/* //device/system/reference-ril/reference-ril.c ** ** Copyright 2006, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "atchannel.h" #include "at_tok.h" #include "base64util.h" #include "misc.h" #include #include #include #include #include #include #include #include #include #include #include #include "guest/hals/ril/reference-libril/ril.h" #define LOG_TAG "RIL" #include static void *noopRemoveWarning( void *a ) { return a; } #define RIL_UNUSED_PARM(a) noopRemoveWarning((void *)&(a)); #define MAX_AT_RESPONSE 0x1000 #define MAX_PDP 11 // max LTE bearers /* pathname returned from RIL_REQUEST_SETUP_DATA_CALL / RIL_REQUEST_SETUP_DEFAULT_PDP */ // This is used if Wifi is not supported, plain old eth0 #ifdef CUTTLEFISH_ENABLE #define PPP_TTY_PATH_ETH0 "buried_eth0" #else #define PPP_TTY_PATH_ETH0 "eth0" #endif // This is used for emulator #define EMULATOR_RADIO_INTERFACE "eth0" // for sim #define AUTH_CONTEXT_EAP_SIM 128 #define AUTH_CONTEXT_EAP_AKA 129 #define SIM_AUTH_RESPONSE_SUCCESS 0 #define SIM_AUTH_RESPONSE_SYNC_FAILURE 3 // Default MTU value #define DEFAULT_MTU 1500 #ifdef USE_TI_COMMANDS // Enable a workaround // 1) Make incoming call, do not answer // 2) Hangup remote end // Expected: call should disappear from CLCC line // Actual: Call shows as "ACTIVE" before disappearing #define WORKAROUND_ERRONEOUS_ANSWER 1 // Some variants of the TI stack do not support the +CGEV unsolicited // response. However, they seem to send an unsolicited +CME ERROR: 150 #define WORKAROUND_FAKE_CGEV 1 #endif /* Modem Technology bits */ #define MDM_GSM 0x01 #define MDM_WCDMA 0x02 #define MDM_CDMA 0x04 #define MDM_EVDO 0x08 #define MDM_TDSCDMA 0x10 #define MDM_LTE 0x20 #define MDM_NR 0x40 typedef struct { int supportedTechs; // Bitmask of supported Modem Technology bits int currentTech; // Technology the modem is currently using (in the format used by modem) int isMultimode; // Preferred mode bitmask. This is actually 4 byte-sized bitmasks with different priority values, // in which the byte number from LSB to MSB give the priority. // // |MSB| | |LSB // value: |00 |00 |00 |00 // byte #: |3 |2 |1 |0 // // Higher byte order give higher priority. Thus, a value of 0x0000000f represents // a preferred mode of GSM, WCDMA, CDMA, and EvDo in which all are equally preferable, whereas // 0x00000201 represents a mode with GSM and WCDMA, in which WCDMA is preferred over GSM int32_t preferredNetworkMode; int subscription_source; } ModemInfo; static ModemInfo *sMdmInfo; // TECH returns the current technology in the format used by the modem. // It can be used as an l-value #define TECH(mdminfo) ((mdminfo)->currentTech) // TECH_BIT returns the bitmask equivalent of the current tech #define TECH_BIT(mdminfo) (1 << ((mdminfo)->currentTech)) #define IS_MULTIMODE(mdminfo) ((mdminfo)->isMultimode) #define TECH_SUPPORTED(mdminfo, tech) ((mdminfo)->supportedTechs & (tech)) #define PREFERRED_NETWORK(mdminfo) ((mdminfo)->preferredNetworkMode) // CDMA Subscription Source #define SSOURCE(mdminfo) ((mdminfo)->subscription_source) static int net2modem[] = { MDM_GSM | MDM_WCDMA, // 0 - GSM / WCDMA Pref MDM_GSM, // 1 - GSM only MDM_WCDMA, // 2 - WCDMA only MDM_GSM | MDM_WCDMA, // 3 - GSM / WCDMA Auto MDM_CDMA | MDM_EVDO, // 4 - CDMA / EvDo Auto MDM_CDMA, // 5 - CDMA only MDM_EVDO, // 6 - EvDo only MDM_GSM | MDM_WCDMA | MDM_CDMA | MDM_EVDO, // 7 - GSM/WCDMA, CDMA, EvDo MDM_LTE | MDM_CDMA | MDM_EVDO, // 8 - LTE, CDMA and EvDo MDM_LTE | MDM_GSM | MDM_WCDMA, // 9 - LTE, GSM/WCDMA MDM_LTE | MDM_CDMA | MDM_EVDO | MDM_GSM | MDM_WCDMA, // 10 - LTE, CDMA, EvDo, GSM/WCDMA MDM_LTE, // 11 - LTE only MDM_LTE | MDM_WCDMA, // 12 - LTE and WCDMA MDM_TDSCDMA, // 13 - TD-SCDMA only MDM_WCDMA | MDM_TDSCDMA, // 14 - TD-SCDMA and WCDMA MDM_LTE | MDM_TDSCDMA, // 15 - LTE and TD-SCDMA MDM_TDSCDMA | MDM_GSM, // 16 - TD-SCDMA and GSM MDM_LTE | MDM_TDSCDMA | MDM_GSM, // 17 - TD-SCDMA, GSM and LTE MDM_WCDMA | MDM_TDSCDMA | MDM_GSM, // 18 - TD-SCDMA, GSM and WCDMA MDM_LTE | MDM_WCDMA | MDM_TDSCDMA, // 19 - LTE, TD-SCDMA and WCDMA MDM_LTE | MDM_WCDMA | MDM_TDSCDMA | MDM_GSM, // 20 - LTE, TD-SCDMA, GSM, and WCDMA MDM_EVDO | MDM_CDMA | MDM_WCDMA | MDM_TDSCDMA | MDM_GSM, // 21 - TD-SCDMA, CDMA, EVDO, GSM and WCDMA MDM_LTE | MDM_TDSCDMA | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM, // 22 - LTE, TDCSDMA, CDMA, EVDO, GSM and WCDMA MDM_NR, // 23 - NR 5G only mode MDM_NR | MDM_LTE, // 24 - NR 5G, LTE MDM_NR | MDM_LTE | MDM_CDMA | MDM_EVDO, // 25 - NR 5G, LTE, CDMA and EvDo MDM_NR | MDM_LTE | MDM_WCDMA | MDM_GSM, // 26 - NR 5G, LTE, GSM and WCDMA MDM_NR | MDM_LTE | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM, // 27 - NR 5G, LTE, CDMA, EvDo, GSM and WCDMA MDM_NR | MDM_LTE | MDM_WCDMA, // 28 - NR 5G, LTE and WCDMA MDM_NR | MDM_LTE | MDM_TDSCDMA, // 29 - NR 5G, LTE and TDSCDMA MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_GSM, // 30 - NR 5G, LTE, TD-SCDMA and GSM MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_WCDMA, // 31 - NR 5G, LTE, TD-SCDMA, WCDMA MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_WCDMA | MDM_GSM, // 32 - NR 5G, LTE, TD-SCDMA, GSM and WCDMA MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM, // 33 - NR 5G, LTE, TD-SCDMA, CDMA, EVDO, GSM and WCDMA }; static int32_t net2pmask[] = { MDM_GSM | (MDM_WCDMA << 8), // 0 - GSM / WCDMA Pref MDM_GSM, // 1 - GSM only MDM_WCDMA, // 2 - WCDMA only MDM_GSM | MDM_WCDMA, // 3 - GSM / WCDMA Auto MDM_CDMA | MDM_EVDO, // 4 - CDMA / EvDo Auto MDM_CDMA, // 5 - CDMA only MDM_EVDO, // 6 - EvDo only MDM_GSM | MDM_WCDMA | MDM_CDMA | MDM_EVDO, // 7 - GSM/WCDMA, CDMA, EvDo MDM_LTE | MDM_CDMA | MDM_EVDO, // 8 - LTE, CDMA and EvDo MDM_LTE | MDM_GSM | MDM_WCDMA, // 9 - LTE, GSM/WCDMA MDM_LTE | MDM_CDMA | MDM_EVDO | MDM_GSM | MDM_WCDMA, // 10 - LTE, CDMA, EvDo, GSM/WCDMA MDM_LTE, // 11 - LTE only MDM_LTE | MDM_WCDMA, // 12 - LTE and WCDMA MDM_TDSCDMA, // 13 - TD-SCDMA only MDM_WCDMA | MDM_TDSCDMA, // 14 - TD-SCDMA and WCDMA MDM_LTE | MDM_TDSCDMA, // 15 - LTE and TD-SCDMA MDM_TDSCDMA | MDM_GSM, // 16 - TD-SCDMA and GSM MDM_LTE | MDM_TDSCDMA | MDM_GSM, // 17 - TD-SCDMA, GSM and LTE MDM_WCDMA | MDM_TDSCDMA | MDM_GSM, // 18 - TD-SCDMA, GSM and WCDMA MDM_LTE | MDM_WCDMA | MDM_TDSCDMA, // 19 - LTE, TD-SCDMA and WCDMA MDM_LTE | MDM_WCDMA | MDM_TDSCDMA | MDM_GSM, // 20 - LTE, TD-SCDMA, GSM, and WCDMA MDM_EVDO | MDM_CDMA | MDM_WCDMA | MDM_TDSCDMA | MDM_GSM, // 21 - TD-SCDMA, CDMA, EVDO, GSM and WCDMA MDM_LTE | MDM_TDSCDMA | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM, // 22 - LTE, TDCSDMA, CDMA, EVDO, GSM and WCDMA MDM_NR, // 23 - NR 5G only mode MDM_NR | MDM_LTE, // 24 - NR 5G, LTE MDM_NR | MDM_LTE | MDM_CDMA | MDM_EVDO, // 25 - NR 5G, LTE, CDMA and EvDo MDM_NR | MDM_LTE | MDM_WCDMA | MDM_GSM, // 26 - NR 5G, LTE, GSM and WCDMA MDM_NR | MDM_LTE | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM, // 27 - NR 5G, LTE, CDMA, EvDo, GSM and WCDMA MDM_NR | MDM_LTE | MDM_WCDMA, // 28 - NR 5G, LTE and WCDMA MDM_NR | MDM_LTE | MDM_TDSCDMA, // 29 - NR 5G, LTE and TDSCDMA MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_GSM, // 30 - NR 5G, LTE, TD-SCDMA and GSM MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_WCDMA, // 31 - NR 5G, LTE, TD-SCDMA, WCDMA MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_WCDMA | MDM_GSM, // 32 - NR 5G, LTE, TD-SCDMA, GSM and WCDMA MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM, // 33 - NR 5G, LTE, TD-SCDMA, CDMA, EVDO, GSM and WCDMA }; #define GSM (RAF_GSM | RAF_GPRS | RAF_EDGE) #define CDMA (RAF_IS95A | RAF_IS95B | RAF_1xRTT) #define EVDO (RAF_EVDO_0 | RAF_EVDO_A | RAF_EVDO_B | RAF_EHRPD) #define WCDMA (RAF_HSUPA | RAF_HSDPA | RAF_HSPA | RAF_HSPAP | RAF_UMTS) #define LTE (RAF_LTE) #define NR (RAF_NR) typedef struct { int bitmap; int type; } NetworkTypeBitmap; static NetworkTypeBitmap s_networkMask[] = { {WCDMA | GSM, MDM_GSM | (MDM_WCDMA << 8)}, // 0 - GSM / WCDMA Pref {GSM, MDM_GSM}, // 1 - GSM only {WCDMA, MDM_WCDMA}, // 2 - WCDMA only {WCDMA | GSM, MDM_GSM | MDM_WCDMA}, // 3 - GSM / WCDMA Auto {CDMA | EVDO, MDM_CDMA | MDM_EVDO}, // 4 - CDMA / EvDo Auto {CDMA, MDM_CDMA}, // 5 - CDMA only {EVDO, MDM_EVDO}, // 6 - EvDo only {GSM | WCDMA | CDMA | EVDO, MDM_GSM | MDM_WCDMA | MDM_CDMA | MDM_EVDO}, // 7 - GSM/WCDMA, CDMA, EvDo {LTE | CDMA | EVDO, MDM_LTE | MDM_CDMA | MDM_EVDO}, // 8 - LTE, CDMA and EvDo {LTE | GSM | WCDMA, MDM_LTE | MDM_GSM | MDM_WCDMA}, // 9 - LTE, GSM/WCDMA {LTE | CDMA | EVDO | GSM | WCDMA, MDM_LTE | MDM_CDMA | MDM_EVDO | MDM_GSM | MDM_WCDMA}, // 10 - LTE, CDMA, EvDo, GSM/WCDMA {LTE, MDM_LTE}, // 11 - LTE only {LTE | WCDMA, MDM_LTE | MDM_WCDMA}, // 12 - LTE and WCDMA {RAF_TD_SCDMA, MDM_TDSCDMA}, // 13 - TD-SCDMA only {RAF_TD_SCDMA | WCDMA, MDM_WCDMA | MDM_TDSCDMA}, // 14 - TD-SCDMA and WCDMA {LTE | RAF_TD_SCDMA, MDM_LTE | MDM_TDSCDMA}, // 15 - LTE and TD-SCDMA {RAF_TD_SCDMA | GSM, MDM_TDSCDMA | MDM_GSM}, // 16 - TD-SCDMA and GSM {LTE | RAF_TD_SCDMA | GSM, MDM_LTE | MDM_TDSCDMA | MDM_GSM}, // 17 - TD-SCDMA, GSM and LTE {RAF_TD_SCDMA | GSM | WCDMA, MDM_WCDMA | MDM_TDSCDMA | MDM_GSM}, // 18 - TD-SCDMA, GSM and WCDMA {LTE | RAF_TD_SCDMA | WCDMA, MDM_LTE | MDM_WCDMA | MDM_TDSCDMA}, // 19 - LTE, TD-SCDMA and WCDMA {LTE | RAF_TD_SCDMA | GSM | WCDMA,MDM_LTE | MDM_WCDMA | MDM_TDSCDMA | MDM_GSM}, // 20 - LTE, TD-SCDMA, GSM, and WCDMA {RAF_TD_SCDMA | CDMA | EVDO | GSM | WCDMA, MDM_EVDO | MDM_CDMA | MDM_WCDMA | MDM_TDSCDMA | MDM_GSM}, // 21 - TD-SCDMA, CDMA, EVDO, GSM and WCDMA {LTE | RAF_TD_SCDMA | CDMA | EVDO | GSM | WCDMA, MDM_LTE | MDM_TDSCDMA | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM}, // 22 - LTE, TDCSDMA, CDMA, EVDO, GSM and WCDMA {NR, MDM_NR}, // 23 - NR 5G only mode {NR | LTE, MDM_NR | MDM_LTE}, // 24 - NR 5G, LTE {NR | LTE | CDMA | EVDO, MDM_NR | MDM_LTE | MDM_CDMA | MDM_EVDO}, // 25 - NR 5G, LTE, CDMA and EvDo {NR | LTE | GSM | WCDMA, MDM_NR | MDM_LTE | MDM_WCDMA | MDM_GSM}, // 26 - NR 5G, LTE, GSM and WCDMA {NR | LTE | CDMA | EVDO | GSM | WCDMA, MDM_NR | MDM_LTE | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM}, // 27 - NR 5G, LTE, CDMA, EvDo, GSM and WCDMA {NR | LTE | WCDMA, MDM_NR | MDM_LTE | MDM_WCDMA}, // 28 - NR 5G, LTE and WCDMA {NR | LTE | RAF_TD_SCDMA, MDM_NR | MDM_LTE | MDM_TDSCDMA}, // 29 - NR 5G, LTE and TDSCDMA {NR | LTE | RAF_TD_SCDMA | GSM, MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_GSM}, // 30 - NR 5G, LTE, TD-SCDMA and GSM {NR | LTE | RAF_TD_SCDMA | WCDMA, MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_WCDMA}, // 31 - NR 5G, LTE, TD-SCDMA, WCDMA {NR | LTE | RAF_TD_SCDMA | GSM | WCDMA, MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_WCDMA | MDM_GSM}, // 32 - NR 5G, LTE, TD-SCDMA, GSM and WCDMA {NR | LTE | RAF_TD_SCDMA | CDMA | EVDO | GSM | WCDMA, MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM}, // 33 - NR 5G, LTE, TD-SCDMA, CDMA, EVDO, GSM and WCDMA }; static int is3gpp2(int radioTech) { switch (radioTech) { case RADIO_TECH_IS95A: case RADIO_TECH_IS95B: case RADIO_TECH_1xRTT: case RADIO_TECH_EVDO_0: case RADIO_TECH_EVDO_A: case RADIO_TECH_EVDO_B: case RADIO_TECH_EHRPD: return 1; default: return 0; } } typedef enum { SIM_ABSENT = 0, SIM_NOT_READY = 1, SIM_READY = 2, SIM_PIN = 3, SIM_PUK = 4, SIM_NETWORK_PERSONALIZATION = 5, RUIM_ABSENT = 6, RUIM_NOT_READY = 7, RUIM_READY = 8, RUIM_PIN = 9, RUIM_PUK = 10, RUIM_NETWORK_PERSONALIZATION = 11, ISIM_ABSENT = 12, ISIM_NOT_READY = 13, ISIM_READY = 14, ISIM_PIN = 15, ISIM_PUK = 16, ISIM_NETWORK_PERSONALIZATION = 17, } SIM_Status; static void onRequest (int request, void *data, size_t datalen, RIL_Token t); static RIL_RadioState currentState(); static int onSupports (int requestCode); static void onCancel (RIL_Token t); static const char *getVersion(); static int isRadioOn(); static SIM_Status getSIMStatus(); static int getCardStatus(RIL_CardStatus_v1_5 **pp_card_status); static void freeCardStatus(RIL_CardStatus_v1_5 *p_card_status); static void onDataCallListChanged(void *param); bool areUiccApplicationsEnabled = true; extern const char * requestToString(int request); extern uint8_t hexCharToInt(uint8_t c); extern uint8_t * convertHexStringToBytes(void *response, size_t responseLen); /*** Static Variables ***/ static const RIL_RadioFunctions s_callbacks = { RIL_VERSION, onRequest, currentState, onSupports, onCancel, getVersion }; #ifdef RIL_SHLIB static const struct RIL_Env *s_rilenv; #define RIL_onRequestComplete(t, e, response, responselen) s_rilenv->OnRequestComplete(t,e, response, responselen) #define RIL_onUnsolicitedResponse(a,b,c) s_rilenv->OnUnsolicitedResponse(a,b,c) #define RIL_requestTimedCallback(a,b,c) s_rilenv->RequestTimedCallback(a,b,c) #endif static RIL_RadioState sState = RADIO_STATE_UNAVAILABLE; static bool isNrDualConnectivityEnabled = true; static pthread_mutex_t s_state_mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t s_state_cond = PTHREAD_COND_INITIALIZER; static int s_port = -1; static const char * s_device_path = NULL; static int s_device_socket = 0; static uint32_t s_modem_simulator_port = -1; /* trigger change to this with s_state_cond */ static int s_closed = 0; static int sFD; /* file desc of AT channel */ static char sATBuffer[MAX_AT_RESPONSE+1]; static char *sATBufferCur = NULL; static const struct timeval TIMEVAL_SIMPOLL = {1,0}; static const struct timeval TIMEVAL_CALLSTATEPOLL = {0,500000}; static const struct timeval TIMEVAL_0 = {0,0}; static int s_ims_registered = 0; // 0==unregistered static int s_ims_services = 1; // & 0x1 == sms over ims supported static int s_ims_format = 1; // FORMAT_3GPP(1) vs FORMAT_3GPP2(2); static int s_ims_cause_retry = 0; // 1==causes sms over ims to temp fail static int s_ims_cause_perm_failure = 0; // 1==causes sms over ims to permanent fail static int s_ims_gsm_retry = 0; // 1==causes sms over gsm to temp fail static int s_ims_gsm_fail = 0; // 1==causes sms over gsm to permanent fail #ifdef WORKAROUND_ERRONEOUS_ANSWER // Max number of times we'll try to repoll when we think // we have a AT+CLCC race condition #define REPOLL_CALLS_COUNT_MAX 4 // Line index that was incoming or waiting at last poll, or -1 for none static int s_incomingOrWaitingLine = -1; // Number of times we've asked for a repoll of AT+CLCC static int s_repollCallsCount = 0; // Should we expect a call to be answered in the next CLCC? static int s_expectAnswer = 0; #endif /* WORKAROUND_ERRONEOUS_ANSWER */ static int s_cell_info_rate_ms = INT_MAX; static int s_mcc = 0; static int s_mnc = 0; static int s_mncLength = 2; static int s_lac = 0; static int s_cid = 0; // STK static bool s_stkServiceRunning = false; static char *s_stkUnsolResponse = NULL; // Next available handle for keep alive session static int32_t s_session_handle = 1; typedef enum { STK_UNSOL_EVENT_UNKNOWN, STK_UNSOL_EVENT_NOTIFY, STK_UNSOL_PROACTIVE_CMD, } StkUnsolEvent; typedef enum { STK_RUN_AT = 0x34, STK_SEND_DTMF = 0x14, STK_SEND_SMS = 0x13, STK_SEND_SS = 0x11, STK_SEND_USSD = 0x12, STK_PLAY_TONE = 0x20, STK_OPEN_CHANNEL = 0x40, STK_CLOSE_CHANNEL = 0x41, STK_RECEIVE_DATA = 0x42, STK_SEND_DATA = 0x43, STK_GET_CHANNEL_STATUS = 0x44, STK_REFRESH = 0x01, } StkCmdType; enum PDPState { PDP_IDLE, PDP_BUSY, }; struct PDPInfo { int cid; enum PDPState state; }; struct PDPInfo s_PDP[] = { {1, PDP_IDLE}, {2, PDP_IDLE}, {3, PDP_IDLE}, {4, PDP_IDLE}, {5, PDP_IDLE}, {6, PDP_IDLE}, {7, PDP_IDLE}, {8, PDP_IDLE}, {9, PDP_IDLE}, {10, PDP_IDLE}, {11, PDP_IDLE}, }; static void pollSIMState (void *param); static void setRadioState(RIL_RadioState newState); static void setRadioTechnology(ModemInfo *mdm, int newtech); static int query_ctec(ModemInfo *mdm, int *current, int32_t *preferred); static int parse_technology_response(const char *response, int *current, int32_t *preferred); static int techFromModemType(int mdmtype); static void getIccId(char *iccid, int size); static int clccStateToRILState(int state, RIL_CallState *p_state) { switch(state) { case 0: *p_state = RIL_CALL_ACTIVE; return 0; case 1: *p_state = RIL_CALL_HOLDING; return 0; case 2: *p_state = RIL_CALL_DIALING; return 0; case 3: *p_state = RIL_CALL_ALERTING; return 0; case 4: *p_state = RIL_CALL_INCOMING; return 0; case 5: *p_state = RIL_CALL_WAITING; return 0; default: return -1; } } void convertBytesToHexString(char *bin_ptr, int length, unsigned char *hex_ptr) { int i; unsigned char tmp; if (bin_ptr == NULL || hex_ptr == NULL) { return; } for (i = 0; i < length; i++) { tmp = (unsigned char)((bin_ptr[i] & 0xf0) >> 4); if (tmp <= 9) { *hex_ptr = (unsigned char)(tmp + '0'); } else { *hex_ptr = (unsigned char)(tmp + 'A' - 10); } hex_ptr++; tmp = (unsigned char)(bin_ptr[i] & 0x0f); if (tmp <= 9) { *hex_ptr = (unsigned char)(tmp + '0'); } else { *hex_ptr = (unsigned char)(tmp + 'A' - 10); } hex_ptr++; } } /** * Note: directly modified line and has *p_call point directly into * modified line */ static int callFromCLCCLine(char *line, RIL_Call *p_call) { //+CLCC: 1,0,2,0,0,\"+18005551212\",145 // index,isMT,state,mode,isMpty(,number,TOA)? int err; int state; int mode; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &(p_call->index)); if (err < 0) goto error; err = at_tok_nextbool(&line, &(p_call->isMT)); if (err < 0) goto error; err = at_tok_nextint(&line, &state); if (err < 0) goto error; err = clccStateToRILState(state, &(p_call->state)); if (err < 0) goto error; err = at_tok_nextint(&line, &mode); if (err < 0) goto error; p_call->isVoice = (mode == 0); err = at_tok_nextbool(&line, &(p_call->isMpty)); if (err < 0) goto error; if (at_tok_hasmore(&line)) { err = at_tok_nextstr(&line, &(p_call->number)); /* tolerate null here */ if (err < 0) return 0; // Some lame implementations return strings // like "NOT AVAILABLE" in the CLCC line if (p_call->number != NULL && 0 == strspn(p_call->number, "+0123456789") ) { p_call->number = NULL; } err = at_tok_nextint(&line, &p_call->toa); if (err < 0) goto error; } p_call->uusInfo = NULL; return 0; error: RLOGE("invalid CLCC line\n"); return -1; } static int parseSimResponseLine(char* line, RIL_SIM_IO_Response* response) { int err; err = at_tok_start(&line); if (err < 0) return err; err = at_tok_nextint(&line, &response->sw1); if (err < 0) return err; err = at_tok_nextint(&line, &response->sw2); if (err < 0) return err; if (at_tok_hasmore(&line)) { err = at_tok_nextstr(&line, &response->simResponse); if (err < 0) return err; } return 0; } #ifdef CUTTLEFISH_ENABLE static void set_Ip_Addr(const char *addr, const char* radioInterfaceName) { RLOGD("%s %d setting ip addr %s on interface %s", __func__, __LINE__, addr, radioInterfaceName); struct ifreq request; int status = 0; int family = strchr(addr, ':') ? AF_INET6 : AF_INET; int sock = socket(family, SOCK_DGRAM, 0); if (sock == -1) { RLOGE("Failed to open interface socket: %s (%d)", strerror(errno), errno); return; } memset(&request, 0, sizeof(request)); strncpy(request.ifr_name, radioInterfaceName, sizeof(request.ifr_name)); request.ifr_name[sizeof(request.ifr_name) - 1] = '\0'; int pfxlen = 0; char *myaddr = strdup(addr); char *pch = NULL; pch = strchr(myaddr, '/'); if (pch) { *pch = '\0'; pfxlen = atoi(++pch); } if (family == AF_INET) { struct sockaddr_in *sin = (struct sockaddr_in *)&request.ifr_addr; sin->sin_family = AF_INET; sin->sin_addr.s_addr = inet_addr(myaddr); if (ioctl(sock, SIOCSIFADDR, &request) < 0) { RLOGE("%s: SIOCSIFADDR IPv4 failed.", __func__); } sin->sin_addr.s_addr = htonl(0xFFFFFFFFu << (32 - (pfxlen ?: 32))); if (ioctl(sock, SIOCSIFNETMASK, &request) < 0) { RLOGE("%s: SIOCSIFNETMASK failed.", __func__); } } else { if (ioctl(sock, SIOGIFINDEX, &request) < 0) { RLOGE("%s: SIOCGIFINDEX failed.", __func__); } struct in6_ifreq req6 = { // struct in6_addr ifr6_addr; .ifr6_prefixlen = pfxlen ?: 128, // __u32 .ifr6_ifindex = request.ifr_ifindex, // int }; if (inet_pton(AF_INET6, myaddr, &req6.ifr6_addr) != 1) { RLOGE("%s: inet_pton(AF_INET6, '%s') failed.", __func__, myaddr); } if (ioctl(sock, SIOCSIFADDR, &req6) < 0) { RLOGE("%s: SIOCSIFADDR IPv6 failed.", __func__); } } close(sock); free(myaddr); RLOGD("%s %d done.", __func__, __LINE__); } #endif enum InterfaceState { kInterfaceUp, kInterfaceDown, }; static RIL_Errno setInterfaceState(const char* interfaceName, enum InterfaceState state) { struct ifreq request; int status = 0; int sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_IP); if (sock == -1) { RLOGE("Failed to open interface socket: %s (%d)", strerror(errno), errno); return RIL_E_GENERIC_FAILURE; } memset(&request, 0, sizeof(request)); strncpy(request.ifr_name, interfaceName, sizeof(request.ifr_name)); request.ifr_name[sizeof(request.ifr_name) - 1] = '\0'; status = ioctl(sock, SIOCGIFFLAGS, &request); if (status != 0) { RLOGE("Failed to get interface flags for %s: %s (%d)", interfaceName, strerror(errno), errno); close(sock); return RIL_E_RADIO_NOT_AVAILABLE; } bool isUp = (request.ifr_flags & IFF_UP); if ((state == kInterfaceUp && isUp) || (state == kInterfaceDown && !isUp)) { // Interface already in desired state close(sock); return RIL_E_SUCCESS; } // Simply toggle the flag since we know it's the opposite of what we want request.ifr_flags ^= IFF_UP; status = ioctl(sock, SIOCSIFFLAGS, &request); if (status != 0) { RLOGE("Failed to set interface flags for %s: %s (%d)", interfaceName, strerror(errno), errno); close(sock); return RIL_E_GENERIC_FAILURE; } close(sock); return RIL_E_SUCCESS; } /** do post-AT+CFUN=1 initialization */ static void onRadioPowerOn() { #ifdef USE_TI_COMMANDS /* Must be after CFUN=1 */ /* TI specific -- notifications for CPHS things such */ /* as CPHS message waiting indicator */ at_send_command("AT%CPHS=1", NULL); /* TI specific -- enable NITZ unsol notifs */ at_send_command("AT%CTZV=1", NULL); #endif pollSIMState(NULL); } /** do post- SIM ready initialization */ static void onSIMReady() { at_send_command_singleline("AT+CSMS=1", "+CSMS:", NULL); /* * Always send SMS messages directly to the TE * * mode = 1 // discard when link is reserved (link should never be * reserved) * mt = 2 // most messages routed to TE * bm = 2 // new cell BM's routed to TE * ds = 1 // Status reports routed to TE * bfr = 1 // flush buffer */ at_send_command("AT+CNMI=1,2,2,1,1", NULL); } static void requestRadioPower(void *data, size_t datalen __unused, RIL_Token t) { int onOff; int err; ATResponse *p_response = NULL; assert (datalen >= sizeof(int *)); onOff = ((int *)data)[0]; if (onOff == 0 && sState != RADIO_STATE_OFF) { err = at_send_command("AT+CFUN=0", &p_response); if (err < 0 || p_response->success == 0) goto error; setRadioState(RADIO_STATE_OFF); } else if (onOff > 0 && sState == RADIO_STATE_OFF) { err = at_send_command("AT+CFUN=1", &p_response); if (err < 0|| p_response->success == 0) { // Some stacks return an error when there is no SIM, // but they really turn the RF portion on // So, if we get an error, let's check to see if it // turned on anyway if (isRadioOn() != 1) { goto error; } } setRadioState(RADIO_STATE_ON); } at_response_free(p_response); RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); return; error: at_response_free(p_response); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } static void requestShutdown(RIL_Token t) { int onOff; ATResponse *p_response = NULL; if (sState != RADIO_STATE_OFF) { at_send_command("AT+CFUN=0", &p_response); setRadioState(RADIO_STATE_UNAVAILABLE); } at_response_free(p_response); RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); return; } static void requestNvResetConfig(void* data, size_t datalen __unused, RIL_Token t) { assert(datalen >= sizeof(int*)); int nvConfig = ((int*)data)[0]; if (nvConfig == 1 /* ResetNvType::RELOAD */) { setRadioState(RADIO_STATE_OFF); // Wait for FW to process radio off before sending radio on for reboot sleep(5); setRadioState(RADIO_STATE_ON); } RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } static void requestOrSendDataCallList(int cid, RIL_Token *t); static void onDataCallListChanged(void *param __unused) { requestOrSendDataCallList(-1, NULL); } static void requestDataCallList(void *data __unused, size_t datalen __unused, RIL_Token t) { requestOrSendDataCallList(-1, &t); } // Hang up, reject, conference, call waiting static void requestCallSelection( void *data __unused, size_t datalen __unused, RIL_Token t, int request) { // 3GPP 22.030 6.5.5 static char hangupWaiting[] = "AT+CHLD=0"; static char hangupForeground[] = "AT+CHLD=1"; static char switchWaiting[] = "AT+CHLD=2"; static char conference[] = "AT+CHLD=3"; static char reject[] = "ATH"; char* atCommand; if (getSIMStatus() == SIM_ABSENT) { RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0); return; } switch(request) { case RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND: // "Releases all held calls or sets User Determined User Busy // (UDUB) for a waiting call." atCommand = hangupWaiting; break; case RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND: // "Releases all active calls (if any exist) and accepts // the other (held or waiting) call." atCommand = hangupForeground; break; case RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE: // "Places all active calls (if any exist) on hold and accepts // the other (held or waiting) call." atCommand = switchWaiting; #ifdef WORKAROUND_ERRONEOUS_ANSWER s_expectAnswer = 1; #endif /* WORKAROUND_ERRONEOUS_ANSWER */ break; case RIL_REQUEST_CONFERENCE: // "Adds a held call to the conversation" atCommand = conference; break; case RIL_REQUEST_UDUB: // User determined user busy (reject) atCommand = reject; break; default: assert(0); } at_send_command(atCommand, NULL); // Success or failure is ignored by the upper layer here. // It will call GET_CURRENT_CALLS and determine success that way. RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } static const char* getRadioInterfaceName() { if (isInEmulator()) { return EMULATOR_RADIO_INTERFACE; } return PPP_TTY_PATH_ETH0; } static void requestOrSendDataCallList(int cid, RIL_Token *t) { ATResponse *p_response = NULL; ATLine *p_cur = NULL; int err = -1; int n = 0; char *out = NULL; char propValue[PROP_VALUE_MAX] = {0}; const char* radioInterfaceName = getRadioInterfaceName(); err = at_send_command_multiline ("AT+CGACT?", "+CGACT:", &p_response); if (err != 0 || p_response->success == 0) { if (t != NULL) RIL_onRequestComplete(*t, RIL_E_GENERIC_FAILURE, NULL, 0); else RIL_onUnsolicitedResponse(RIL_UNSOL_DATA_CALL_LIST_CHANGED, NULL, 0); return; } for (p_cur = p_response->p_intermediates; p_cur != NULL; p_cur = p_cur->p_next) n++; RIL_Data_Call_Response_v11 *responses = (n == 0) ? NULL : alloca(n * sizeof(RIL_Data_Call_Response_v11)); int i; for (i = 0; i < n; i++) { responses[i].status = -1; responses[i].suggestedRetryTime = -1; responses[i].cid = -1; responses[i].active = -1; responses[i].type = ""; responses[i].ifname = ""; responses[i].addresses = ""; responses[i].dnses = ""; responses[i].gateways = ""; responses[i].pcscf = ""; responses[i].mtu = 0; } RIL_Data_Call_Response_v11 *response = responses; for (p_cur = p_response->p_intermediates; p_cur != NULL; p_cur = p_cur->p_next) { char *line = p_cur->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &response->cid); if (err < 0) goto error; err = at_tok_nextint(&line, &response->active); if (err < 0) goto error; response++; } at_response_free(p_response); err = at_send_command_multiline ("AT+CGDCONT?", "+CGDCONT:", &p_response); if (err != 0 || p_response->success == 0) { if (t != NULL) RIL_onRequestComplete(*t, RIL_E_GENERIC_FAILURE, NULL, 0); else RIL_onUnsolicitedResponse(RIL_UNSOL_DATA_CALL_LIST_CHANGED, NULL, 0); return; } for (p_cur = p_response->p_intermediates; p_cur != NULL; p_cur = p_cur->p_next) { char *line = p_cur->line; int ncid; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &ncid); if (err < 0) goto error; if (cid != ncid) continue; i = ncid - 1; if (i >= n || i < 0) goto error; // Assume no error responses[i].status = 0; // type err = at_tok_nextstr(&line, &out); if (err < 0) goto error; int type_size = strlen(out) + 1; responses[i].type = alloca(type_size); strlcpy(responses[i].type, out, type_size); // APN ignored for v5 err = at_tok_nextstr(&line, &out); if (err < 0) goto error; int ifname_size = strlen(radioInterfaceName) + 1; responses[i].ifname = alloca(ifname_size); strlcpy(responses[i].ifname, radioInterfaceName, ifname_size); err = at_tok_nextstr(&line, &out); if (err < 0) goto error; int addresses_size = strlen(out) + 1; responses[i].addresses = alloca(addresses_size); strlcpy(responses[i].addresses, out, addresses_size); #ifdef CUTTLEFISH_ENABLE set_Ip_Addr(responses[i].addresses, radioInterfaceName); #endif if (isInEmulator()) { /* We are in the emulator - the dns servers are listed * by the following system properties, setup in * /system/etc/init.goldfish.sh: * - vendor.net.eth0.dns1 * - vendor.net.eth0.dns2 * - vendor.net.eth0.dns3 * - vendor.net.eth0.dns4 */ const int dnslist_sz = 128; char* dnslist = alloca(dnslist_sz); const char* separator = ""; int nn; dnslist[0] = 0; for (nn = 1; nn <= 4; nn++) { /* Probe vendor.net.eth0.dns */ char propName[PROP_NAME_MAX]; char propValue[PROP_VALUE_MAX]; snprintf(propName, sizeof propName, "vendor.net.eth0.dns%d", nn); /* Ignore if undefined */ if (property_get(propName, propValue, "") <= 0) { continue; } /* Append the DNS IP address */ strlcat(dnslist, separator, dnslist_sz); strlcat(dnslist, propValue, dnslist_sz); separator = " "; } responses[i].dnses = dnslist; if (property_get("vendor.net.eth0.gw", propValue, "") > 0) { responses[i].gateways = propValue; } else { responses[i].gateways = ""; } responses[i].mtu = DEFAULT_MTU; } else { /* I don't know where we are, so use the public Google DNS * servers by default and no gateway. */ responses[i].dnses = "8.8.8.8 8.8.4.4"; responses[i].gateways = ""; } } // If cid = -1, return the data call list without processing CGCONTRDP (setupDataCall) if (cid == -1) { if (t != NULL) RIL_onRequestComplete(*t, RIL_E_SUCCESS, responses, sizeof(RIL_Data_Call_Response_v11)); else RIL_onUnsolicitedResponse(RIL_UNSOL_DATA_CALL_LIST_CHANGED, responses, n * sizeof(RIL_Data_Call_Response_v11)); at_response_free(p_response); p_response = NULL; return; } at_response_free(p_response); p_response = NULL; char cmd[64] = {0}; snprintf(cmd, sizeof(cmd), "AT+CGCONTRDP=%d", cid); err = at_send_command_singleline(cmd, "+CGCONTRDP:", &p_response); if (err < 0 || p_response->success == 0) { goto error; } int skip = 0; char *sskip = NULL; char *input = p_response->p_intermediates->line; int ncid = -1; err = at_tok_start(&input); if (err < 0) goto error; err = at_tok_nextint(&input, &ncid); // cid if (err < 0) goto error; if (cid != ncid) goto error; i = ncid - 1; err = at_tok_nextint(&input, &skip); // bearer_id if (err < 0) goto error; err = at_tok_nextstr(&input, &sskip); // apn if (err < 0) goto error; err = at_tok_nextstr(&input, &sskip); // local_addr_and_subnet_mask if (err < 0) goto error; err = at_tok_nextstr( &input, (responses) ? &responses[i].gateways : &sskip); // gw_addr if (err < 0) goto error; err = at_tok_nextstr( &input, (responses) ? &responses[i].dnses : &sskip); // dns_prim_addr if (err < 0) goto error; size_t response_size = 0; RIL_Data_Call_Response_v11 *presponse = NULL; if (responses) { if (i >= n || i < 0) goto error; presponse = &responses[i]; response_size = sizeof(*presponse); } if (t != NULL) RIL_onRequestComplete(*t, RIL_E_SUCCESS, presponse, response_size); else RIL_onUnsolicitedResponse(RIL_UNSOL_DATA_CALL_LIST_CHANGED, responses, n * response_size); at_response_free(p_response); return; error: if (t != NULL) RIL_onRequestComplete(*t, RIL_E_GENERIC_FAILURE, NULL, 0); else RIL_onUnsolicitedResponse(RIL_UNSOL_DATA_CALL_LIST_CHANGED, NULL, 0); at_response_free(p_response); } static void requestQueryNetworkSelectionMode( void *data __unused, size_t datalen __unused, RIL_Token t) { int err; ATResponse *p_response = NULL; int response = 0; char *line; err = at_send_command_singleline("AT+COPS?", "+COPS:", &p_response); if (err < 0 || p_response->success == 0) { goto error; } line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) { goto error; } err = at_tok_nextint(&line, &response); if (err < 0) { goto error; } RIL_onRequestComplete(t, RIL_E_SUCCESS, &response, sizeof(int)); at_response_free(p_response); return; error: at_response_free(p_response); RLOGE("requestQueryNetworkSelectionMode must never return error when radio is on"); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } static void sendCallStateChanged(void *param __unused) { RIL_onUnsolicitedResponse ( RIL_UNSOL_RESPONSE_CALL_STATE_CHANGED, NULL, 0); } static void requestGetCurrentCalls(void *data __unused, size_t datalen __unused, RIL_Token t) { int err; ATResponse *p_response; ATLine *p_cur; int countCalls; int countValidCalls; RIL_Call *p_calls; RIL_Call **pp_calls; int i; int needRepoll = 0; #ifdef WORKAROUND_ERRONEOUS_ANSWER int prevIncomingOrWaitingLine; prevIncomingOrWaitingLine = s_incomingOrWaitingLine; s_incomingOrWaitingLine = -1; #endif /*WORKAROUND_ERRONEOUS_ANSWER*/ err = at_send_command_multiline ("AT+CLCC", "+CLCC:", &p_response); if (err != 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); return; } /* count the calls */ for (countCalls = 0, p_cur = p_response->p_intermediates ; p_cur != NULL ; p_cur = p_cur->p_next ) { countCalls++; } /* yes, there's an array of pointers and then an array of structures */ pp_calls = (RIL_Call **)alloca(countCalls * sizeof(RIL_Call *)); p_calls = (RIL_Call *)alloca(countCalls * sizeof(RIL_Call)); memset (p_calls, 0, countCalls * sizeof(RIL_Call)); /* init the pointer array */ for(i = 0; i < countCalls ; i++) { pp_calls[i] = &(p_calls[i]); } for (countValidCalls = 0, p_cur = p_response->p_intermediates ; p_cur != NULL ; p_cur = p_cur->p_next ) { err = callFromCLCCLine(p_cur->line, p_calls + countValidCalls); if (err != 0) { continue; } #ifdef WORKAROUND_ERRONEOUS_ANSWER if (p_calls[countValidCalls].state == RIL_CALL_INCOMING || p_calls[countValidCalls].state == RIL_CALL_WAITING ) { s_incomingOrWaitingLine = p_calls[countValidCalls].index; } #endif /*WORKAROUND_ERRONEOUS_ANSWER*/ if (p_calls[countValidCalls].state != RIL_CALL_ACTIVE && p_calls[countValidCalls].state != RIL_CALL_HOLDING ) { needRepoll = 1; } countValidCalls++; } #ifdef WORKAROUND_ERRONEOUS_ANSWER // Basically: // A call was incoming or waiting // Now it's marked as active // But we never answered it // // This is probably a bug, and the call will probably // disappear from the call list in the next poll if (prevIncomingOrWaitingLine >= 0 && s_incomingOrWaitingLine < 0 && s_expectAnswer == 0 ) { for (i = 0; i < countValidCalls ; i++) { if (p_calls[i].index == prevIncomingOrWaitingLine && p_calls[i].state == RIL_CALL_ACTIVE && s_repollCallsCount < REPOLL_CALLS_COUNT_MAX ) { RLOGI( "Hit WORKAROUND_ERRONOUS_ANSWER case." " Repoll count: %d\n", s_repollCallsCount); s_repollCallsCount++; goto error; } } } s_expectAnswer = 0; s_repollCallsCount = 0; #endif /*WORKAROUND_ERRONEOUS_ANSWER*/ RIL_onRequestComplete(t, RIL_E_SUCCESS, pp_calls, countValidCalls * sizeof (RIL_Call *)); at_response_free(p_response); #ifdef POLL_CALL_STATE if (countValidCalls) { // We don't seem to get a "NO CARRIER" message from // smd, so we're forced to poll until the call ends. #else if (needRepoll) { #endif RIL_requestTimedCallback (sendCallStateChanged, NULL, &TIMEVAL_CALLSTATEPOLL); } return; #ifdef WORKAROUND_ERRONEOUS_ANSWER error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); #endif } static void requestDial(void *data, size_t datalen __unused, RIL_Token t) { RIL_Dial *p_dial; char *cmd; const char *clir; p_dial = (RIL_Dial *)data; switch (p_dial->clir) { case 1: clir = "I"; break; /*invocation*/ case 2: clir = "i"; break; /*suppression*/ default: case 0: clir = ""; break; /*subscription default*/ } asprintf(&cmd, "ATD%s%s;", p_dial->address, clir); at_send_command(cmd, NULL); free(cmd); /* success or failure is ignored by the upper layer here. it will call GET_CURRENT_CALLS and determine success that way */ RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } static void requestWriteSmsToSim(void *data, size_t datalen __unused, RIL_Token t) { RIL_SMS_WriteArgs *p_args; char *cmd; int length; int err; ATResponse *p_response = NULL; if (getSIMStatus() == SIM_ABSENT) { RIL_onRequestComplete(t, RIL_E_SIM_ABSENT, NULL, 0); return; } p_args = (RIL_SMS_WriteArgs *)data; length = strlen(p_args->pdu)/2; asprintf(&cmd, "AT+CMGW=%d,%d", length, p_args->status); err = at_send_command_sms(cmd, p_args->pdu, "+CMGW:", &p_response); if (err != 0 || p_response->success == 0) goto error; RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); at_response_free(p_response); return; error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); } static void requestHangup(void *data, size_t datalen __unused, RIL_Token t) { int *p_line; char *cmd; if (getSIMStatus() == SIM_ABSENT) { RIL_onRequestComplete(t, RIL_E_MODEM_ERR, NULL, 0); return; } p_line = (int *)data; // 3GPP 22.030 6.5.5 // "Releases a specific active call X" asprintf(&cmd, "AT+CHLD=1%d", p_line[0]); at_send_command(cmd, NULL); free(cmd); /* success or failure is ignored by the upper layer here. it will call GET_CURRENT_CALLS and determine success that way */ RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } static void requestSignalStrength(void *data __unused, size_t datalen __unused, RIL_Token t) { ATResponse *p_response = NULL; int err; char *line; int count = 0; // Accept a response that is at least v6, and up to v12 int minNumOfElements=sizeof(RIL_SignalStrength_v6)/sizeof(int); int maxNumOfElements=sizeof(RIL_SignalStrength_v12)/sizeof(int); int response[maxNumOfElements]; memset(response, 0, sizeof(response)); // TODO(b/206814247): Rename AT+CSQ command. err = at_send_command_singleline("AT+CSQ", "+CSQ:", &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); goto error; } line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto error; for (count = 0; count < maxNumOfElements; count++) { err = at_tok_nextint(&line, &(response[count])); if (err < 0 && count < minNumOfElements) goto error; } RIL_onRequestComplete(t, RIL_E_SUCCESS, response, sizeof(response)); at_response_free(p_response); return; error: RLOGE("requestSignalStrength must never return an error when radio is on"); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); } /** * networkModePossible. Decides whether the network mode is appropriate for the * specified modem */ static int networkModePossible(ModemInfo *mdm, int nm) { const int asize = sizeof(net2modem) / sizeof(net2modem[0]); if (nm >= asize || nm < 0) { RLOGW("%s %d: invalid net2modem index: %d", __func__, __LINE__, nm); return 0; } if ((net2modem[nm] & mdm->supportedTechs) == net2modem[nm]) { return 1; } return 0; } int getPreferredFromBitmap(int value, int *index) { for (unsigned int i = 0; i < sizeof(s_networkMask) / sizeof(NetworkTypeBitmap); i++) { if (s_networkMask[i].bitmap == value) { if (index) *index = i; return s_networkMask[i].type; } } // set default value here, since there is no match found // ref. //{LTE | GSM | WCDMA, MDM_LTE | MDM_GSM | MDM_WCDMA}, // 9 - LTE, GSM/WCDMA // const int DEFAULT_PREFERRED_INDEX = 9; const int DEFAULT_PREFERRED_BITMAP = MDM_LTE | MDM_GSM | MDM_WCDMA; assert(s_networkMask[DEFAULT_PREFERRED_INDEX] == DEFAULT_PREFERRED_BITMAP); if (index) { *index = DEFAULT_PREFERRED_INDEX; } RLOGD("getPreferredFromBitmap %d not match", value); return DEFAULT_PREFERRED_BITMAP; } unsigned getBitmapFromPreferred(int value) { for (unsigned int i = 0; i < sizeof(s_networkMask) / sizeof(NetworkTypeBitmap); i++) { if (s_networkMask[i].type == value) { return s_networkMask[i].bitmap; } } RLOGD("getBitmapFromPreferred %d not match", value); return LTE | GSM | WCDMA; } static void requestSetPreferredNetworkType(int request, void *data, size_t datalen __unused, RIL_Token t ) { ATResponse *p_response = NULL; char *cmd = NULL; int value = *(int *)data; int index = value; int current, old; int err; int32_t preferred; if (request == RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE) { preferred = net2pmask[value]; } else { preferred = getPreferredFromBitmap(value, &index); } RLOGD("requestSetPreferredNetworkType: current: %x. New: %x", PREFERRED_NETWORK(sMdmInfo), preferred); if (!networkModePossible(sMdmInfo, index)) { RIL_onRequestComplete(t, RIL_E_MODE_NOT_SUPPORTED, NULL, 0); return; } if (query_ctec(sMdmInfo, ¤t, NULL) < 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); return; } old = PREFERRED_NETWORK(sMdmInfo); RLOGD("old != preferred: %d", old != preferred); if (old != preferred) { asprintf(&cmd, "AT+CTEC=%d,\"%x\"", current, preferred); RLOGD("Sending command: <%s>", cmd); err = at_send_command_singleline(cmd, "+CTEC:", &p_response); free(cmd); if (err || !p_response->success) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); return; } PREFERRED_NETWORK(sMdmInfo) = value; if (!strstr( p_response->p_intermediates->line, "DONE") ) { int current; int res = parse_technology_response(p_response->p_intermediates->line, ¤t, NULL); switch (res) { case -1: // Error or unable to parse break; case 1: // Only able to parse current case 0: // Both current and preferred were parsed setRadioTechnology(sMdmInfo, current); break; } } } RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } static void requestGetPreferredNetworkType(int request __unused, void *data __unused, size_t datalen __unused, RIL_Token t) { int preferred; unsigned i; switch ( query_ctec(sMdmInfo, NULL, &preferred) ) { case -1: // Error or unable to parse case 1: // Only able to parse current RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); break; case 0: // Both current and preferred were parsed for ( i = 0 ; i < sizeof(net2pmask) / sizeof(int32_t) ; i++ ) { if (preferred == net2pmask[i]) { goto done; } } RLOGE("Unknown preferred mode received from modem: %d", preferred); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); return; } done: if (request == RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE_BITMAP || request == RIL_REQUEST_GET_ALLOWED_NETWORK_TYPES_BITMAP) { i = getBitmapFromPreferred(preferred); } RIL_onRequestComplete(t, RIL_E_SUCCESS, &i, sizeof(i)); } static void requestGetCarrierRestrictions(void* data, size_t datalen, RIL_Token t) { RIL_UNUSED_PARM(datalen); RIL_UNUSED_PARM(data); // Fixed values. TODO: query modem RIL_Carrier allowed_carriers = { "123", // mcc "456", // mnc RIL_MATCH_ALL, // match_type "", // match_data }; RIL_Carrier excluded_carriers; RIL_CarrierRestrictionsWithPriority restrictions = { 1, // len_allowed_carriers 0, // len_excluded_carriers &allowed_carriers, // allowed_carriers &excluded_carriers, // excluded_carriers 1, // allowedCarriersPrioritized NO_MULTISIM_POLICY // multiSimPolicy }; RIL_onRequestComplete(t, RIL_E_SUCCESS, &restrictions, sizeof(restrictions)); } static void requestCdmaPrlVersion(int request __unused, void *data __unused, size_t datalen __unused, RIL_Token t) { int err; char * responseStr; ATResponse *p_response = NULL; const char *cmd; char *line; err = at_send_command_singleline("AT+WPRL?", "+WPRL:", &p_response); if (err < 0 || !p_response->success) goto error; line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextstr(&line, &responseStr); if (err < 0 || !responseStr) goto error; RIL_onRequestComplete(t, RIL_E_SUCCESS, responseStr, strlen(responseStr)); at_response_free(p_response); return; error: at_response_free(p_response); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } static void requestCdmaBaseBandVersion(int request __unused, void *data __unused, size_t datalen __unused, RIL_Token t) { int err; char * responseStr; ATResponse *p_response = NULL; const char *cmd; const char *prefix; char *line, *p; int commas; int skip; int count = 4; // Fixed values. TODO: query modem responseStr = strdup("1.0.0.0"); RIL_onRequestComplete(t, RIL_E_SUCCESS, responseStr, sizeof(responseStr)); free(responseStr); } static void requestDeviceIdentity(int request __unused, void *data __unused, size_t datalen __unused, RIL_Token t) { int err; int response[4]; char * responseStr[4]; ATResponse *p_response = NULL; const char *cmd; const char *prefix; char *line, *p; int commas; int skip; int count = 4; char meid[14] = {0}; err = at_send_command_numeric("AT+CGSN", &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); return; } responseStr[0] = p_response->p_intermediates->line; responseStr[1] = ""; responseStr[2] = "77777777"; responseStr[3] = ""; // default empty for non-CDMA if (TECH_BIT(sMdmInfo) == MDM_CDMA) { strncpy(meid, responseStr[0], sizeof(meid)); responseStr[3] = meid; } RIL_onRequestComplete(t, RIL_E_SUCCESS, responseStr, count*sizeof(char*)); at_response_free(p_response); } static void requestCdmaGetSubscriptionSource(int request __unused, void *data, size_t datalen __unused, RIL_Token t) { int err; int *ss = (int *)data; ATResponse *p_response = NULL; char *cmd = NULL; char *line = NULL; int response; asprintf(&cmd, "AT+CCSS?"); if (!cmd) goto error; err = at_send_command_singleline(cmd, "+CCSS:", &p_response); if (err < 0 || !p_response->success) goto error; line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &response); free(cmd); cmd = NULL; RIL_onRequestComplete(t, RIL_E_SUCCESS, &response, sizeof(response)); return; error: free(cmd); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } static void requestCdmaSetSubscriptionSource(int request __unused, void *data, size_t datalen, RIL_Token t) { int err; int *ss = (int *)data; ATResponse *p_response = NULL; char *cmd = NULL; if (!ss || !datalen) { RLOGE("RIL_REQUEST_CDMA_SET_SUBSCRIPTION without data!"); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); return; } asprintf(&cmd, "AT+CCSS=%d", ss[0]); if (!cmd) goto error; err = at_send_command(cmd, &p_response); if (err < 0 || !p_response->success) goto error; free(cmd); cmd = NULL; RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); RIL_onUnsolicitedResponse(RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED, ss, sizeof(ss[0])); return; error: free(cmd); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } static void requestCdmaSubscription(int request __unused, void *data __unused, size_t datalen __unused, RIL_Token t) { int err; int response[5]; char * responseStr[5]; ATResponse *p_response = NULL; const char *cmd; const char *prefix; char *line, *p; int commas; int skip; int count = 5; // Fixed values. TODO: Query modem responseStr[0] = "8587777777"; // MDN responseStr[1] = "1"; // SID responseStr[2] = "1"; // NID responseStr[3] = "8587777777"; // MIN responseStr[4] = "1"; // PRL Version RIL_onRequestComplete(t, RIL_E_SUCCESS, responseStr, count*sizeof(char*)); } static void requestCdmaGetRoamingPreference(int request __unused, void *data __unused, size_t datalen __unused, RIL_Token t) { int roaming_pref = -1; ATResponse *p_response = NULL; char *line; int res; res = at_send_command_singleline("AT+WRMP?", "+WRMP:", &p_response); if (res < 0 || !p_response->success) { goto error; } line = p_response->p_intermediates->line; res = at_tok_start(&line); if (res < 0) goto error; res = at_tok_nextint(&line, &roaming_pref); if (res < 0) goto error; RIL_onRequestComplete(t, RIL_E_SUCCESS, &roaming_pref, sizeof(roaming_pref)); return; error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } static void requestCdmaSetRoamingPreference(int request __unused, void *data, size_t datalen __unused, RIL_Token t) { int *pref = (int *)data; ATResponse *p_response = NULL; char *line; int res; char *cmd = NULL; asprintf(&cmd, "AT+WRMP=%d", *pref); if (cmd == NULL) goto error; res = at_send_command(cmd, &p_response); if (res < 0 || !p_response->success) goto error; RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); free(cmd); return; error: free(cmd); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } static int parseRegistrationState(char *str, int *type, int *items, int **response) { int err; char *line = str, *p; int *resp = NULL; int skip; int commas; s_lac = -1; s_cid = -1; RLOGD("parseRegistrationState. Parsing: %s",str); err = at_tok_start(&line); if (err < 0) goto error; /* Ok you have to be careful here * The solicited version of the CREG response is * +CREG: n, stat, [lac, cid] * and the unsolicited version is * +CREG: stat, [lac, cid] * The parameter is basically "is unsolicited creg on?" * which it should always be * * Now we should normally get the solicited version here, * but the unsolicited version could have snuck in * so we have to handle both * * Also since the LAC and CID are only reported when registered, * we can have 1, 2, 3, or 4 arguments here * * finally, a +CGREG: answer may have a fifth value that corresponds * to the network type, as in; * * +CGREG: n, stat [,lac, cid [,networkType]] */ /* count number of commas */ commas = 0; for (p = line ; *p != '\0' ;p++) { if (*p == ',') commas++; } resp = (int *)calloc(commas + 1, sizeof(int)); if (!resp) goto error; switch (commas) { case 0: /* +CREG: */ err = at_tok_nextint(&line, &resp[0]); if (err < 0) goto error; break; case 1: /* +CREG: , */ err = at_tok_nextint(&line, &skip); if (err < 0) goto error; err = at_tok_nextint(&line, &resp[0]); if (err < 0) goto error; break; case 2: /* +CREG: , , */ err = at_tok_nextint(&line, &resp[0]); if (err < 0) goto error; err = at_tok_nexthexint(&line, &resp[1]); if (err < 0) goto error; err = at_tok_nexthexint(&line, &resp[2]); if (err < 0) goto error; break; case 3: /* +CREG: , , , */ err = at_tok_nextint(&line, &skip); if (err < 0) goto error; err = at_tok_nextint(&line, &resp[0]); if (err < 0) goto error; err = at_tok_nexthexint(&line, &resp[1]); if (err < 0) goto error; err = at_tok_nexthexint(&line, &resp[2]); if (err < 0) goto error; break; /* special case for CGREG, there is a fourth parameter * that is the network type (unknown/gprs/edge/umts) */ case 4: /* +CGREG: , , , , */ err = at_tok_nextint(&line, &skip); if (err < 0) goto error; err = at_tok_nextint(&line, &resp[0]); if (err < 0) goto error; err = at_tok_nexthexint(&line, &resp[1]); if (err < 0) goto error; err = at_tok_nexthexint(&line, &resp[2]); if (err < 0) goto error; err = at_tok_nextint(&line, &resp[3]); if (err < 0) goto error; break; default: goto error; } if (commas >= 2) { s_lac = resp[1]; s_cid = resp[2]; } if (response) *response = resp; if (items) *items = commas + 1; if (type) *type = techFromModemType(TECH(sMdmInfo)); return 0; error: free(resp); return -1; } static int mapNetworkRegistrationResponse(int in_response) { int out_response = 0; switch (in_response) { case 0: out_response = RADIO_TECH_GPRS; /* GPRS */ break; case 3: out_response = RADIO_TECH_EDGE; /* EDGE */ break; case 2: out_response = RADIO_TECH_UMTS; /* TD */ break; case 4: out_response = RADIO_TECH_HSDPA; /* HSDPA */ break; case 5: out_response = RADIO_TECH_HSUPA; /* HSUPA */ break; case 6: out_response = RADIO_TECH_HSPA; /* HSPA */ break; case 15: out_response = RADIO_TECH_HSPAP; /* HSPA+ */ break; case 7: out_response = RADIO_TECH_LTE; /* LTE */ break; case 16: out_response = RADIO_TECH_LTE_CA; /* LTE_CA */ break; case 11: // NR connected to a 5GCN case 12: // NG-RAN case 13: // E-UTRA-NR dual connectivity out_response = RADIO_TECH_NR; /* NR */ break; default: out_response = RADIO_TECH_UNKNOWN; /* UNKNOWN */ break; } return out_response; } #define REG_STATE_LEN 18 #define REG_DATA_STATE_LEN 14 static void requestRegistrationState(int request, void *data __unused, size_t datalen __unused, RIL_Token t) { int err; int *registration; char **responseStr = NULL; ATResponse *p_response = NULL; const char *cmd; const char *prefix; char *line; int i = 0, j, numElements = 0; int count = 3; int type, startfrom; RLOGD("requestRegistrationState"); if (request == RIL_REQUEST_VOICE_REGISTRATION_STATE) { cmd = "AT+CREG?"; prefix = "+CREG:"; numElements = REG_STATE_LEN; } else if (request == RIL_REQUEST_DATA_REGISTRATION_STATE) { cmd = "AT+CGREG?"; prefix = "+CGREG:"; numElements = REG_DATA_STATE_LEN; if (TECH_BIT(sMdmInfo) == MDM_LTE) { cmd = "AT+CEREG?"; prefix = "+CEREG:"; } } else { assert(0); goto error; } err = at_send_command_singleline(cmd, prefix, &p_response); if (err < 0 || !p_response->success) goto error; line = p_response->p_intermediates->line; if (parseRegistrationState(line, &type, &count, ®istration)) goto error; responseStr = malloc(numElements * sizeof(char *)); if (!responseStr) goto error; memset(responseStr, 0, numElements * sizeof(char *)); /** * The first '4' bytes for both registration states remain the same. * But if the request is 'DATA_REGISTRATION_STATE', * the 5th and 6th byte(s) are optional. */ if (is3gpp2(type) == 1) { RLOGD("registration state type: 3GPP2"); // TODO: Query modem startfrom = 3; if(request == RIL_REQUEST_VOICE_REGISTRATION_STATE) { asprintf(&responseStr[3], "8"); // EvDo revA asprintf(&responseStr[4], "1"); // BSID asprintf(&responseStr[5], "123"); // Latitude asprintf(&responseStr[6], "222"); // Longitude asprintf(&responseStr[7], "0"); // CSS Indicator asprintf(&responseStr[8], "4"); // SID asprintf(&responseStr[9], "65535"); // NID asprintf(&responseStr[10], "0"); // Roaming indicator asprintf(&responseStr[11], "1"); // System is in PRL asprintf(&responseStr[12], "0"); // Default Roaming indicator asprintf(&responseStr[13], "0"); // Reason for denial asprintf(&responseStr[14], "0"); // Primary Scrambling Code of Current cell } else if (request == RIL_REQUEST_DATA_REGISTRATION_STATE) { asprintf(&responseStr[3], "8"); // Available data radio technology } } else { // type == RADIO_TECH_3GPP RLOGD("registration state type: 3GPP"); startfrom = 0; if (count > 1) { asprintf(&responseStr[1], "%x", registration[1]); } if (count > 2) { asprintf(&responseStr[2], "%x", registration[2]); } if (count > 3) { asprintf(&responseStr[3], "%d", mapNetworkRegistrationResponse(registration[3])); } } asprintf(&responseStr[0], "%d", registration[0]); /** * Optional bytes for DATA_REGISTRATION_STATE request * 4th byte : Registration denial code * 5th byte : The max. number of simultaneous Data Calls */ if (request == RIL_REQUEST_DATA_REGISTRATION_STATE) { // asprintf(&responseStr[4], "3"); // asprintf(&responseStr[5], "1"); asprintf(&responseStr[11], "%d", s_mcc); asprintf(&responseStr[12], "%d", s_mnc); if (s_mncLength == 2) { asprintf(&responseStr[13], "%03d%02d", s_mcc, s_mnc); } else { asprintf(&responseStr[13], "%03d%03d", s_mcc, s_mnc); } } else { // Voice asprintf(&responseStr[15], "%d", s_mcc); asprintf(&responseStr[16], "%d", s_mnc); if (s_mncLength == 2) { asprintf(&responseStr[17], "%03d%02d", s_mcc, s_mnc); } else { asprintf(&responseStr[17], "%03d%03d", s_mcc, s_mnc); } } for (j = startfrom; j < numElements; j++) { if (!responseStr[i]) goto error; } free(registration); registration = NULL; RIL_onRequestComplete(t, RIL_E_SUCCESS, responseStr, numElements*sizeof(responseStr)); for (j = 0; j < numElements; j++ ) { free(responseStr[j]); responseStr[j] = NULL; } free(responseStr); responseStr = NULL; at_response_free(p_response); return; error: if (responseStr) { for (j = 0; j < numElements; j++) { free(responseStr[j]); responseStr[j] = NULL; } free(responseStr); responseStr = NULL; } RLOGE("requestRegistrationState must never return an error when radio is on"); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); } static void requestOperator(void *data __unused, size_t datalen __unused, RIL_Token t) { int err; int i; int skip; ATLine *p_cur; char *response[3]; memset(response, 0, sizeof(response)); ATResponse *p_response = NULL; err = at_send_command_multiline( "AT+COPS=3,0;+COPS?;+COPS=3,1;+COPS?;+COPS=3,2;+COPS?", "+COPS:", &p_response); /* we expect 3 lines here: * +COPS: 0,0,"T - Mobile" * +COPS: 0,1,"TMO" * +COPS: 0,2,"310170" */ if (err != 0) goto error; for (i = 0, p_cur = p_response->p_intermediates ; p_cur != NULL ; p_cur = p_cur->p_next, i++ ) { char *line = p_cur->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &skip); if (err < 0) goto error; // If we're unregistered, we may just get // a "+COPS: 0" response if (!at_tok_hasmore(&line)) { response[i] = NULL; continue; } err = at_tok_nextint(&line, &skip); if (err < 0) goto error; // a "+COPS: 0, n" response is also possible if (!at_tok_hasmore(&line)) { response[i] = NULL; continue; } err = at_tok_nextstr(&line, &(response[i])); if (err < 0) goto error; // Simple assumption that mcc and mnc are 3 digits each int length = strlen(response[i]); if (length == 6) { s_mncLength = 3; if (sscanf(response[i], "%3d%3d", &s_mcc, &s_mnc) != 2) { RLOGE("requestOperator expected mccmnc to be 6 decimal digits"); } } else if (length == 5) { s_mncLength = 2; if (sscanf(response[i], "%3d%2d", &s_mcc, &s_mnc) != 2) { RLOGE("requestOperator expected mccmnc to be 5 decimal digits"); } } } if (i != 3) { /* expect 3 lines exactly */ goto error; } RIL_onRequestComplete(t, RIL_E_SUCCESS, response, sizeof(response)); at_response_free(p_response); return; error: RLOGE("requestOperator must not return error when radio is on"); s_mncLength = 0; s_mcc = 0; s_mnc = 0; RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); } static void requestCdmaSendSMS(void *data, size_t datalen, RIL_Token t) { int err = 1; // Set to go to error: RIL_SMS_Response response; RIL_CDMA_SMS_Message* rcsm; memset(&response, 0, sizeof(response)); if (getSIMStatus() == SIM_ABSENT) { RIL_onRequestComplete(t, RIL_E_SIM_ABSENT, NULL, 0); return; } RLOGD("requestCdmaSendSMS datalen=%zu, sizeof(RIL_CDMA_SMS_Message)=%zu", datalen, sizeof(RIL_CDMA_SMS_Message)); // verify data content to test marshalling/unmarshalling: rcsm = (RIL_CDMA_SMS_Message*)data; RLOGD("TeleserviceID=%d, bIsServicePresent=%d, \ uServicecategory=%d, sAddress.digit_mode=%d, \ sAddress.Number_mode=%d, sAddress.number_type=%d, ", rcsm->uTeleserviceID, rcsm->bIsServicePresent, rcsm->uServicecategory,rcsm->sAddress.digit_mode, rcsm->sAddress.number_mode,rcsm->sAddress.number_type); if (err != 0) goto error; // Cdma Send SMS implementation will go here: // But it is not implemented yet. response.messageRef = 1; RIL_onRequestComplete(t, RIL_E_SUCCESS, &response, sizeof(response)); return; error: // Cdma Send SMS will always cause send retry error. response.messageRef = -1; RIL_onRequestComplete(t, RIL_E_SMS_SEND_FAIL_RETRY, &response, sizeof(response)); } static void requestSendSMS(void *data, size_t datalen, RIL_Token t) { int err; const char *smsc; const char *pdu; int tpLayerLength; char *cmd1, *cmd2; RIL_SMS_Response response; ATResponse *p_response = NULL; if (getSIMStatus() == SIM_ABSENT) { RIL_onRequestComplete(t, RIL_E_SIM_ABSENT, NULL, 0); return; } memset(&response, 0, sizeof(response)); RLOGD("requestSendSMS datalen =%zu", datalen); if (s_ims_gsm_fail != 0) goto error; if (s_ims_gsm_retry != 0) goto error2; smsc = ((const char **)data)[0]; pdu = ((const char **)data)[1]; tpLayerLength = strlen(pdu)/2; // "NULL for default SMSC" if (smsc == NULL) { smsc= "00"; } asprintf(&cmd1, "AT+CMGS=%d", tpLayerLength); asprintf(&cmd2, "%s%s", smsc, pdu); err = at_send_command_sms(cmd1, cmd2, "+CMGS:", &p_response); free(cmd1); free(cmd2); if (err != 0 || p_response->success == 0) goto error; int messageRef = 1; char *line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &messageRef); if (err < 0) goto error; /* FIXME fill in ackPDU */ response.messageRef = messageRef; RIL_onRequestComplete(t, RIL_E_SUCCESS, &response, sizeof(response)); at_response_free(p_response); return; error: response.messageRef = -2; RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, &response, sizeof(response)); at_response_free(p_response); return; error2: // send retry error. response.messageRef = -1; RIL_onRequestComplete(t, RIL_E_SMS_SEND_FAIL_RETRY, &response, sizeof(response)); at_response_free(p_response); return; } static void requestImsSendSMS(void *data, size_t datalen, RIL_Token t) { RIL_IMS_SMS_Message *p_args; RIL_SMS_Response response; memset(&response, 0, sizeof(response)); RLOGD("requestImsSendSMS: datalen=%zu, " "registered=%d, service=%d, format=%d, ims_perm_fail=%d, " "ims_retry=%d, gsm_fail=%d, gsm_retry=%d", datalen, s_ims_registered, s_ims_services, s_ims_format, s_ims_cause_perm_failure, s_ims_cause_retry, s_ims_gsm_fail, s_ims_gsm_retry); // figure out if this is gsm/cdma format // then route it to requestSendSMS vs requestCdmaSendSMS respectively p_args = (RIL_IMS_SMS_Message *)data; if (0 != s_ims_cause_perm_failure ) goto error; // want to fail over ims and this is first request over ims if (0 != s_ims_cause_retry && 0 == p_args->retry) goto error2; if (RADIO_TECH_3GPP == p_args->tech) { return requestSendSMS(p_args->message.gsmMessage, datalen - sizeof(RIL_RadioTechnologyFamily), t); } else if (RADIO_TECH_3GPP2 == p_args->tech) { return requestCdmaSendSMS(p_args->message.cdmaMessage, datalen - sizeof(RIL_RadioTechnologyFamily), t); } else { RLOGE("requestImsSendSMS invalid format value =%d", p_args->tech); } error: response.messageRef = -2; RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, &response, sizeof(response)); return; error2: response.messageRef = -1; RIL_onRequestComplete(t, RIL_E_SMS_SEND_FAIL_RETRY, &response, sizeof(response)); } /** * Add for CTS test * If open logical channel with AID NULL, this means open logical channel to MF. * If there is P2 value, this P2 value is used for SELECT command. * In addition, if SELECT command returns 61xx, GET RESPONSE command needs to send to get data. */ static int sendCmdAgainForOpenChannelWithP2( char *data, int p2, int *response, int *rspLen) { int len = 0; int err = -1; char *line = NULL; char cmd[64] = {0}; RIL_Errno errType = RIL_E_GENERIC_FAILURE; ATResponse *p_response = NULL; RIL_SIM_IO_Response sr; memset(&sr, 0, sizeof(sr)); sscanf(data, "%2x", &(response[0])); // response[0] is channel number // Send SELECT command to MF snprintf(cmd, sizeof(cmd), "AT+CGLA=%d,14,00A400%02X023F00", response[0], p2); err = at_send_command_singleline(cmd, "+CGLA:", &p_response); if (err < 0) goto done; if (p_response->success == 0) { if (!strcmp(p_response->finalResponse, "+CME ERROR: 21") || !strcmp(p_response->finalResponse, "+CME ERROR: 50")) { errType = RIL_E_GENERIC_FAILURE; } goto done; } line = p_response->p_intermediates->line; if (at_tok_start(&line) < 0 || at_tok_nextint(&line, &len) < 0 || at_tok_nextstr(&line, &(sr.simResponse)) < 0) { goto done; } sscanf(&(sr.simResponse[len - 4]), "%02x%02x", &(sr.sw1), &(sr.sw2)); if (sr.sw1 == 0x90 && sr.sw2 == 0x00) { // 9000 is successful int length = len / 2; for (*rspLen = 1; *rspLen <= length; (*rspLen)++) { sscanf(sr.simResponse, "%02x", &(response[*rspLen])); sr.simResponse += 2; } errType = RIL_E_SUCCESS; } else { // close channel snprintf(cmd, sizeof(cmd), "AT+CCHC=%d", response[0]); at_send_command( cmd, NULL); } done: at_response_free(p_response); return errType; } static void requestSimOpenChannel(void *data, size_t datalen, RIL_Token t) { RIL_UNUSED_PARM(datalen); ATResponse *p_response = NULL; int response[260] = {0}; int responseLen = 1; int32_t session_id; int err; char cmd[64] = {0}; char complex; char *line = NULL; int skip = 0; char *statusWord = NULL; int err_no = RIL_E_GENERIC_FAILURE; RIL_OpenChannelParams *params = (RIL_OpenChannelParams *)data; // Max length is 16 bytes according to 3GPP spec 27.007 section 8.45 if (params->aidPtr == NULL) { err = at_send_command_singleline("AT+CSIM=10,\"0070000001\"", "+CSIM:", &p_response); } else { snprintf(cmd, sizeof(cmd), "AT+CCHO=%s", params->aidPtr); err = at_send_command_numeric(cmd, &p_response); } if (err < 0 || p_response == NULL || p_response->success == 0) { ALOGE("Error %d opening logical channel: %d", err, p_response ? p_response->success : 0); goto error; } // Ensure integer