionSpace final : public ContinuousMemMapAllocSpace { public: using WalkCallback = void (*)(void *start, void *end, size_t num_bytes, void* callback_arg); enum EvacMode { kEvacModeNewlyAllocated, kEvacModeLivePercentNewlyAllocated, kEvacModeForceAll, }; SpaceType GetType() const override { return kSpaceTypeRegionSpace; } // Create a region space mem map with the requested sizes. The requested base address is not // guaranteed to be granted, if it is required, the caller should call Begin on the returned // space to confirm the request was granted. static MemMap CreateMemMap(const std::string& name, size_t capacity, uint8_t* requested_begin); static RegionSpace* Create(const std::string& name, MemMap&& mem_map, bool use_generational_cc); // Allocate `num_bytes`, returns null if the space is full. mirror::Object* Alloc(Thread* self, size_t num_bytes, /* out */ size_t* bytes_allocated, /* out */ size_t* usable_size, /* out */ size_t* bytes_tl_bulk_allocated) override REQUIRES(!region_lock_); // Thread-unsafe allocation for when mutators are suspended, used by the semispace collector. mirror::Object* AllocThreadUnsafe(Thread* self, size_t num_bytes, /* out */ size_t* bytes_allocated, /* out */ size_t* usable_size, /* out */ size_t* bytes_tl_bulk_allocated) override REQUIRES(Locks::mutator_lock_) REQUIRES(!region_lock_); // The main allocation routine. template ALWAYS_INLINE mirror::Object* AllocNonvirtual(size_t num_bytes, /* out */ size_t* bytes_allocated, /* out */ size_t* usable_size, /* out */ size_t* bytes_tl_bulk_allocated) REQUIRES(!region_lock_); // Allocate/free large objects (objects that are larger than the region size). template mirror::Object* AllocLarge(size_t num_bytes, /* out */ size_t* bytes_allocated, /* out */ size_t* usable_size, /* out */ size_t* bytes_tl_bulk_allocated) REQUIRES(!region_lock_); template void FreeLarge(mirror::Object* large_obj, size_t bytes_allocated) REQUIRES(!region_lock_); // Return the storage space required by obj. size_t AllocationSize(mirror::Object* obj, size_t* usable_size) override REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_) { return AllocationSizeNonvirtual(obj, usable_size); } EXPORT size_t AllocationSizeNonvirtual(mirror::Object* obj, size_t* usable_size) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_); size_t Free(Thread*, mirror::Object*) override { UNIMPLEMENTED(FATAL); return 0; } size_t FreeList(Thread*, size_t, mirror::Object**) override { UNIMPLEMENTED(FATAL); return 0; } accounting::ContinuousSpaceBitmap* GetLiveBitmap() override { return &mark_bitmap_; } accounting::ContinuousSpaceBitmap* GetMarkBitmap() override { return &mark_bitmap_; } EXPORT void Clear() override REQUIRES(!region_lock_); // Remove read and write memory protection from the whole region space, // i.e. make memory pages backing the region area not readable and not // writable. void Protect(); // Remove memory protection from the whole region space, i.e. make memory // pages backing the region area readable and writable. This method is useful // to avoid page protection faults when dumping information about an invalid // reference. EXPORT void Unprotect(); // Change the non growth limit capacity to new capacity by shrinking or expanding the map. // Currently, only shrinking is supported. // Unlike implementations of this function in other spaces, we need to pass // new capacity as argument here as region space doesn't have any notion of // growth limit. void ClampGrowthLimit(size_t new_capacity) REQUIRES(!region_lock_); EXPORT void Dump(std::ostream& os) const override; void DumpRegions(std::ostream& os) REQUIRES(!region_lock_); // Dump region containing object `obj`. Precondition: `obj` is in the region space. void DumpRegionForObject(std::ostream& os, mirror::Object* obj) REQUIRES(!region_lock_); EXPORT void DumpNonFreeRegions(std::ostream& os) REQUIRES(!region_lock_); EXPORT size_t RevokeThreadLocalBuffers(Thread* thread) override REQUIRES(!region_lock_); size_t RevokeThreadLocalBuffers(Thread* thread, const bool reuse) REQUIRES(!region_lock_); EXPORT size_t RevokeAllThreadLocalBuffers() override REQUIRES(!Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_, !region_lock_); void AssertThreadLocalBuffersAreRevoked(Thread* thread) REQUIRES(!region_lock_); void AssertAllThreadLocalBuffersAreRevoked() REQUIRES(!Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_, !region_lock_); enum class RegionType : uint8_t { kRegionTypeAll, // All types. kRegionTypeFromSpace, // From-space. To be evacuated. kRegionTypeUnevacFromSpace, // Unevacuated from-space. Not to be evacuated. kRegionTypeToSpace, // To-space. kRegionTypeNone, // None. }; enum class RegionState : uint8_t { kRegionStateFree, // Free region. kRegionStateAllocated, // Allocated region. kRegionStateLarge, // Large allocated (allocation larger than the region size). kRegionStateLargeTail, // Large tail (non-first regions of a large allocation). }; template uint64_t GetBytesAllocatedInternal() REQUIRES(!region_lock_); template uint64_t GetObjectsAllocatedInternal() REQUIRES(!region_lock_); uint64_t GetBytesAllocated() override REQUIRES(!region_lock_) { return GetBytesAllocatedInternal(); } uint64_t GetObjectsAllocated() override REQUIRES(!region_lock_) { return GetObjectsAllocatedInternal(); } uint64_t GetBytesAllocatedInFromSpace() REQUIRES(!region_lock_) { return GetBytesAllocatedInternal(); } uint64_t GetObjectsAllocatedInFromSpace() REQUIRES(!region_lock_) { return GetObjectsAllocatedInternal(); } uint64_t GetBytesAllocatedInUnevacFromSpace() REQUIRES(!region_lock_) { return GetBytesAllocatedInternal(); } uint64_t GetObjectsAllocatedInUnevacFromSpace() REQUIRES(!region_lock_) { return GetObjectsAllocatedInternal(); } size_t GetMaxPeakNumNonFreeRegions() const { return max_peak_num_non_free_regions_; } size_t GetNumRegions() const { return num_regions_; } size_t GetNumNonFreeRegions() const NO_THREAD_SAFETY_ANALYSIS { return num_non_free_regions_; } bool CanMoveObjects() const override { return true; } bool Contains(const mirror::Object* obj) const override { const uint8_t* byte_obj = reinterpret_cast(obj); return byte_obj >= Begin() && byte_obj < Limit(); } RegionSpace* AsRegionSpace() override { return this; } // Go through all of the blocks and visit the continuous objects. template ALWAYS_INLINE void Walk(Visitor&& visitor) REQUIRES(Locks::mutator_lock_); template ALWAYS_INLINE void WalkToSpace(Visitor&& visitor) REQUIRES(Locks::mutator_lock_); // Scans regions and calls visitor for objects in unevac-space corresponding // to the bits set in 'bitmap'. // Cannot acquire region_lock_ as visitor may need to acquire it for allocation. // Should not be called concurrently with functions (like SetFromSpace()) which // change regions' type. template ALWAYS_INLINE void ScanUnevacFromSpace(accounting::ContinuousSpaceBitmap* bitmap, Visitor&& visitor) NO_THREAD_SAFETY_ANALYSIS; accounting::ContinuousSpaceBitmap::SweepCallback* GetSweepCallback() override { return nullptr; } EXPORT bool LogFragmentationAllocFailure(std::ostream& os, size_t failed_alloc_bytes) override REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_); // Object alignment within the space. static constexpr size_t