/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "audio_hw_yukawa" //#define LOG_NDEBUG 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "audio_aec.h" #include "audio_hw.h" const struct audio_microphone_characteristic_t kBuiltinMicChars = { .device_id = "builtin_mic", .device = AUDIO_DEVICE_IN_BUILTIN_MIC, .address = "top", .channel_mapping[0] = AUDIO_MICROPHONE_CHANNEL_MAPPING_UNUSED, .group = 0, .index_in_the_group = 0, .sensitivity = -37.0f, .max_spl = AUDIO_MICROPHONE_SPL_UNKNOWN, .min_spl = AUDIO_MICROPHONE_SPL_UNKNOWN, .orientation.x = 0.0f, .orientation.y = 0.0f, .orientation.z = 0.0f, .geometric_location.x = AUDIO_MICROPHONE_COORDINATE_UNKNOWN, .geometric_location.y = AUDIO_MICROPHONE_COORDINATE_UNKNOWN, .geometric_location.z = AUDIO_MICROPHONE_COORDINATE_UNKNOWN, }; const struct audio_microphone_characteristic_t kEchoReferenceChars = { .device_id = "echo_reference", .device = AUDIO_DEVICE_IN_ECHO_REFERENCE, .address = "", .channel_mapping[0] = AUDIO_MICROPHONE_CHANNEL_MAPPING_DIRECT, .group = 0, .index_in_the_group = 0, .sensitivity = AUDIO_MICROPHONE_SENSITIVITY_UNKNOWN, .max_spl = AUDIO_MICROPHONE_SPL_UNKNOWN, .min_spl = AUDIO_MICROPHONE_SPL_UNKNOWN, .orientation.x = 0.0f, .orientation.y = 0.0f, .orientation.z = 0.0f, .geometric_location.x = AUDIO_MICROPHONE_COORDINATE_UNKNOWN, .geometric_location.y = AUDIO_MICROPHONE_COORDINATE_UNKNOWN, .geometric_location.z = AUDIO_MICROPHONE_COORDINATE_UNKNOWN, }; static int adev_get_mic_mute(const struct audio_hw_device* dev, bool* state); static int adev_get_microphones(const struct audio_hw_device* dev, struct audio_microphone_characteristic_t* mic_array, size_t* mic_count); static size_t out_get_buffer_size(const struct audio_stream* stream); static bool is_aec_input(const struct alsa_stream_in* in) { /* If AEC is in the app, only configure based on ECHO_REFERENCE spec. * If AEC is in the HAL, configure using the given mic stream. */ bool aec_input = true; #if !defined(AEC_HAL) aec_input = (in->source == AUDIO_SOURCE_ECHO_REFERENCE); #endif return aec_input; } static int get_audio_output_port(audio_devices_t devices) { /* Prefer HDMI, default to internal speaker */ #ifndef USE_HDMI_AUDIO int port = PORT_INTERNAL_SPEAKER; if (devices & AUDIO_DEVICE_OUT_HDMI) { port = PORT_HDMI; } #else int port = PORT_HDMI; #endif return port; } static void timestamp_adjust(struct timespec* ts, ssize_t frames, uint32_t sampling_rate) { /* This function assumes the adjustment (in nsec) is less than the max value of long, * which for 32-bit long this is 2^31 * 1e-9 seconds, slightly over 2 seconds. * For 64-bit long it is 9e+9 seconds. */ long adj_nsec = (frames / (float) sampling_rate) * 1E9L; ts->tv_nsec += adj_nsec; while (ts->tv_nsec > 1E9L) { ts->tv_sec++; ts->tv_nsec -= 1E9L; } if (ts->tv_nsec < 0) { ts->tv_sec--; ts->tv_nsec += 1E9L; } } /* Helper function to get PCM hardware timestamp. * Only the field 'timestamp' of argument 'ts' is updated. */ static int get_pcm_timestamp(struct pcm* pcm, uint32_t sample_rate, struct aec_info* info, bool isOutput) { int ret = 0; if (pcm_get_htimestamp(pcm, &info->available, &info->timestamp) < 0) { ALOGE("Error getting PCM timestamp!"); info->timestamp.tv_sec = 0; info->timestamp.tv_nsec = 0; return -EINVAL; } ssize_t frames; if (isOutput) { frames = pcm_get_buffer_size(pcm) - info->available; } else { frames = -info->available; /* rewind timestamp */ } timestamp_adjust(&info->timestamp, frames, sample_rate); return ret; } static int read_filter_from_file(const char* filename, int16_t* filter, int max_length) { FILE* fp = fopen(filename, "r"); if (fp == NULL) { ALOGI("%s: File %s not found.", __func__, filename); return 0; } int num_taps = 0; char* line = NULL; size_t len = 0; while (!feof(fp)) { size_t size = getline(&line, &len, fp); if ((line[0] == '#') || (size < 2)) { continue; } int n = sscanf(line, "%" SCNd16 "\n", &filter[num_taps++]); if (n < 1) { ALOGE("Could not find coefficient %d! Exiting...", num_taps - 1); return 0; } ALOGV("Coeff %d : %" PRId16, num_taps, filter[num_taps - 1]); if (num_taps == max_length) { ALOGI("%s: max tap length %d reached.", __func__, max_length); break; } } free(line); fclose(fp); return num_taps; } static void