/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package art; import java.lang.ref.PhantomReference; import java.lang.ref.ReferenceQueue; import java.util.ArrayList; import java.util.Arrays; import java.util.function.BiConsumer; public class Test905 { private static final boolean DALVIK_RUN = "Dalvik".equals(System.getProperty("java.vm.name")); // Taken from jdwp tests. public static class MarkerObj { public static int cnt = 0; public void finalize() { cnt++; } } public static class GcMarker { private final ReferenceQueue mQueue; private final ArrayList mList; public GcMarker() { mQueue = new ReferenceQueue(); mList = new ArrayList(3); } public void add(Object referent) { mList.add(new PhantomReference(referent, mQueue)); } public void waitForGc() { waitForGc(mList.size()); } public void waitForGc(int numberOfExpectedFinalizations) { if (numberOfExpectedFinalizations > mList.size()) { throw new IllegalArgumentException("wait condition will never be met"); } // Request finalization of objects, and subsequent reference enqueueing. // Repeat until reference queue reaches expected size. do { System.runFinalization(); Runtime.getRuntime().gc(); try { Thread.sleep(10); } catch (Exception e) {} } while (isLive(numberOfExpectedFinalizations)); } private boolean isLive(int numberOfExpectedFinalizations) { int numberFinalized = 0; for (int i = 0, n = mList.size(); i < n; i++) { if (mList.get(i).isEnqueued()) { numberFinalized++; } } return numberFinalized < numberOfExpectedFinalizations; } } public static void run() throws Exception { doTest(); } public static void doTest() throws Exception { // Use a list to ensure objects must be allocated. ArrayList l = new ArrayList<>(100); setupObjectFreeCallback(); enableFreeTracking(true); run(l); enableFreeTracking(false); run(l); enableFreeTracking(true); if (DALVIK_RUN) { stress(400000); } else { // For JVM the JVMTI tag handling is not running as expected for the stress test // (b/252990223). stress(10000); } } private static void run(ArrayList l) { allocate(l, 1); l.clear(); gcAndWait(); getAndPrintTags(); System.out.println("---"); // Note: the reporting will not depend on the heap layout (which could be unstable). Walking // the tag table should give us a stable output order. for (int i = 10; i <= 1000; i *= 10) { allocate(l, i); } l.clear(); gcAndWait(); getAndPrintTags(); System.out.println("---"); gcAndWait(); getAndPrintTags(); System.out.println("---"); } private static int errors = 0; private static void stressAllocate(int i, BiConsumer saver) { Object obj = new Object(); Main.setTag(obj, i); setTag2(obj, i + 1); saver.accept(i, obj); } private static void stress(int allocations) { getCollectedTags(0); getCollectedTags(1); final int num_obj = allocations; final Object[] saved = new Object[num_obj/2]; // Allocate objects, Save every other one. We want to be sure that it's only the deleted objects // that get their tags cleared and non-deleted objects correctly keep track of their tags. for (int i = 1; i <= num_obj; ++i) { stressAllocate(i, (idx, obj) -> { if ((idx.intValue() - 1) % 2 == 0) { saved[(idx.intValue() - 1)/2] = obj; } }); } gcAndWait(); long[] freedTags1 = getCollectedTags(0); long[] freedTags2 = getCollectedTags(1); // Sort the freedtags Arrays.sort(freedTags1); Arrays.sort(freedTags2); // Make sure we freed all the ones we expect to and both envs agree on this. if (freedTags1.length == num_obj / 2 && freedTags2.length == num_obj / 2) { System.out.println("Free counts as expected"); } else { System.out.println("Free counts " + freedTags1.length + " " + freedTags2.length); } for (int i = 0; i < freedTags1.length; ++i) { if (freedTags1[i] + 1 != freedTags2[i]) { System.out.println("Mismatched tags " + (freedTags1[i] + 1) + " " + freedTags2[i]); break; } } // Make sure the saved-tags aren't present. for (int i = 0; i < saved.length; i++) { // index = (tag - 1)/2 --> (index * 2) + 1 = tag long expectedTag1 = (i * 2) + 1; if (Main.getTag(saved[i]) != expectedTag1) { System.out.println("Saved object has unexpected tag in env 1. Expected " + expectedTag1 + " got " + Main.getTag(saved[i])); } if (getTag2(saved[i]) != 1 + expectedTag1) { System.out.println("Saved object has unexpected tag in env 2. Expected " + (expectedTag1 + 1) + " got " + getTag2(saved[i])); } if (Arrays.binarySearch(freedTags1, expectedTag1) >= 0) { System.out.println("Saved object was marked as deleted in env 1. Object was " + expectedTag1); } if (Arrays.binarySearch(freedTags2, expectedTag1 + 1) >= 0) { System.out.println("Saved object was marked as deleted in env 2. Object was " + (expectedTag1 + 1)); } } } private static void allocate(ArrayList l, long tag) { Object obj = new Object(); l.add(obj); Main.setTag(obj, tag); } private static void getAndPrintTags() { long[] freedTags = getCollectedTags(0); Arrays.sort(freedTags); System.out.println(Arrays.toString(freedTags)); } private static GcMarker getMarker() { GcMarker m = new GcMarker(); m.add(new MarkerObj()); return m; } private static void gcAndWait() { GcMarker marker = getMarker(); marker.waitForGc(); } private static native void setupObjectFreeCallback(); private static native void enableFreeTracking(boolean enable); private static native long[] getCollectedTags(int index); private static native void setTag2(Object o, long tag); private static native long getTag2(Object o); }