kAlignment = kObjectAlignment; // The region size. static constexpr size_t kRegionSize = 256 * KB; bool IsInFromSpace(mirror::Object* ref) { if (HasAddress(ref)) { Region* r = RefToRegionUnlocked(ref); return r->IsInFromSpace(); } return false; } bool IsRegionNewlyAllocated(size_t idx) const NO_THREAD_SAFETY_ANALYSIS { DCHECK_LT(idx, num_regions_); return regions_[idx].IsNewlyAllocated(); } bool IsInNewlyAllocatedRegion(mirror::Object* ref) { if (HasAddress(ref)) { Region* r = RefToRegionUnlocked(ref); return r->IsNewlyAllocated(); } return false; } bool IsInUnevacFromSpace(mirror::Object* ref) { if (HasAddress(ref)) { Region* r = RefToRegionUnlocked(ref); return r->IsInUnevacFromSpace(); } return false; } bool IsLargeObject(mirror::Object* ref) { if (HasAddress(ref)) { Region* r = RefToRegionUnlocked(ref); return r->IsLarge(); } return false; } bool IsInToSpace(mirror::Object* ref) { if (HasAddress(ref)) { Region* r = RefToRegionUnlocked(ref); return r->IsInToSpace(); } return false; } // If `ref` is in the region space, return the type of its region; // otherwise, return `RegionType::kRegionTypeNone`. RegionType GetRegionType(mirror::Object* ref) { if (HasAddress(ref)) { return GetRegionTypeUnsafe(ref); } return RegionType::kRegionTypeNone; } // Unsafe version of RegionSpace::GetRegionType. // Precondition: `ref` is in the region space. RegionType GetRegionTypeUnsafe(mirror::Object* ref) { DCHECK(HasAddress(ref)) << ref; Region* r = RefToRegionUnlocked(ref); return r->Type(); } // Zero live bytes for a large object, used by young gen CC for marking newly allocated large // objects. void ZeroLiveBytesForLargeObject(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_); // Determine which regions to evacuate and tag them as // from-space. Tag the rest as unevacuated from-space. void SetFromSpace(accounting::ReadBarrierTable* rb_table, EvacMode evac_mode, bool clear_live_bytes) REQUIRES(!region_lock_); size_t FromSpaceSize() REQUIRES(!region_lock_); size_t UnevacFromSpaceSize() REQUIRES(!region_lock_); size_t ToSpaceSize() REQUIRES(!region_lock_); void ClearFromSpace(/* out */ uint64_t* cleared_bytes, /* out */ uint64_t* cleared_objects, const bool clear_bitmap, const bool release_eagerly) REQUIRES(!region_lock_); void AddLiveBytes(mirror::Object* ref, size_t alloc_size) { Region* reg = RefToRegionUnlocked(ref); reg->AddLiveBytes(alloc_size); } void AssertAllRegionLiveBytesZeroOrCleared() REQUIRES(!region_lock_) { if (kIsDebugBuild) { MutexLock mu(Thread::Current(), region_lock_); for (size_t i = 0; i < num_regions_; ++i) { Region* r = ®ions_[i]; size_t live_bytes = r->LiveBytes(); CHECK(live_bytes == 0U || live_bytes == static_cast(-1)) << live_bytes; } } } void SetAllRegionLiveBytesZero() REQUIRES(!region_lock_) { MutexLock mu(Thread::Current(), region_lock_); const size_t iter_limit = kUseTableLookupReadBarrier ? num_regions_ : std::min(num_regions_, non_free_region_index_limit_); for (size_t i = 0; i < iter_limit; ++i) { Region* r = ®ions_[i]; // Newly allocated regions don't need up-to-date live_bytes_ for deciding // whether to be evacuated or not. See Region::ShouldBeEvacuated(). if (!r->IsFree() && !r->IsNewlyAllocated()) { r->ZeroLiveBytes(); } } } size_t RegionIdxForRefUnchecked(mirror::Object* ref) const NO_THREAD_SAFETY_ANALYSIS { DCHECK(HasAddress(ref)); uintptr_t offset = reinterpret_cast(ref) - reinterpret_cast(Begin()); size_t reg_idx = offset / kRegionSize; DCHECK_LT(reg_idx, num_regions_); Region* reg = ®ions_[reg_idx]; DCHECK_EQ(reg->Idx(), reg_idx); DCHECK(reg->Contains(ref)); return reg_idx; } // Return -1 as region index for