out_set_eq(struct alsa_stream_out* out) { out->speaker_eq = NULL; int16_t* speaker_eq_coeffs = (int16_t*)calloc(SPEAKER_MAX_EQ_LENGTH, sizeof(int16_t)); if (speaker_eq_coeffs == NULL) { ALOGE("%s: Failed to allocate speaker EQ", __func__); return; } int num_taps = read_filter_from_file(SPEAKER_EQ_FILE, speaker_eq_coeffs, SPEAKER_MAX_EQ_LENGTH); if (num_taps == 0) { ALOGI("%s: Empty filter file or 0 taps set.", __func__); free(speaker_eq_coeffs); return; } out->speaker_eq = fir_init( out->config.channels, FIR_SINGLE_FILTER, num_taps, out_get_buffer_size(&out->stream.common) / out->config.channels / sizeof(int16_t), speaker_eq_coeffs); free(speaker_eq_coeffs); } /* must be called with hw device and output stream mutexes locked */ static int start_output_stream(struct alsa_stream_out *out) { struct alsa_audio_device *adev = out->dev; /* default to low power: will be corrected in out_write if necessary before first write to * tinyalsa. */ out->write_threshold = PLAYBACK_PERIOD_COUNT * PLAYBACK_PERIOD_SIZE; out->config.start_threshold = PLAYBACK_PERIOD_START_THRESHOLD * PLAYBACK_PERIOD_SIZE; out->config.avail_min = PLAYBACK_PERIOD_SIZE; out->unavailable = true; unsigned int pcm_retry_count = PCM_OPEN_RETRIES; int out_port = get_audio_output_port(out->devices); while (1) { out->pcm = pcm_open(CARD_OUT, out_port, PCM_OUT | PCM_MONOTONIC, &out->config); if ((out->pcm != NULL) && pcm_is_ready(out->pcm)) { break; } else { ALOGE("cannot open pcm_out driver: %s", pcm_get_error(out->pcm)); if (out->pcm != NULL) { pcm_close(out->pcm); out->pcm = NULL; } if (--pcm_retry_count == 0) { ALOGE("Failed to open pcm_out after %d tries", PCM_OPEN_RETRIES); return -ENODEV; } usleep(PCM_OPEN_WAIT_TIME_MS * 1000); } } out->unavailable = false; adev->active_output = out; return 0; } static uint32_t out_get_sample_rate(const struct audio_stream *stream) { struct alsa_stream_out *out = (struct alsa_stream_out *)stream; return out->config.rate; } static int out_set_sample_rate(struct audio_stream *stream, uint32_t rate) { ALOGV("out_set_sample_rate: %d", 0); return -ENOSYS; } static size_t out_get_buffer_size(const struct audio_stream *stream) { ALOGV("out_get_buffer_size: %d", 4096); /* return the closest majoring multiple of 16 frames, as * audioflinger expects audio buffers to be a multiple of 16 frames */ size_t size = PLAYBACK_PERIOD_SIZE; size = ((size + 15) / 16) * 16; return size * audio_stream_out_frame_size((struct audio_stream_out *)stream); } static audio_channel_mask_t out_get_channels(const struct audio_stream *stream) { ALOGV("out_get_channels"); struct alsa_stream_out *out = (struct alsa_stream_out *)stream; return audio_channel_out_mask_from_count(out->config.channels); } static audio_format_t out_get_format(const struct audio_stream *stream) { ALOGV("out_get_format"); struct alsa_stream_out *out = (struct alsa_stream_out *)stream; return audio_format_from_pcm_format(out->config.format); } static int out_set_format(struct audio_stream *stream, audio_format_t format) { ALOGV("out_set_format: %d",format); return -ENOSYS; } static int do_output_standby(struct alsa_stream_out *out) { struct alsa_audio_device *adev = out->dev; fir_reset(out->speaker_eq); if (!out->standby) { pcm_close(out->pcm); out->pcm = NULL; adev->active_output = NULL; out->standby = 1; } aec_set_spk_running(adev->aec, false); return 0; } static int out_standby(struct audio_stream *stream) { ALOGV("out_standby"); struct alsa_stream_out *out = (struct alsa_stream_out *)stream; int status; pthread_mutex_lock(&out->dev->lock); pthread_mutex_lock(&out->lock); status = do_output_standby(out); pthread_mutex_unlock(&out->lock); pthread_mutex_unlock(&out->dev->lock); return status; } static int out_dump(const struct audio_stream *stream, int fd) { ALOGV("out_dump"); return 0; } static int out_set_parameters(struct audio_stream *stream, const char *kvpairs) { ALOGV("out_set_parameters"); struct alsa_stream_out *out = (struct alsa_stream_out *)stream; struct alsa_audio_device *adev = out->dev; struct str_parms *parms; char value[32]; int ret, val = 0; parms = str_parms_create_str(kvpairs); ret = str_parms_get_str(parms, AUDIO_PARAMETER_STREAM_ROUTING, value, sizeof(value)); if (ret >= 0) { val = atoi(value); pthread_mutex_lock(&adev->lock); pthread_mutex_lock(&out->lock); if (((out->devices & AUDIO_DEVICE_OUT_ALL) != val) && (val != 0)) { out->devices &= ~AUDIO_DEVICE_OUT_ALL; out->devices |= val; } pthread_mutex_unlock(&out->lock); pthread_mutex_unlock(&adev->lock); } str_parms_destroy(parms); return 0; } static char * out_get_parameters(const struct audio_stream *stream, const char *keys) { ALOGV("out_get_parameters"); return strdup(""); } static uint32_t out_get_latency(const struct audio_stream_out *stream) { ALOGV("out_get_latency"); struct alsa_stream_out *out = (struct alsa_stream_out *)stream; return (PLAYBACK_PERIOD_SIZE * PLAYBACK_PERIOD_COUNT * 1000) / out->config.rate; } static int out_set_volume(struct audio_stream_out *stream, float left, float right) { ALOGV("out_set_volume: Left:%f Right:%f", left, right); return -ENOSYS; } static ssize_t out_write(struct audio_stream_out *stream, const void* buffer, size_t bytes) { int ret; struct alsa_stream_out *out = (struct alsa_stream_out *)stream; struct alsa_audio_device *adev = out->dev; size_t frame_size = audio_stream_out_frame_size(stream); size_t out_frames = bytes / frame_size; ALOGV("%s: devices: %d, bytes %zu", __func__, out->devices, bytes); /* acquiring hw device mutex systematically is useful if a low priority thread is waiting * on the output stream mutex - e.g. executing select_mode() while holding the hw device * mutex */ pthread_mutex_lock(&adev->lock); pthread_mutex_lock(&out->lock); if (out->standby) { ret = start_output_stream(out); if (ret != 0) { pthread_mutex_unlock(&adev->lock); goto exit; } out->standby = 0; aec_set_spk_running(adev->aec, true); } pthread_mutex_unlock(&adev->lock); if (out->speaker_eq != NULL) { fir_process_interleaved(out->speaker_eq, (int16_t*)buffer, (int16_t*)buffer, out_frames); } ret = pcm_write(out->pcm, buffer, out_frames * frame_size); if (ret == 0) { out->frames_written += out_frames; struct aec_info info; get_pcm_timestamp(out->pcm, out->config.rate, &info, true /*isOutput*/); out->timestamp = info.timestamp; info.bytes = out_frames * frame_size; int aec_ret = write_to_reference_fifo(adev->aec, (void *)buffer, &info); if (aec_ret) { ALOGE("AEC: Write to speaker loopback FIFO failed!"); } } exit: pthread_mutex_unlock(&out->lock); if (ret != 0) { usleep((int64_t)bytes * 1000000 / audio_stream_out_frame_size(stream) / out_get_sample_rate(&stream->common)); } return bytes; } static int out_get_render_position(const struct audio_stream_out *stream, uint32_t *dsp_frames) { ALOGV("out_get_render_position: dsp_frames: %p", dsp_frames); return -ENOSYS; } static int out_get_presentation_position(const struct audio_stream_out *stream, uint64_t *frames, struct timespec *timestamp) { if (stream == NULL || frames == NULL || timestamp == NULL) { return -EINVAL; } struct alsa_stream_out* out = (struct alsa_stream_out*)stream; *frames = out->frames_written; *timestamp = out->timestamp; ALOGV("%s: frames: %" PRIu64 ", timestamp (nsec): %" PRIu64, __func__, *frames, audio_utils_ns_from_timespec(timestamp)); return 0; } static int out_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { ALOGV("out_add_audio_effect: %p", effect); return 0; } static int out_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { ALOGV("out_remove_audio_effect: %p", effect); return 0; } static int out_get_next_write_timestamp(const struct audio_stream_out *stream, int64_t *timestamp) { *timestamp = 0; ALOGV("out_get_next_write_timestamp: %ld", (long int)(*timestamp)); return -ENOSYS; } /** audio_stream_in implementation **/ /* must be called with hw device and input stream mutexes locked */ static int start_input_stream(struct alsa_stream_in *in) { struct alsa_audio_device *adev = in->dev; in->unavailable = true; unsigned int pcm_retry_count = PCM_OPEN_RETRIES; while (1) { in->pcm = pcm_open(CARD_IN, PORT_BUILTIN_MIC, PCM_IN | PCM_MONOTONIC, &in->config); if ((in->pcm != NULL) && pcm_is_ready(in->pcm)) { break; } else { ALOGE("cannot open pcm_in driver: %s", pcm_get_error(in->pcm)); if (in->pcm != NULL) { pcm_close(in->pcm); in->pcm = NULL; } if (--pcm_retry_count == 0) { ALOGE("Failed to open pcm_in after %d tries", PCM_OPEN_RETRIES); return -ENODEV; } usleep(PCM_OPEN_WAIT_TIME_MS * 1000); } } in->unavailable = false; adev->active_input = in; return 0; } static void get_input_characteristics(const struct alsa_stream_in* in, struct audio_microphone_characteristic_t* mic_data, size_t* mic_count) { const struct audio_microphone_characteristic_t* chars = &kBuiltinMicChars; *mic_count = 1; if ((in != NULL) && in->source == AUDIO_SOURCE_ECHO_REFERENCE) { *mic_count = in->config.channels; chars = &kEchoReferenceChars; } for (size_t ch = 0; ch < (*mic_count); ch++) { memcpy(&mic_data[ch], chars, sizeof(struct audio_microphone_characteristic_t)); mic_data[ch].index_in_the_group = ch; } } static uint32_t in_get_sample_rate(const struct audio_stream *stream) { struct alsa_stream_in *in = (struct alsa_stream_in *)stream; return in->config.rate; } static int in_set_sample_rate(struct audio_stream *stream, uint32_t rate) { ALOGV("in_set_sample_rate: %d", rate); return -ENOSYS; } static size_t get_input_buffer_size(size_t frames, audio_format_t format, audio_channel_mask_t channel_mask) { /* return the closest majoring multiple of 16 frames, as * audioflinger expects audio buffers to be a multiple of 16 frames */ frames = ((frames + 15) / 16) * 16; size_t bytes_per_frame = audio_channel_count_from_in_mask(channel_mask) * audio_bytes_per_sample(format); size_t buffer_size = frames * bytes_per_frame; return buffer_size; } static audio_channel_mask_t in_get_channels(const struct audio_stream *stream) { struct alsa_stream_in *in = (struct alsa_stream_in *)stream; ALOGV("in_get_channels: %d", in->config.channels); return audio_channel_in_mask_from_count(in->config.channels); } static audio_format_t in_get_format(const struct audio_stream *stream) { struct alsa_stream_in *in = (struct alsa_stream_in *)stream; ALOGV("in_get_format: %d", in->config.format); return audio_format_from_pcm_format(in->config.format); } static int in_set_format(struct audio_stream *stream, audio_format_t format) { return -ENOSYS; } static size_t in_get_buffer_size(const struct audio_stream *stream) { struct alsa_stream_in* in = (struct alsa_stream_in*)stream; size_t frames = CAPTURE_PERIOD_SIZE; if (in->source == AUDIO_SOURCE_ECHO_REFERENCE) { frames = CAPTURE_PERIOD_SIZE * PLAYBACK_CODEC_SAMPLING_RATE / CAPTURE_CODEC_SAMPLING_RATE; } size_t buffer_size = get_input_buffer_size(frames, stream->get_format(stream), stream->get_channels(stream)); ALOGV("in_get_buffer_size: %zu", buffer_size); return buffer_size; } static int in_get_active_microphones(const struct audio_stream_in* stream, struct audio_microphone_characteristic_t* mic_array, size_t* mic_count) { ALOGV("in_get_active_microphones"); if ((mic_array == NULL) || (mic_count == NULL)) { return -EINVAL; } struct alsa_stream_in* in = (struct alsa_stream_in*)stream; struct audio_hw_device* dev = (struct audio_hw_device*)in->dev; get_input_characteristics(in, mic_array, mic_count); bool mic_muted = false; adev_get_mic_mute(dev, &mic_muted); if (mic_muted && (in->source != AUDIO_SOURCE_ECHO_REFERENCE)) { *mic_count = 0; } return 0; } static int do_input_standby(struct alsa_stream_in *in) { struct alsa_audio_device *adev = in->dev; if (!in->standby) { pcm_close(in->pcm); in->pcm = NULL; adev->active_input = NULL; in->standby = true; } return 0; } static int in_standby(struct audio_stream *stream) { struct alsa_stream_in *in = (struct alsa_stream_in *)stream; int status; pthread_mutex_lock(&in->lock); pthread_mutex_lock(&in->dev->lock); status = do_input_standby(in); pthread_mutex_unlock(&in->dev->lock); pthread_mutex_unlock(&in->lock); return status; } static int in_dump(const struct audio_stream *stream, int fd) { struct alsa_stream_in* in = (struct alsa_stream_in*)stream; struct audio_microphone_characteristic_t mic_array[AUDIO_MICROPHONE_MAX_COUNT]; size_t mic_count; get_input_characteristics(in, mic_array, &mic_count); dprintf(fd, " %s count: %zd\n", (in->source == AUDIO_SOURCE_ECHO_REFERENCE) ? "Channel" : "Microphone", mic_count); size_t idx; for (idx = 0; idx < mic_count; idx++) { dprintf(fd, " Channel: %zd\n", idx); dprintf(fd, " Address: %s\n", mic_array[idx].address); dprintf(fd, " Device: %d\n", mic_array[idx].device); dprintf(fd, " Sensitivity (dB): %.2f\n", mic_array[idx].sensitivity); } return 