/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "indirect_reference_table-inl.h" #include "base/bit_utils.h" #include "base/globals.h" #include "base/mutator_locked_dumpable.h" #include "base/systrace.h" #include "base/utils.h" #include "indirect_reference_table.h" #include "jni/java_vm_ext.h" #include "jni/jni_internal.h" #include "mirror/object-inl.h" #include "nth_caller_visitor.h" #include "object_callbacks.h" #include "reference_table.h" #include "runtime-inl.h" #include "scoped_thread_state_change-inl.h" #include "thread.h" #include namespace art HIDDEN { static constexpr bool kDebugIRT = false; // Maximum table size we allow. static constexpr size_t kMaxTableSizeInBytes = 128 * MB; const char* GetIndirectRefKindString(IndirectRefKind kind) { switch (kind) { case kJniTransition: return "JniTransition"; case kLocal: return "Local"; case kGlobal: return "Global"; case kWeakGlobal: return "WeakGlobal"; } return "IndirectRefKind Error"; } void IndirectReferenceTable::AbortIfNoCheckJNI(const std::string& msg) { // If -Xcheck:jni is on, it'll give a more detailed error before aborting. JavaVMExt* vm = Runtime::Current()->GetJavaVM(); if (!vm->IsCheckJniEnabled()) { // Otherwise, we want to abort rather than hand back a bad reference. LOG(FATAL) << msg; } else { LOG(ERROR) << msg; } } // Mmap an "indirect ref table region. Table_bytes is a multiple of a page size. static inline MemMap NewIRTMap(size_t table_bytes, std::string* error_msg) { MemMap result = MemMap::MapAnonymous("indirect ref table", table_bytes, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, error_msg); if (!result.IsValid() && error_msg->empty()) { *error_msg = "Unable to map memory for indirect ref table"; } return result; } IndirectReferenceTable::IndirectReferenceTable(IndirectRefKind kind) : table_mem_map_(), table_(nullptr), kind_(kind), top_index_(0u), max_entries_(0u), current_num_holes_(0) { CHECK_NE(kind, kJniTransition); CHECK_NE(kind, kLocal); } bool IndirectReferenceTable::Initialize(size_t max_count, std::string* error_msg) { CHECK(error_msg != nullptr); // Overflow and maximum check. CHECK_LE(max_count, kMaxTableSizeInBytes / sizeof(IrtEntry)); const size_t table_bytes = RoundUp(max_count * sizeof(IrtEntry), gPageSize); table_mem_map_ = NewIRTMap(table_bytes, error_msg); if (!table_mem_map_.IsValid()) { DCHECK(!error_msg->empty()); return false; } table_ = reinterpret_cast(table_mem_map_.Begin()); // Take into account the actual length. max_entries_ = table_bytes / sizeof(IrtEntry); return true; } IndirectReferenceTable::~IndirectReferenceTable() { } void IndirectReferenceTable::ConstexprChecks() { // Use this for some assertions. They can't be put into the header as C++ wants the class // to be complete. // Check kind. static_assert((EncodeIndirectRefKind(kLocal) & (~kKindMask)) == 0, "Kind encoding error"); static_assert((EncodeIndirectRefKind(kGlobal) & (~kKindMask)) == 0, "Kind encoding error"); static_assert((EncodeIndirectRefKind(kWeakGlobal) & (~kKindMask)) == 0, "Kind encoding error"); static_assert(DecodeIndirectRefKind(EncodeIndirectRefKind(kLocal)) == kLocal, "Kind encoding error"); static_assert(DecodeIndirectRefKind(EncodeIndirectRefKind(kGlobal)) == kGlobal, "Kind encoding error"); static_assert(DecodeIndirectRefKind(EncodeIndirectRefKind(kWeakGlobal)) == kWeakGlobal, "Kind encoding error"); // Check serial. static_assert(DecodeSerial(EncodeSerial(0u)) == 0u, "Serial encoding error"); static_assert(DecodeSerial(EncodeSerial(1u)) == 1u, "Serial encoding error"); static_assert(DecodeSerial(EncodeSerial(2u)) == 2u, "Serial encoding error"); static_assert(DecodeSerial(EncodeSerial(3u)) == 3u, "Serial encoding error"); // Table