references outside this region space. size_t RegionIdxForRef(mirror::Object* ref) const NO_THREAD_SAFETY_ANALYSIS { if (HasAddress(ref)) { return RegionIdxForRefUnchecked(ref); } else { return static_cast(-1); } } // Increment object allocation count for region containing ref. void RecordAlloc(mirror::Object* ref) REQUIRES(!region_lock_); bool AllocNewTlab(Thread* self, const size_t tlab_size, size_t* bytes_tl_bulk_allocated) REQUIRES(!region_lock_); uint32_t Time() { return time_; } size_t EvacBytes() const NO_THREAD_SAFETY_ANALYSIS { return num_evac_regions_ * kRegionSize; } uint64_t GetMadviseTime() const { return madvise_time_; } void ReleaseFreeRegions(); private: RegionSpace(const std::string& name, MemMap&& mem_map, bool use_generational_cc); class Region { public: Region() : idx_(static_cast(-1)), live_bytes_(static_cast(-1)), begin_(nullptr), thread_(nullptr), top_(nullptr), end_(nullptr), objects_allocated_(0), alloc_time_(0), is_newly_allocated_(false), is_a_tlab_(false), state_(RegionState::kRegionStateAllocated), type_(RegionType::kRegionTypeToSpace) {} void Init(size_t idx, uint8_t* begin, uint8_t* end) { idx_ = idx; begin_ = begin; top_.store(begin, std::memory_order_relaxed); end_ = end; state_ = RegionState::kRegionStateFree; type_ = RegionType::kRegionTypeNone; objects_allocated_.store(0, std::memory_order_relaxed); alloc_time_ = 0; live_bytes_ = static_cast(-1); is_newly_allocated_ = false; is_a_tlab_ = false; thread_ = nullptr; DCHECK_LT(begin, end); DCHECK_EQ(static_cast(end - begin), kRegionSize); } RegionState State() const { return state_; } RegionType Type() const { return type_; } void Clear(bool zero_and_release_pages); ALWAYS_INLINE mirror::Object* Alloc(size_t num_bytes, /* out */ size_t* bytes_allocated, /* out */ size_t* usable_size, /* out */ size_t* bytes_tl_bulk_allocated); bool IsFree() const { bool is_free = (state_ == RegionState::kRegionStateFree); if (is_free) { DCHECK(IsInNoSpace()); DCHECK_EQ(begin_, Top()); DCHECK_EQ(objects_allocated_.load(std::memory_order_relaxed), 0U); } return is_free; } // Given a free region, declare it non-free (allocated). void Unfree(RegionSpace* region_space, uint32_t alloc_time) REQUIRES(region_space->region_lock_); // Given a free region, declare it non-free (allocated) and large. EXPORT void UnfreeLarge(RegionSpace* region_space, uint32_t alloc_time) REQUIRES(region_space->region_lock_); // Given a free region, declare it non-free (allocated) and large tail. EXPORT void UnfreeLargeTail(RegionSpace* region_space, uint32_t alloc_time) REQUIRES(region_space->region_lock_); void MarkAsAllocated(RegionSpace* region_space, uint32_t alloc_time) REQUIRES(region_space->region_lock_); void SetNewlyAllocated() { is_newly_allocated_ = true; } // Non-large, non-large-tail allocated. bool IsAllocated() const { return state_ == RegionState::kRegionStateAllocated; } // Large allocated. bool IsLarge() const { bool is_large = (state_ == RegionState::kRegionStateLarge); if (is_large) { DCHECK_LT(begin_ + kRegionSize, Top()); } return is_large; } void ZeroLiveBytes() { live_bytes_ = 0; } // Large-tail allocated. bool IsLargeTail() const { bool is_large_tail = (state_ == RegionState::kRegionStateLargeTail); if (is_large_tail) { DCHECK_EQ(begin_, Top()); } return is_large_tail; } size_t Idx() const { return idx_; } bool IsNewlyAllocated() const { return is_newly_allocated_; } bool IsTlab() const { return is_a_tlab_; } bool IsInFromSpace() const { return type_ == RegionType::kRegionTypeFromSpace; } bool IsInToSpace() const { return type_ == RegionType::kRegionTypeToSpace; } bool IsInUnevacFromSpace() const { return type_ == RegionType::kRegionTypeUnevacFromSpace; } bool IsInNoSpace() const { return type_ == RegionType::kRegionTypeNone; } // Set this region as evacuated from-space. At the end of the // collection, RegionSpace::ClearFromSpace will clear and reclaim // the space used by this region, and tag it as unallocated/free. void SetAsFromSpace() { DCHECK(!IsFree() && IsInToSpace()); type_ = RegionType::kRegionTypeFromSpace; if (IsNewlyAllocated()) { // Clear the "newly allocated" status here, as we do not want the // GC to see it when encountering references in the from-space. // // Invariant: There should be no newly-allocated region in the // from-space (when the from-space exists, which is between the calls // to RegionSpace::SetFromSpace and RegionSpace::ClearFromSpace). is_newly_allocated_ = false; } // Set live bytes to an invalid value, as we have made an // evacuation decision (possibly based on the percentage of live // bytes). live_bytes_ = static_cast(-1); } // Set this region as unevacuated from-space. At the end of the // collection, RegionSpace::ClearFromSpace will preserve the space // used by this region, and tag it as to-space (see // Region::SetUnevacFromSpaceAsToSpace below). void SetAsUnevacFromSpace(bool clear_live_bytes); // Set this region as to-space. Used by RegionSpace::ClearFromSpace. // This is only valid if it is currently an unevac from-space region. void SetUnevacFromSpaceAsToSpace() { DCHECK(!IsFree() && IsInUnevacFromSpace()); type_ = RegionType::kRegionTypeToSpace; } // Return whether this region should be evacuated. Used by RegionSpace::SetFromSpace. ALWAYS_INLINE bool ShouldBeEvacuated(EvacMode evac_mode); void AddLiveBytes(size_t live_bytes) { DCHECK(GetUseGenerationalCC() || IsInUnevacFromSpace()); DCHECK(!IsLargeTail()); DCHECK_NE(live_bytes_, static_cast(-1)); // For large allocations, we always consider all bytes in the regions live. live_bytes_ += IsLarge() ? Top() - begin_ : live_bytes; DCHECK_LE(live_bytes_, BytesAllocated()); } bool AllAllocatedBytesAreLive() const { return LiveBytes() == static_cast(Top() - Begin()); } size_t LiveBytes() const { return live_bytes_; } // Returns the number of allocated bytes. "Bulk allocated" bytes in active TLABs are excluded. size_t BytesAllocated() const; size_t ObjectsAllocated() const; uint8_t* Begin() const { return begin_; } ALWAYS_INLINE uint8_t* Top() const { return top_.load(std::memory_order_relaxed); } void SetTop(uint8_t* new_top) { top_.store(new_top, std::memory_order_relaxed); } uint8_t* End() const { return end_; } bool Contains(mirror::Object* ref) const { return begin_ <= reinterpret_cast(ref) && reinterpret_cast(ref) < end_; } void Dump(std::ostream& os) const; void RecordThreadLocalAllocations(size_t num_objects, size_t num_bytes) { DCHECK(IsAllocated()); DCHECK_EQ(Top(), end_); objects_allocated_.fetch_add(num_objects, std::memory_order_relaxed); top_.store(begin_ + num_bytes, std::memory_order_relaxed); DCHECK_LE(Top(), end_); } uint64_t GetLongestConsecutiveFreeBytes() const; private: static bool GetUseGenerationalCC(); size_t idx_; // The region's index in the region space. // Number of bytes in live objects, or -1 for newly allocated regions. Used to compute // percent live for region evacuation decisions, and to determine whether an unevacuated // region is completely empty, and thus can be reclaimed. Reset to zero either at the // beginning of MarkingPhase(), or during the flip for a nongenerational GC, where we // don't have a separate mark phase. It is then incremented whenever a mark bit in that // region is set. size_t