# Copyright 2014 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Verifies manual burst capture consistency.""" import logging import os.path from matplotlib import pylab import matplotlib.pyplot from mobly import test_runner import numpy as np import its_base_test import camera_properties_utils import capture_request_utils import image_processing_utils import its_session_utils import target_exposure_utils _API_LEVEL_30 = 30 _BURST_LEN = 50 _COLORS = ('R', 'G', 'B') _NAME = os.path.splitext(os.path.basename(__file__))[0] _NUM_BURSTS = 2 _PATCH_H = 0.1 # center 10% _PATCH_W = 0.1 _PATCH_X = 0.5 - _PATCH_W/2 _PATCH_Y = 0.5 - _PATCH_H/2 _SPREAD_THRESH = 0.03 _SPREAD_THRESH_API_LEVEL_30 = 0.02 _NUM_FRAMES = _BURST_LEN * _NUM_BURSTS class BurstSamenessManualTest(its_base_test.ItsBaseTest): """Take long bursts of images and check that they're all identical. Assumes a static scene. Can be used to idenfity if there are sporadic frames that are processed differently or have artifacts. Uses manual capture settings. """ def test_burst_sameness_manual(self): with its_session_utils.ItsSession( device_id=self.dut.serial, camera_id=self.camera_id, hidden_physical_id=self.hidden_physical_id) as cam: props = cam.get_camera_properties() props = cam.override_with_hidden_physical_camera_props(props) log_path = self.log_path name_with_path = os.path.join(log_path, _NAME) # check SKIP conditions camera_properties_utils.skip_unless( camera_properties_utils.compute_target_exposure(props) and camera_properties_utils.per_frame_control(props)) # Load chart for scene its_session_utils.load_scene( cam, props, self.scene, self.tablet, its_session_utils.CHART_DISTANCE_NO_SCALING) # Capture at the smallest resolution _, fmt = capture_request_utils.get_fastest_manual_capture_settings(props) e, s = target_exposure_utils.get_target_exposure_combos( log_path, cam)['minSensitivity'] req = capture_request_utils.manual_capture_request(s, e) w, h = fmt['width'], fmt['height'] # Capture bursts of YUV shots. # Get the mean values of a center patch for each. # Also build a 4D array, imgs, which is an array of all RGB images. r_means = [] g_means = [] b_means = [] imgs = np.empty([_NUM_FRAMES, h, w, 3]) for j in range(_NUM_BURSTS): caps = cam.do_capture([req]*_BURST_LEN, [fmt]) for i, cap in enumerate(caps): n = j*_BURST_LEN + i imgs[n] = image_processing_utils.convert_capture_to_rgb_image(cap) patch = image_processing_utils.get_image_patch( imgs[n], _PATCH_X, _PATCH_Y, _PATCH_W, _PATCH_H) means = image_processing_utils.compute_image_means(patch) r_means.append(means[0]) g_means.append(means[1]) b_means.append(means[2]) # Save first frame for setup debug image_processing_utils.write_image( imgs[0], f'{name_with_path}_frame000.jpg') # Plot RGB means vs frames frames = range(_NUM_FRAMES) pylab.figure(_NAME) pylab.title(_NAME) pylab.plot(frames, r_means, '-ro') pylab.plot(frames, g_means, '-go') pylab.plot(frames, b_means, '-bo') pylab.ylim([0, 1]) pylab.xlabel('frame number') pylab.ylabel('RGB avg [0, 1]') matplotlib.pyplot.savefig(f'{name_with_path}_plot_means.png') # determine spread_thresh spread_thresh = _SPREAD_THRESH if its_session_utils.get_first_api_level( self.dut.serial) >= _API_LEVEL_30: spread_thresh = _SPREAD_THRESH_API_LEVEL_30 # PASS/FAIL based on center patch similarity for plane, means in enumerate([r_means, g_means, b_means]): spread = max(means) - min(means) logging.debug('%s spread: %.5f', _COLORS[plane], spread) if spread > spread_thresh: # Save all frames if FAIL logging.debug('Dumping all images') for i in range(1, _NUM_FRAMES): image_processing_utils.write_image( imgs[i], f'{name_with_path}_frame{i:03d}.jpg') raise AssertionError(f'{_COLORS[plane]} spread > THRESH. spread: ' f'{spread:.4f}, THRESH: {spread_thresh:.2f}') if __name__ == '__main__': test_runner.main()