0; } static int in_set_parameters(struct audio_stream *stream, const char *kvpairs) { return 0; } static char * in_get_parameters(const struct audio_stream *stream, const char *keys) { return strdup(""); } static int in_set_gain(struct audio_stream_in *stream, float gain) { return 0; } static ssize_t in_read(struct audio_stream_in *stream, void* buffer, size_t bytes) { int ret; struct alsa_stream_in *in = (struct alsa_stream_in *)stream; struct alsa_audio_device *adev = in->dev; size_t frame_size = audio_stream_in_frame_size(stream); size_t in_frames = bytes / frame_size; ALOGV("in_read: stream: %d, bytes %zu", in->source, bytes); /* Special handling for Echo Reference: simply get the reference from FIFO. * The format and sample rate should be specified by arguments to adev_open_input_stream. */ if (in->source == AUDIO_SOURCE_ECHO_REFERENCE) { struct aec_info info; info.bytes = bytes; const uint64_t time_increment_nsec = (uint64_t)bytes * NANOS_PER_SECOND / audio_stream_in_frame_size(stream) / in_get_sample_rate(&stream->common); if (!aec_get_spk_running(adev->aec)) { if (in->timestamp_nsec == 0) { struct timespec now; clock_gettime(CLOCK_MONOTONIC, &now); const uint64_t timestamp_nsec = audio_utils_ns_from_timespec(&now); in->timestamp_nsec = timestamp_nsec; } else { in->timestamp_nsec += time_increment_nsec; } memset(buffer, 0, bytes); const uint64_t time_increment_usec = time_increment_nsec / 1000; usleep(time_increment_usec); } else { int ref_ret = get_reference_samples(adev->aec, buffer, &info); if ((ref_ret) || (info.timestamp_usec == 0)) { memset(buffer, 0, bytes); in->timestamp_nsec += time_increment_nsec; } else { in->timestamp_nsec = 1000 * info.timestamp_usec; } } in->frames_read += in_frames; #if DEBUG_AEC FILE* fp_ref = fopen("/data/local/traces/aec_ref.pcm", "a+"); if (fp_ref) { fwrite((char*)buffer, 1, bytes, fp_ref); fclose(fp_ref); } else { ALOGE("AEC debug: Could not open file aec_ref.pcm!"); } FILE* fp_ref_ts = fopen("/data/local/traces/aec_ref_timestamps.txt", "a+"); if (fp_ref_ts) { fprintf(fp_ref_ts, "%" PRIu64 "\n", in->timestamp_nsec); fclose(fp_ref_ts); } else { ALOGE("AEC debug: Could not open file aec_ref_timestamps.txt!"); } #endif return info.bytes; } /* Microphone input stream read */ /* acquiring hw device mutex systematically is useful if a low priority thread is waiting * on the input stream mutex - e.g. executing select_mode() while holding the hw device * mutex */ pthread_mutex_lock(&in->lock); pthread_mutex_lock(&adev->lock); if (in->standby) { ret = start_input_stream(in); if (ret != 0) { pthread_mutex_unlock(&adev->lock); ALOGE("start_input_stream failed with code %d", ret); goto exit; } in->standby = false; } pthread_mutex_unlock(&adev->lock); ret = pcm_read(in->pcm, buffer, in_frames * frame_size); struct aec_info info; get_pcm_timestamp(in->pcm, in->config.rate, &info, false /*isOutput*/); if (ret == 0) { in->frames_read += in_frames; in->timestamp_nsec = audio_utils_ns_from_timespec(&info.timestamp); } else { ALOGE("pcm_read failed with code %d", ret); } exit: pthread_mutex_unlock(&in->lock); bool mic_muted = false; adev_get_mic_mute((struct audio_hw_device*)adev, &mic_muted); if (mic_muted) { memset(buffer, 0, bytes); } if (ret != 0) { usleep((int64_t)bytes * 1000000 / audio_stream_in_frame_size(stream) / in_get_sample_rate(&stream->common)); } else { /* Process AEC if available */ /* TODO move to a separate thread */ if (!mic_muted) { info.bytes = bytes; int aec_ret = process_aec(adev->aec, buffer, &info); if (aec_ret) { ALOGE("process_aec returned error code %d", aec_ret); } } } #if DEBUG_AEC && !defined(AEC_HAL) FILE* fp_in = fopen("/data/local/traces/aec_in.pcm", "a+"); if (fp_in) { fwrite((char*)buffer, 1, bytes, fp_in); fclose(fp_in); } else { ALOGE("AEC debug: Could not open file aec_in.pcm!"); } FILE* fp_mic_ts = fopen("/data/local/traces/aec_in_timestamps.txt", "a+"); if (fp_mic_ts) { fprintf(fp_mic_ts, "%" PRIu64 "\n", in->timestamp_nsec); fclose(fp_mic_ts); } else { ALOGE("AEC debug: Could not open file aec_in_timestamps.txt!"); } #endif return bytes; } static int in_get_capture_position(const struct audio_stream_in* stream, int64_t* frames, int64_t* time) { if (stream == NULL || frames == NULL || time == NULL) { return -EINVAL; } struct alsa_stream_in* in = (struct alsa_stream_in*)stream; *frames = in->frames_read; *time = in->timestamp_nsec; ALOGV("%s: source: %d, timestamp (nsec): %" PRIu64, __func__, in->source, *time); return 0; } static uint32_t in_get_input_frames_lost(struct audio_stream_in *stream) { return 0; } static int in_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int in_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int adev_open_output_stream(struct audio_hw_device *dev, audio_io_handle_t handle, audio_devices_t devices, audio_output_flags_t flags, struct audio_config *config, struct audio_stream_out **stream_out, const char *address __unused) { ALOGV("adev_open_output_stream..."); struct alsa_audio_device *ladev = (struct alsa_audio_device *)dev; int out_port = get_audio_output_port(devices); struct pcm_params* params = pcm_params_get(CARD_OUT, out_port, PCM_OUT); if (!params) { return -ENOSYS; } struct alsa_stream_out* out = (struct alsa_stream_out*)calloc(1, sizeof(struct alsa_stream_out)); if (!out) { return -ENOMEM; } out->stream.common.get_sample_rate = out_get_sample_rate; out->stream.common.set_sample_rate = out_set_sample_rate; out->stream.common.get_buffer_size = out_get_buffer_size; out->stream.common.get_channels = out_get_channels; out->stream.common.get_format = out_get_format; out->stream.common.set_format = out_set_format; out->stream.common.standby = out_standby; out->stream.common.dump = out_dump; out->stream.common.set_parameters = out_set_parameters; out->stream.common.get_parameters = out_get_parameters; out->stream.common.add_audio_effect = out_add_audio_effect; out->stream.common.remove_audio_effect = out_remove_audio_effect; out->stream.get_latency = out_get_latency; out->stream.set_volume = out_set_volume; out->stream.write = out_write; out->stream.get_render_position = out_get_render_position; out->stream.get_next_write_timestamp = out_get_next_write_timestamp; out->stream.get_presentation_position = out_get_presentation_position; out->config.channels = CHANNEL_STEREO; out->config.rate = PLAYBACK_CODEC_SAMPLING_RATE; out->config.format = PCM_FORMAT_S16_LE; out->config.period_size = PLAYBACK_PERIOD_SIZE; out->config.period_count = PLAYBACK_PERIOD_COUNT; if (out->config.rate != config->sample_rate || audio_channel_count_from_out_mask(config->channel_mask) != CHANNEL_STEREO || out->config.format != pcm_format_from_audio_format(config->format) ) { config->sample_rate = out->config.rate; config->format = audio_format_from_pcm_format(out->config.format); config->channel_mask = audio_channel_out_mask_from_count(CHANNEL_STEREO); goto error_1; } ALOGI("adev_open_output_stream selects channels=%d rate=%d format=%d, devices=%d", out->config.channels, out->config.rate, out->config.format, devices); out->dev = ladev; out->standby = 1; out->unavailable = false; out->devices = devices; config->format = out_get_format(&out->stream.common); config->channel_mask = out_get_channels(&out->stream.common); config->sample_rate = out_get_sample_rate(&out->stream.common); out->speaker_eq = NULL; if (out_port == PORT_INTERNAL_SPEAKER) { out_set_eq(out); if (out->speaker_eq == NULL) { ALOGE("%s: Failed to initialize speaker EQ", __func__); } } int aec_ret = init_aec_reference_config(ladev->aec, out); if (aec_ret) { ALOGE("AEC: Speaker config init failed!"); goto error_2; } *stream_out = &out->stream; return 0; error_2: fir_release(out->speaker_eq); error_1: free(out); return -EINVAL; } static void adev_close_output_stream(struct audio_hw_device *dev, struct audio_stream_out *stream) { ALOGV("adev_close_output_stream..."); struct alsa_audio_device *adev = (struct alsa_audio_device *)dev; destroy_aec_reference_config(adev->aec); struct alsa_stream_out* out = (struct alsa_stream_out*)stream; fir_release(out->speaker_eq); free(stream); } static int adev_set_parameters(struct audio_hw_device *dev, const char *kvpairs) { ALOGV("adev_set_parameters"); return -ENOSYS; } static char * adev_get_parameters(const struct audio_hw_device *dev, const char *keys) { ALOGV("adev_get_parameters"); return strdup(""); } static int adev_get_microphones(const struct audio_hw_device* dev, struct