live_bytes_; // The live bytes. Used to compute the live percent. uint8_t* begin_; // The begin address of the region. Thread* thread_; // The owning thread if it's a tlab. // Note that `top_` can be higher than `end_` in the case of a // large region, where an allocated object spans multiple regions // (large region + one or more large tail regions). Atomic top_; // The current position of the allocation. uint8_t* end_; // The end address of the region. // objects_allocated_ is accessed using memory_order_relaxed. Treat as approximate when there // are concurrent updates. Atomic objects_allocated_; // The number of objects allocated. uint32_t alloc_time_; // The allocation time of the region. // Note that newly allocated and evacuated regions use -1 as // special value for `live_bytes_`. bool is_newly_allocated_; // True if it's allocated after the last collection. bool is_a_tlab_; // True if it's a tlab. RegionState state_; // The region state (see RegionState). RegionType type_; // The region type (see RegionType). friend class RegionSpace; }; template ALWAYS_INLINE void WalkInternal(Visitor&& visitor) NO_THREAD_SAFETY_ANALYSIS; // Visitor will be iterating on objects in increasing address order. template ALWAYS_INLINE void WalkNonLargeRegion(Visitor&& visitor, const Region* r) NO_THREAD_SAFETY_ANALYSIS; Region* RefToRegion(mirror::Object* ref) REQUIRES(!region_lock_) { MutexLock mu(Thread::Current(), region_lock_); return RefToRegionLocked(ref); } void TraceHeapSize() REQUIRES(region_lock_); Region* RefToRegionUnlocked(mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS { // For a performance reason (this is frequently called via // RegionSpace::IsInFromSpace, etc.) we avoid taking a lock here. // Note that since we only change a region from to-space to (evac) // from-space during a pause (in RegionSpace::SetFromSpace) and // from (evac) from-space to free (after GC is done), as long as // `ref` is a valid reference into an allocated region, it's safe // to access the region state without the lock. return RefToRegionLocked(ref); } Region* RefToRegionLocked(mirror::Object* ref) REQUIRES(region_lock_) { DCHECK(HasAddress(ref)); uintptr_t offset = reinterpret_cast(ref) - reinterpret_cast(Begin()); size_t reg_idx = offset / kRegionSize; DCHECK_LT(reg_idx, num_regions_); Region* reg = ®ions_[reg_idx]; DCHECK_EQ(reg->Idx(), reg_idx); DCHECK(reg->Contains(ref)); return reg; } // Return the object location following `obj` in the region space // (i.e., the object location at `obj + obj->SizeOf()`). // // Note that unless // - the region containing `obj` is fully used; and // - `obj` is not the last object of that region; // the returned location is not guaranteed to be a valid object. static mirror::Object* GetNextObject(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_); void AdjustNonFreeRegionLimit(size_t new_non_free_region_index) REQUIRES(region_lock_) { DCHECK_LT(new_non_free_region_index, num_regions_); non_free_region_index_limit_ = std::max(non_free_region_index_limit_, new_non_free_region_index + 1); VerifyNonFreeRegionLimit(); } void SetNonFreeRegionLimit(size_t new_non_free_region_index_limit) REQUIRES(region_lock_) { DCHECK_LE(new_non_free_region_index_limit, num_regions_); non_free_region_index_limit_ = new_non_free_region_index_limit; VerifyNonFreeRegionLimit(); } // Implementation of this invariant: // for all `i >= non_free_region_index_limit_`, `regions_[i].IsFree()` is true. void VerifyNonFreeRegionLimit() REQUIRES(region_lock_) { if (kIsDebugBuild && non_free_region_index_limit_ < num_regions_) { for (size_t i = non_free_region_index_limit_; i < num_regions_; ++i) { CHECK(regions_[i].IsFree()); } } } EXPORT Region* AllocateRegion(bool for_evac) REQUIRES(region_lock_); void RevokeThreadLocalBuffersLocked(Thread* thread, bool reuse) REQUIRES(region_lock_); // Scan region range [`begin`, `end`) in increasing order to try to // allocate a large region having a size of `num_regs_in_large_region` // regions. If there is no space in the region space to allocate this // large region, return null. // // If argument `next_region` is not null, use `*next_region` to // return the index to the region next to the allocated large region // returned by this method. template mirror::Object* AllocLargeInRange(size_t begin, size_t end, size_t num_regs_in_large_region, /* out */ size_t* bytes_allocated, /* out */ size_t* usable_size, /* out */ size_t* bytes_tl_bulk_allocated, /* out */ size_t* next_region = nullptr) REQUIRES(region_lock_); // Check that the value of `r->LiveBytes()` matches the number of // (allocated) bytes used by live objects according to the live bits // in the region space bitmap range corresponding to region `r`. void CheckLiveBytesAgainstRegionBitmap(Region* r); // Poison memory areas used by dead objects within unevacuated // region `r`. This is meant to detect dangling references to dead // objects earlier in debug mode. void PoisonDeadObjectsInUnevacuatedRegion(Region* r); Mutex region_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; // Cached version of Heap::use_generational_cc_. const bool use_generational_cc_; uint32_t time_; // The time as the number of collections since the startup. size_t num_regions_; // The number of regions in this space. uint64_t madvise_time_; // The amount of time spent in madvise for purging pages. // The number of non-free regions in this space. size_t num_non_free_regions_ GUARDED_BY(region_lock_); // The number of evac regions allocated during collection. 0 when GC not running. size_t num_evac_regions_ GUARDED_BY(region_lock_); // Maintain the maximum of number of non-free regions collected just before // reclaim in each GC cycle. At this moment in cycle, highest number of // regions are in non-free. size_t max_peak_num_non_free_regions_; // The pointer to the region array. std::unique_ptr regions_ GUARDED_BY(region_lock_); // To hold partially used TLABs which can be reassigned to threads later for // utilizing the un-used portion. std::multimap> partial_tlabs_ GUARDED_BY(region_lock_); // The upper-bound index of the non-free regions. Used to avoid scanning all regions in // RegionSpace::SetFromSpace and RegionSpace::ClearFromSpace. // // Invariant (verified by RegionSpace::VerifyNonFreeRegionLimit): // for all `i >= non_free_region_index_limit_`, `regions_[i].IsFree()` is true. size_t non_free_region_index_limit_ GUARDED_BY(region_lock_); Region* current_region_; // The region currently used for allocation. Region* evac_region_; // The region currently used for evacuation. Region full_region_; // The fake/sentinel region that looks full. // Index into the region array pointing to the starting region when // trying to allocate a new region. Only used when // `kCyclicRegionAllocation` is true. size_t cyclic_alloc_region_index_ GUARDED_BY(region_lock_); // Mark bitmap used by the GC. accounting::ContinuousSpaceBitmap mark_bitmap_; DISALLOW_COPY_AND_ASSIGN(RegionSpace); }; std::ostream& operator<<(std::ostream& os, RegionSpace::RegionState value); std::ostream& operator<<(std::ostream& os, RegionSpace::RegionType value); } // namespace space } // namespace gc } // namespace art #endif // ART_RUNTIME_GC_SPACE_REGION_SPACE_H_