/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_ #define ART_RUNTIME_MIRROR_ARRAY_INL_H_ #include "array.h" #include #include "base/bit_utils.h" #include "base/casts.h" #include "class.h" #include "class_linker.h" #include "obj_ptr-inl.h" #include "runtime.h" #include "thread-current-inl.h" namespace art HIDDEN { namespace mirror { inline uint32_t Array::ClassSize(PointerSize pointer_size) { uint32_t vtable_entries = Object::kVTableLength; return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size); } template inline size_t Array::SizeOf() { // When we are certain that this is a object array, then don't fetch shift // from component_type_ as that doesn't work well with userfaultfd GC as the // component-type class may be allocated at a higher address than the array. size_t component_size_shift = kIsObjArray ? Primitive::ComponentSizeShift(Primitive::kPrimNot) : GetClass() ->template GetComponentSizeShift(); // Don't need to check this since we already check this in GetClass. int32_t component_count = GetLength(kVerifyFlags & ~kVerifyThis)>(); // This is safe from overflow because the array was already allocated. size_t header_size = DataOffset(1U << component_size_shift).SizeValue(); size_t data_size = component_count << component_size_shift; return header_size + data_size; } template inline bool Array::CheckIsValidIndex(int32_t index) { if (UNLIKELY(static_cast(index) >= static_cast(GetLength()))) { ThrowArrayIndexOutOfBoundsException(index); return false; } return true; } template inline T PrimitiveArray::Get(int32_t i) { if (!CheckIsValidIndex(i)) { DCHECK(Thread::Current()->IsExceptionPending()); return T(0); } return GetWithoutChecks(i); } template inline void PrimitiveArray::Set(int32_t i, T value) { if (Runtime::Current()->IsActiveTransaction()) { Set(i, value); } else { Set(i, value); } } template template inline void PrimitiveArray::Set(int32_t i, T value) { if (CheckIsValidIndex(i)) { SetWithoutChecks(i, value); } else { DCHECK(Thread::Current()->IsExceptionPending()); } } template template inline void PrimitiveArray::SetWithoutChecks(int32_t i, T value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->GetClassLinker()->RecordWriteArray(this, i, GetWithoutChecks(i)); } DCHECK(CheckIsValidIndex(i)) << i << " " << GetLength(); GetData()[i] = value; } // Backward copy where elements are of aligned appropriately for T. Count is in T sized units. // Copies are guaranteed not to tear when the sizeof T is less-than 64bit. template static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) { d += count; s += count; for (int32_t i = 0; i < count; ++i) { d--; s--; *d = *s; } } // Forward copy where elements are of aligned appropriately for T. Count is in T sized units. // Copies are guaranteed not to tear when the sizeof T is less-than 64bit. template static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) { for (int32_t i = 0; i < count; ++i) { *d = *s; d++; s++; } } template inline void PrimitiveArray::Memmove(int32_t dst_pos, ObjPtr> src, int32_t src_pos, int32_t count) { if (UNLIKELY(count == 0)) { return; } DCHECK_GE(dst_pos, 0); DCHECK_GE(src_pos, 0); DCHECK_GT(count, 0); DCHECK(src != nullptr); DCHECK_LT(dst_pos, GetLength()); DCHECK_LE(dst_pos, GetLength() - count); DCHECK_LT(src_pos, src->GetLength()); DCHECK_LE(src_pos, src->GetLength() - count); // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3) // in our implementation, because they may copy byte-by-byte. if (LIKELY(src != this)) { // Memcpy ok for guaranteed non-overlapping distinct arrays. Memcpy(dst_pos, src, src_pos, count); } else { // Handle copies within the same array using the appropriate direction copy. void* dst_raw = GetRawData(sizeof(T), dst_pos); const void* src_raw = src->GetRawData(sizeof(T), src_pos); if (sizeof(T) == sizeof(uint8_t)) { uint8_t* d = reinterpret_cast(dst_raw); const uint8_t* s = reinterpret_cast(src_raw); memmove(d, s, count); } else { const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count); if (sizeof(T) == sizeof(uint16_t)) { uint16_t* d = reinterpret_cast(dst_raw); const uint16_t* s = reinterpret_cast(src_raw); if (copy_forward) { ArrayForwardCopy(d, s, count); } else { ArrayBackwardCopy(d, s, count); } } else if (sizeof(T) == sizeof(uint32_t)) { uint32_t* d = reinterpret_cast(dst_raw); const uint32_t* s = reinterpret_cast(src_raw); if (copy_forward) { ArrayForwardCopy(d, s, count); } else { ArrayBackwardCopy(d, s, count); } } else { DCHECK_EQ(sizeof(T), sizeof(uint64_t)); uint64_t* d = reinterpret_cast(dst_raw); const uint64_t* s = reinterpret_cast(src_raw); if (copy_forward) { ArrayForwardCopy(d, s, count); } else { ArrayBackwardCopy(d, s, count); } } } } } template inline void PrimitiveArray::Memcpy(int32_t dst_pos, ObjPtr> src, int32_t src_pos, int32_t count) { if (UNLIKELY(count == 0)) { return; } DCHECK_GE(dst_pos, 0); DCHECK_GE(src_pos, 0); DCHECK_GT(count, 0); DCHECK(src != nullptr); DCHECK_LT(dst_pos, GetLength()); DCHECK_LE(dst_pos, GetLength() - count); DCHECK_LT(src_pos, src->GetLength()); DCHECK_LE(src_pos, src->GetLength() - count); // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3) // in our implementation, because they may copy byte-by-byte. void* dst_raw = GetRawData(sizeof(T), dst_pos); const void* src_raw = src->GetRawData(sizeof(T), src_pos); if (sizeof(T) == sizeof(uint8_t)) { memcpy(dst_raw, src_raw, count); } else if (sizeof(T) == sizeof(uint16_t)) { uint16_t* d = reinterpret_cast(dst_raw); const uint16_t* s = reinterpret_cast(src_raw); ArrayForwardCopy(d, s, count); } else if (sizeof(T) == sizeof(uint32_t)) { uint32_t* d = reinterpret_cast(dst_raw); const uint32_t* s = reinterpret_cast(src_raw); ArrayForwardCopy(d, s, count); } else { DCHECK_EQ(sizeof(T), sizeof(uint64_t)); uint64_t* d = reinterpret_cast(dst_raw); const uint64_t* s = reinterpret_cast(src_raw); ArrayForwardCopy(d, s, count); } } template inline T PointerArray::GetElementPtrSize(uint32_t idx) { if (kPointerSize == PointerSize::k64) { DCHECK(IsLongArray()); } else { DCHECK(IsIntArray()); } return GetElementPtrSizeUnchecked(idx); } template inline T PointerArray::GetElementPtrSizeUnchecked(uint32_t idx) { // C style casts here since we sometimes have T be a pointer, or sometimes an integer // (for stack traces). using ConversionType = typename std::conditional_t, uintptr_t, T>; // Note: we cast the array directly when unchecked as this code gets called by // runtime_image, which can pass a 64bit pointer and therefore cannot be held // by an ObjPtr. if (kPointerSize == PointerSize::k64) { uint64_t value = static_cast(reinterpret_cast(this)->GetWithoutChecks(idx)); return (T) dchecked_integral_cast(value); } else { uint32_t value = static_cast(reinterpret_cast(this)->GetWithoutChecks(idx)); return (T) dchecked_integral_cast(value); } } template inline T PointerArray::GetElementPtrSize(uint32_t idx, PointerSize ptr_size) { if (ptr_size == PointerSize::k64) { return GetElementPtrSize(idx); } return GetElementPtrSize(idx); } template inline void PointerArray::SetElementPtrSize(uint32_t idx, uint64_t element, PointerSize ptr_size) { // Note: we cast the array directly when unchecked as this code gets called by // runtime_image, which can pass a 64bit pointer and therefore cannot be held // by an ObjPtr. if (ptr_size == PointerSize::k64) { (kUnchecked ? reinterpret_cast(this) : AsLongArray().Ptr())-> SetWithoutChecks(idx, element); } else { uint32_t element32 = dchecked_integral_cast(element); (kUnchecked ? reinterpret_cast(this) : AsIntArray().Ptr()) ->SetWithoutChecks(idx, element32); } } template inline void PointerArray::SetElementPtrSize(uint32_t idx, T* element, PointerSize ptr_size) { SetElementPtrSize( idx, reinterpret_cast(element), ptr_size); } template inline void PointerArray::Fixup(mirror::PointerArray* dest, PointerSize pointer_size, const Visitor& visitor) { for (size_t i = 0, count = GetLength(); i < count; ++i) { void* ptr = GetElementPtrSize(i, pointer_size); void* new_ptr = visitor(ptr); if (ptr != new_ptr) { dest->SetElementPtrSize(i, new_ptr, pointer_size); } } } template void PointerArray::Memcpy(int32_t dst_pos, ObjPtr src, int32_t src_pos, int32_t count, PointerSize ptr_size) { DCHECK(!Runtime::Current()->IsActiveTransaction()); DCHECK(!src.IsNull()); if (ptr_size == PointerSize::k64) { ObjPtr l_this = (kUnchecked ? ObjPtr::DownCast(ObjPtr(this)) : AsLongArray()); ObjPtr l_src = (kUnchecked ? ObjPtr::DownCast(ObjPtr(src)) : src->AsLongArray()); l_this->Memcpy(dst_pos, l_src, src_pos, count); } else { ObjPtr i_this = (kUnchecked ? ObjPtr::DownCast(ObjPtr(this)) : AsIntArray()); ObjPtr i_src = (kUnchecked ? ObjPtr::DownCast(ObjPtr(src.Ptr())) : src->AsIntArray()); i_this->Memcpy(dst_pos, i_src, src_pos, count); } } } // namespace mirror } // namespace art #endif // ART_RUNTIME_MIRROR_ARRAY_INL_H_