index. static_assert(DecodeIndex(EncodeIndex(0u)) == 0u, "Index encoding error"); static_assert(DecodeIndex(EncodeIndex(1u)) == 1u, "Index encoding error"); static_assert(DecodeIndex(EncodeIndex(2u)) == 2u, "Index encoding error"); static_assert(DecodeIndex(EncodeIndex(3u)) == 3u, "Index encoding error"); // Distinguishing between local and (weak) global references. static_assert((GetGlobalOrWeakGlobalMask() & EncodeIndirectRefKind(kJniTransition)) == 0u); static_assert((GetGlobalOrWeakGlobalMask() & EncodeIndirectRefKind(kLocal)) == 0u); static_assert((GetGlobalOrWeakGlobalMask() & EncodeIndirectRefKind(kGlobal)) != 0u); static_assert((GetGlobalOrWeakGlobalMask() & EncodeIndirectRefKind(kWeakGlobal)) != 0u); } // Holes: // // To keep the IRT compact, we want to fill "holes" created by non-stack-discipline Add & Remove // operation sequences. For simplicity and lower memory overhead, we do not use a free list or // similar. Instead, we scan for holes, with the expectation that we will find holes fast as they // are usually near the end of the table (see the header, TODO: verify this assumption). To avoid // scans when there are no holes, the number of known holes should be tracked. static size_t CountNullEntries(const IrtEntry* table, size_t to) { size_t count = 0; for (size_t index = 0u; index != to; ++index) { if (table[index].GetReference()->IsNull()) { count++; } } return count; } ALWAYS_INLINE static inline void CheckHoleCount(IrtEntry* table, size_t exp_num_holes, size_t top_index) { if (kIsDebugBuild) { size_t count = CountNullEntries(table, top_index); CHECK_EQ(exp_num_holes, count) << " topIndex=" << top_index; } } IndirectRef IndirectReferenceTable::Add(ObjPtr obj, std::string* error_msg) { if (kDebugIRT) { LOG(INFO) << "+++ Add: top_index=" << top_index_ << " holes=" << current_num_holes_; } CHECK(obj != nullptr); VerifyObject(obj); DCHECK(table_ != nullptr); if (top_index_ == max_entries_) { // TODO: Fill holes before reporting error. std::ostringstream oss; oss << "JNI ERROR (app bug): " << kind_ << " table overflow " << "(max=" << max_entries_ << ")" << MutatorLockedDumpable(*this); *error_msg = oss.str(); return nullptr; } CheckHoleCount(table_, current_num_holes_, top_index_); // We know there's enough room in the table. Now we just need to find // the right spot. If there's a hole, find it and fill it; otherwise, // add to the end of the list. IndirectRef result; size_t index; if (current_num_holes_ > 0) { DCHECK_GT(top_index_, 1U); // Find the first hole; likely to be near the end of the list. IrtEntry* p_scan = &table_[top_index_ - 1]; DCHECK(!p_scan->GetReference()->IsNull()); --p_scan; while (!p_scan->GetReference()->IsNull()) { DCHECK_GT(p_scan, table_); --p_scan; } index = p_scan - table_; current_num_holes_--; } else { // Add to the end. index = top_index_; ++top_index_; } table_[index].Add(obj); result = ToIndirectRef(index); if (kDebugIRT) { LOG(INFO) << "+++ added at " << ExtractIndex(result) << " top=" << top_index_ << " holes=" << current_num_holes_; } DCHECK(result != nullptr); return result; } // Removes an object. We extract the table offset bits from "iref" // and zap the corresponding entry, leaving a hole if it's not at the top. // Returns "false" if nothing was removed. bool IndirectReferenceTable::Remove(IndirectRef iref) { if (kDebugIRT) { LOG(INFO) << "+++ Remove: top_index=" << top_index_ << " holes=" << current_num_holes_; } // TODO: We should eagerly check the ref kind against the `kind_` instead of postponing until // `CheckEntry()` below. Passing the wrong kind shall currently result in misleading warnings. const uint32_t top_index = top_index_; DCHECK(table_ != nullptr); const uint32_t