audio_microphone_characteristic_t* mic_array, size_t* mic_count) { ALOGV("adev_get_microphones"); if ((mic_array == NULL) || (mic_count == NULL)) { return -EINVAL; } get_input_characteristics(NULL, mic_array, mic_count); return 0; } static int adev_init_check(const struct audio_hw_device *dev) { ALOGV("adev_init_check"); return 0; } static int adev_set_voice_volume(struct audio_hw_device *dev, float volume) { ALOGV("adev_set_voice_volume: %f", volume); return -ENOSYS; } static int adev_set_master_volume(struct audio_hw_device *dev, float volume) { ALOGV("adev_set_master_volume: %f", volume); return -ENOSYS; } static int adev_get_master_volume(struct audio_hw_device *dev, float *volume) { ALOGV("adev_get_master_volume: %f", *volume); return -ENOSYS; } static int adev_set_master_mute(struct audio_hw_device *dev, bool muted) { ALOGV("adev_set_master_mute: %d", muted); return -ENOSYS; } static int adev_get_master_mute(struct audio_hw_device *dev, bool *muted) { ALOGV("adev_get_master_mute: %d", *muted); return -ENOSYS; } static int adev_set_mode(struct audio_hw_device *dev, audio_mode_t mode) { ALOGV("adev_set_mode: %d", mode); return 0; } static int adev_set_mic_mute(struct audio_hw_device *dev, bool state) { ALOGV("adev_set_mic_mute: %d",state); struct alsa_audio_device *adev = (struct alsa_audio_device *)dev; pthread_mutex_lock(&adev->lock); adev->mic_mute = state; pthread_mutex_unlock(&adev->lock); return 0; } static int adev_get_mic_mute(const struct audio_hw_device *dev, bool *state) { ALOGV("adev_get_mic_mute"); struct alsa_audio_device *adev = (struct alsa_audio_device *)dev; pthread_mutex_lock(&adev->lock); *state = adev->mic_mute; pthread_mutex_unlock(&adev->lock); return 0; } static size_t adev_get_input_buffer_size(const struct audio_hw_device *dev, const struct audio_config *config) { size_t buffer_size = get_input_buffer_size(CAPTURE_PERIOD_SIZE, config->format, config->channel_mask); ALOGV("adev_get_input_buffer_size: %zu", buffer_size); return buffer_size; } static int adev_open_input_stream(struct audio_hw_device* dev, audio_io_handle_t handle, audio_devices_t devices, struct audio_config* config, struct audio_stream_in** stream_in, audio_input_flags_t flags __unused, const char* address __unused, audio_source_t source) { ALOGV("adev_open_input_stream..."); struct alsa_audio_device *ladev = (struct alsa_audio_device *)dev; struct pcm_params* params = pcm_params_get(CARD_IN, PORT_BUILTIN_MIC, PCM_IN); if (!params) { return -ENOSYS; } struct alsa_stream_in* in = (struct alsa_stream_in*)calloc(1, sizeof(struct alsa_stream_in)); if (!in) { return -ENOMEM; } in->stream.common.get_sample_rate = in_get_sample_rate; in->stream.common.set_sample_rate = in_set_sample_rate; in->stream.common.get_buffer_size = in_get_buffer_size; in->stream.common.get_channels = in_get_channels; in->stream.common.get_format = in_get_format; in->stream.common.set_format = in_set_format; in->stream.common.standby = in_standby; in->stream.common.dump = in_dump; in->stream.common.set_parameters = in_set_parameters; in->stream.common.get_parameters = in_get_parameters; in->stream.common.add_audio_effect = in_add_audio_effect; in->stream.common.remove_audio_effect = in_remove_audio_effect; in->stream.set_gain = in_set_gain; in->stream.read = in_read; in->stream.get_input_frames_lost = in_get_input_frames_lost; in->stream.get_capture_position = in_get_capture_position; in->stream.get_active_microphones = in_get_active_microphones; if (source == AUDIO_SOURCE_ECHO_REFERENCE) { in->config.rate = PLAYBACK_CODEC_SAMPLING_RATE; in->config.channels = NUM_AEC_REFERENCE_CHANNELS; in->config.period_size = CAPTURE_PERIOD_SIZE * PLAYBACK_CODEC_SAMPLING_RATE / CAPTURE_CODEC_SAMPLING_RATE; } else { in->config.rate = CAPTURE_CODEC_SAMPLING_RATE; in->config.channels = CHANNEL_STEREO; in->config.period_size = CAPTURE_PERIOD_SIZE; } in->config.format = PCM_FORMAT_S32_LE; in->config.period_count = CAPTURE_PERIOD_COUNT; if (in->config.rate != config->sample_rate || audio_channel_count_from_in_mask(config->channel_mask) != in->config.channels || in->config.format != pcm_format_from_audio_format(config->format)) { config->format = audio_format_from_pcm_format(in->config.format); config->channel_mask = audio_channel_in_mask_from_count(in->config.channels); config->sample_rate = in->config.rate; goto error_1; } ALOGI("adev_open_input_stream selects channels=%d rate=%d format=%d source=%d", in->config.channels, in->config.rate, in->config.format, source); in->dev = ladev; in->standby = true; in->unavailable = false; in->source = source; in->devices = devices; if (is_aec_input(in)) { int aec_ret = init_aec_mic_config(ladev->aec, in); if (aec_ret) { ALOGE("AEC: Mic config init failed!"); goto error_1; } } #if DEBUG_AEC remove("/data/local/traces/aec_ref.pcm"); remove("/data/local/traces/aec_in.pcm"); remove("/data/local/traces/aec_ref_timestamps.txt"); remove("/data/local/traces/aec_in_timestamps.txt"); #endif *stream_in = &in->stream; return 0; error_1: free(in); return -EINVAL; } static void adev_close_input_stream(struct audio_hw_device *dev, struct audio_stream_in *stream) { ALOGV("adev_close_input_stream..."); struct alsa_stream_in* in = (struct alsa_stream_in*)stream; if (is_aec_input(in)) { destroy_aec_mic_config(in->dev->aec); } free(stream); return; } static int adev_dump(const audio_hw_device_t *device, int fd) { ALOGV("adev_dump"); return 0; } static int adev_close(hw_device_t *device) { ALOGV("adev_close"); struct alsa_audio_device *adev = (struct alsa_audio_device *)device; release_aec(adev->aec); audio_route_free(adev->audio_route); mixer_close(adev->mixer); free(device); return 0; } static int adev_open(const hw_module_t* module, const char* name, hw_device_t** device) { ALOGV("adev_open: %s", name); if (strcmp(name, AUDIO_HARDWARE_INTERFACE) != 0) { return -EINVAL; } struct alsa_audio_device* adev = calloc(1, sizeof(struct alsa_audio_device)); if (!adev) { return -ENOMEM; } adev->hw_device.common.tag = HARDWARE_DEVICE_TAG; adev->hw_device.common.version = AUDIO_DEVICE_API_VERSION_2_0; adev->hw_device.common.module = (struct hw_module_t *) module; adev->hw_device.common.close = adev_close; adev->hw_device.init_check = adev_init_check; adev->hw_device.set_voice_volume = adev_set_voice_volume; adev->hw_device.set_master_volume = adev_set_master_volume; adev->hw_device.get_master_volume = adev_get_master_volume; adev->hw_device.set_master_mute = adev_set_master_mute; adev->hw_device.get_master_mute = adev_get_master_mute; adev->hw_device.set_mode = adev_set_mode; adev->hw_device.set_mic_mute = adev_set_mic_mute; adev->hw_device.get_mic_mute = adev_get_mic_mute; adev->hw_device.set_parameters = adev_set_parameters; adev->hw_device.get_parameters = adev_get_parameters; adev->hw_device.get_input_buffer_size = adev_get_input_buffer_size; adev->hw_device.open_output_stream = adev_open_output_stream; adev->hw_device.close_output_stream = adev_close_output_stream; adev->hw_device.open_input_stream = adev_open_input_stream; adev->hw_device.close_input_stream = adev_close_input_stream; adev->hw_device.dump = adev_dump; adev->hw_device.get_microphones = adev_get_microphones; *device = &adev->hw_device.common; adev->mixer = mixer_open(CARD_OUT); if (!adev->mixer) { ALOGE("Unable to open the mixer, aborting."); goto error_1; } adev->audio_route = audio_route_init(CARD_OUT, MIXER_XML_PATH); if (!adev->audio_route) { ALOGE("%s: Failed to init audio route controls, aborting.", __func__); goto error_2; } struct aec_params params = { .num_mic_channels = CHANNEL_STEREO, .num_reference_channels = NUM_AEC_REFERENCE_CHANNELS, .num_playback_channels = CHANNEL_STEREO, .mic_sampling_rate_hz = CAPTURE_CODEC_SAMPLING_RATE, .playback_sampling_rate_hz = PLAYBACK_CODEC_SAMPLING_RATE, }; pthread_mutex_lock(&adev->lock); if (init_aec(¶ms, &adev->aec)) { pthread_mutex_unlock(&adev->lock); goto error_3; } pthread_mutex_unlock(&adev->lock); return 0; error_3: audio_route_free(adev->audio_route); error_2: mixer_close(adev->mixer); error_1: free(adev); return -EINVAL; } static struct hw_module_methods_t hal_module_methods = { .open = adev_open, }; struct audio_module HAL_MODULE_INFO_SYM = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = AUDIO_MODULE_API_VERSION_0_1, .hal_api_version = HARDWARE_HAL_API_VERSION, .id = AUDIO_HARDWARE_MODULE_ID, .name = "Yukawa audio HW HAL", .author = "The Android Open Source Project", .methods = &hal_module_methods, }, };