idx = ExtractIndex(iref); if (idx >= top_index) { // Bad --- stale reference? LOG(WARNING) << "Attempt to remove invalid index " << idx << " (top=" << top_index << ")"; return false; } CheckHoleCount(table_, current_num_holes_, top_index_); if (idx == top_index - 1) { // Top-most entry. Scan up and consume holes. if (!CheckEntry("remove", iref, idx)) { return false; } *table_[idx].GetReference() = GcRoot(nullptr); if (current_num_holes_ != 0) { uint32_t collapse_top_index = top_index; while (--collapse_top_index > 0u && current_num_holes_ != 0) { if (kDebugIRT) { ScopedObjectAccess soa(Thread::Current()); LOG(INFO) << "+++ checking for hole at " << collapse_top_index - 1 << " val=" << table_[collapse_top_index - 1].GetReference()->Read(); } if (!table_[collapse_top_index - 1].GetReference()->IsNull()) { break; } if (kDebugIRT) { LOG(INFO) << "+++ ate hole at " << (collapse_top_index - 1); } current_num_holes_--; } top_index_ = collapse_top_index; CheckHoleCount(table_, current_num_holes_, top_index_); } else { top_index_ = top_index - 1; if (kDebugIRT) { LOG(INFO) << "+++ ate last entry " << top_index - 1; } } } else { // Not the top-most entry. This creates a hole. We null out the entry to prevent somebody // from deleting it twice and screwing up the hole count. if (table_[idx].GetReference()->IsNull()) { LOG(INFO) << "--- WEIRD: removing null entry " << idx; return false; } if (!CheckEntry("remove", iref, idx)) { return false; } *table_[idx].GetReference() = GcRoot(nullptr); current_num_holes_++; CheckHoleCount(table_, current_num_holes_, top_index_); if (kDebugIRT) { LOG(INFO) << "+++ left hole at " << idx << ", holes=" << current_num_holes_; } } return true; } void IndirectReferenceTable::Trim() { ScopedTrace trace(__PRETTY_FUNCTION__); DCHECK(table_mem_map_.IsValid()); const size_t top_index = Capacity(); uint8_t* release_start = AlignUp(reinterpret_cast(&table_[top_index]), gPageSize); uint8_t* release_end = static_cast(table_mem_map_.BaseEnd()); DCHECK_GE(reinterpret_cast(release_end), reinterpret_cast(release_start)); DCHECK_ALIGNED_PARAM(release_end, gPageSize); DCHECK_ALIGNED_PARAM(release_end - release_start, gPageSize); if (release_start != release_end) { madvise(release_start, release_end - release_start, MADV_DONTNEED); } } void IndirectReferenceTable::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) { BufferedRootVisitor root_visitor(visitor, root_info); for (size_t i = 0, capacity = Capacity(); i != capacity; ++i) { GcRoot* ref = table_[i].GetReference(); if (!ref->IsNull()) { root_visitor.VisitRoot(*ref); DCHECK(!ref->IsNull()); } } } void IndirectReferenceTable::SweepJniWeakGlobals(IsMarkedVisitor* visitor) { CHECK_EQ(kind_, kWeakGlobal); MutexLock mu(Thread::Current(), *Locks::jni_weak_globals_lock_); Runtime* const runtime = Runtime::Current(); for (size_t i = 0, capacity = Capacity(); i != capacity; ++i) { GcRoot* entry = table_[i].GetReference(); // Need to skip null here to distinguish between null entries and cleared weak ref entries. if (!entry->IsNull()) { mirror::Object* obj = entry->Read(); mirror::Object* new_obj = visitor->IsMarked(obj); if (new_obj == nullptr) { new_obj = runtime->GetClearedJniWeakGlobal(); } *entry = GcRoot(new_obj); } } } void IndirectReferenceTable::Dump(std::ostream& os) const { os << kind_ << " table dump:\n"; ReferenceTable::Table entries; for (size_t i = 0; i < Capacity(); ++i) { ObjPtr obj = table_[i].GetReference()->Read(); if (obj != nullptr) { obj = table_[i].GetReference()->Read(); entries.push_back(GcRoot(obj)); } } ReferenceTable::Dump(os, entries); } size_t IndirectReferenceTable::FreeCapacity() const { return max_entries_ - top_index_; } } // namespace art