only by scanning for an extra char but expect one result line = p_response->p_intermediates->line; if (params->aidPtr == NULL) { err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &skip); if (err < 0) goto error; err = at_tok_nextstr(&line, &statusWord); if (err < 0) goto error; if (params->p2 < 0) { int length = strlen(statusWord) / 2; for (responseLen = 0; responseLen < length; responseLen++) { sscanf(statusWord, "%02x", &(response[responseLen])); statusWord += 2; } err_no = RIL_E_SUCCESS; } else { response[0] = 1; err_no = sendCmdAgainForOpenChannelWithP2(statusWord, params->p2, response, &responseLen); if (err_no != RIL_E_SUCCESS) { goto error; } } RIL_onRequestComplete(t, err_no, response, responseLen * sizeof(int)); at_response_free(p_response); return; } else { if (sscanf(line, "%" SCNd32 "%c", &session_id, &complex) != 1) { ALOGE("Invalid AT response, expected integer, was '%s'", line); goto error; } } RIL_onRequestComplete(t, RIL_E_SUCCESS, &session_id, sizeof(session_id)); at_response_free(p_response); return; error: RIL_onRequestComplete(t, err_no, NULL, 0); at_response_free(p_response); return; } static void requestSimCloseChannel(void *data, size_t datalen, RIL_Token t) { ATResponse *p_response = NULL; int32_t session_id; int err; char cmd[32]; if (data == NULL || datalen != sizeof(session_id)) { ALOGE("Invalid data passed to requestSimCloseChannel"); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); return; } session_id = ((int32_t *)data)[0]; if (session_id == 0) { RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0); return; } snprintf(cmd, sizeof(cmd), "AT+CCHC=%" PRId32, session_id); err = at_send_command_singleline(cmd, "+CCHC", &p_response); if (err < 0 || p_response == NULL || p_response->success == 0) { ALOGE("Error %d closing logical channel %d: %d", err, session_id, p_response ? p_response->success : 0); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); return; } RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); at_response_free(p_response); } static void requestSimTransmitApduChannel(void *data, size_t datalen, RIL_Token t) { ATResponse *p_response = NULL; int err; int len = 0; char *cmd; char *line = NULL; size_t cmd_size; RIL_SIM_IO_Response sr = {0}; RIL_SIM_APDU *apdu = (RIL_SIM_APDU *)data; if (apdu == NULL || datalen != sizeof(RIL_SIM_APDU)) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); return; } cmd_size = 10 + (apdu->data ? strlen(apdu->data) : 0); asprintf(&cmd, "AT+CGLA=%d,%zu,%02x%02x%02x%02x%02x%s", apdu->sessionid, cmd_size, apdu->cla, apdu->instruction, apdu->p1, apdu->p2, apdu->p3, apdu->data ? apdu->data : ""); err = at_send_command_singleline(cmd, "+CGLA:", &p_response); free(cmd); if (err < 0 || p_response == NULL || p_response->success == 0) { ALOGE("Error %d transmitting APDU: %d", err, p_response ? p_response->success : 0); goto error; } line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &len); if (err < 0) goto error; err = at_tok_nextstr(&line, &(sr.simResponse)); if (err < 0) goto error; len = strlen(sr.simResponse); if (len < 4) goto error; sscanf(&(sr.simResponse[len - 4]), "%02x%02x", &(sr.sw1), &(sr.sw2)); sr.simResponse[len - 4] = '\0'; RIL_onRequestComplete(t, RIL_E_SUCCESS, &sr, sizeof(sr)); at_response_free(p_response); return; error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); } static void requestSimAuthentication(int authContext, char* authData, RIL_Token t) { int err = -1, ret = 0; int status = 0; int binSimResponseLen = 0; char *cmd = NULL; char *line = NULL; // Input data int randLen = 0, autnLen = 0; char *rand = NULL, *autn = NULL; // EAP-SIM response data int kcLen = 0, sresLen = 0; char *kc = NULL, *sres = NULL; // EAP-AKA response data int ckLen = 0, ikLen = 0, resAutsLen = 0; char *ck = NULL, *ik = NULL, *resAuts = NULL; unsigned char *binSimResponse = NULL; unsigned char *binAuthData = NULL; unsigned char *hexAuthData = NULL; ATResponse *p_response = NULL; RIL_SIM_IO_Response response; memset(&response, 0, sizeof(response)); response.sw1 = 0x90; response.sw2 = 0; binAuthData = (unsigned char *)malloc(sizeof(*binAuthData) * strlen(authData)); if (binAuthData == NULL) { goto error; } if(base64_decode(authData, binAuthData) <= 0) { RLOGE("base64_decode failed %s %d", __func__, __LINE__); goto error; } hexAuthData = (unsigned char *)malloc(strlen(authData) * 2 + sizeof(char)); if (hexAuthData == NULL) { goto error; } memset(hexAuthData, 0, strlen(authData) * 2 + sizeof(char)); convertBytesToHexString((char *)binAuthData, strlen(authData), hexAuthData); randLen = binAuthData[0]; rand = (char *)malloc(sizeof(char) * (randLen * 2 + sizeof(char))); if (rand == NULL) { goto error; } memcpy(rand, hexAuthData + 2, randLen * 2); memcpy(rand + randLen * 2, "\0", 1); if (authContext == AUTH_CONTEXT_EAP_AKA) { // There's the autn value to parse as well. autnLen = binAuthData[1 + randLen]; autn = (char*)malloc(sizeof(char) * (autnLen * 2 + sizeof(char))); if (autn == NULL) { goto error; } memcpy(autn, hexAuthData + 2 + randLen * 2 + 2, autnLen * 2); memcpy(autn + autnLen * 2, "\0", 1); } if (authContext == AUTH_CONTEXT_EAP_SIM) { ret = asprintf(&cmd, "AT^MBAU=\"%s\"", rand); } else { ret = asprintf(&cmd, "AT^MBAU=\"%s,%s\"", rand, autn); } if (ret < 0) { RLOGE("Failed to asprintf"); goto error; } err = at_send_command_singleline( cmd, "^MBAU:", &p_response); free(cmd); if (err < 0 || p_response->success == 0) { goto error; } line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &status); if (err < 0) goto error; if (status != SIM_AUTH_RESPONSE_SUCCESS) { goto error; } if (authContext == AUTH_CONTEXT_EAP_SIM) { err = at_tok_nextstr(&line, &kc); if (err < 0) goto error; kcLen = strlen(kc); err = at_tok_nextstr(&line, &sres); if (err < 0) goto error; sresLen = strlen(sres); // sresLen + sres + kcLen + kc + '\0' binSimResponseLen = (kcLen + sresLen) / 2 + 3 * sizeof(char); binSimResponse = (unsigned char*)malloc(binSimResponseLen + sizeof(char)); if (binSimResponse == NULL) goto error; memset(binSimResponse, 0, binSimResponseLen); // set sresLen and sres binSimResponse[0] = (sresLen / 2) & 0xFF; uint8_t* tmpBinSimResponse = convertHexStringToBytes(sres, sresLen); snprintf((char*)(binSimResponse + 1), sresLen / 2, "%s", tmpBinSimResponse); free(tmpBinSimResponse); tmpBinSimResponse = NULL; // set kcLen and kc binSimResponse[1 + sresLen / 2] = (kcLen / 2) & 0xFF; tmpBinSimResponse = convertHexStringToBytes(kc, kcLen); snprintf((char*)(binSimResponse + 1 + sresLen / 2 + 1), kcLen / 2, "%s", tmpBinSimResponse); free(tmpBinSimResponse); tmpBinSimResponse = NULL; } else { // AUTH_CONTEXT_EAP_AKA err = at_tok_nextstr(&line, &ck); if (err < 0) goto error; ckLen = strlen(ck); err = at_tok_nextstr(&line, &ik); if (err < 0) goto error; ikLen = strlen(ik); err = at_tok_nextstr(&line, &resAuts); if (err < 0) goto error; resAutsLen = strlen(resAuts); // 0xDB + ckLen + ck + ikLen + ik + resAutsLen + resAuts + '\0' binSimResponseLen = (ckLen + ikLen + resAutsLen) / 2 + 5 * sizeof(char); binSimResponse = (unsigned char*)malloc(binSimResponseLen + sizeof(char)); if (binSimResponse == NULL) goto error; memset(binSimResponse, 0, binSimResponseLen); // The DB prefix indicates successful auth. Not produced by the SIM. binSimResponse[0] = 0xDB; // Set ckLen and ck binSimResponse[1] = (ckLen / 2) & 0xFF; uint8_t* tmpBinSimResponse = convertHexStringToBytes(ck, ckLen); snprintf((char*)(binSimResponse + 2), ckLen / 2 + 1, "%s", tmpBinSimResponse); free(tmpBinSimResponse); tmpBinSimResponse = NULL; // Set ikLen and ik binSimResponse[2 + ckLen / 2] = (ikLen / 2) & 0xFF; tmpBinSimResponse = convertHexStringToBytes(ik, ikLen); snprintf((char*)(binSimResponse + 2 + ckLen / 2 + 1), ikLen / 2 + 1, "%s", tmpBinSimResponse); free(tmpBinSimResponse); tmpBinSimResponse = NULL; // Set resAutsLen and resAuts binSimResponse[2 + ckLen / 2 + 1 + ikLen / 2] = (resAutsLen / 2) & 0xFF; tmpBinSimResponse = convertHexStringToBytes(resAuts, resAutsLen); snprintf((char*)(binSimResponse + 2 + ckLen / 2 + 1 + ikLen / 2 + 1), resAutsLen / 2 + 1, "%s", tmpBinSimResponse); free(tmpBinSimResponse); tmpBinSimResponse = NULL; } response.simResponse = (char*)malloc(2 * binSimResponseLen + sizeof(char)); if (response.simResponse == NULL) goto error; if (NULL == base64_encode(binSimResponse, response.simResponse, binSimResponseLen - 1)) { RLOGE("Failed to call base64_encode %s %d", __func__, __LINE__); goto error; } RIL_onRequestComplete(t, RIL_E_SUCCESS, &response, sizeof(response)); at_response_free(p_response); free(binAuthData); free(hexAuthData); free(rand); free(autn); free(response.simResponse); free(binSimResponse); return; error: free(binAuthData); free(hexAuthData); free(rand); free(autn); free(response.simResponse); free(binSimResponse); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); } static void requestTransmitApduBasic( void *data, size_t datalen, RIL_Token t) { RIL_UNUSED_PARM(datalen); int err, len; char *cmd = NULL; char *line = NULL; RIL_SIM_APDU *p_args = NULL; ATResponse *p_response = NULL; RIL_SIM_IO_Response sr; memset(&sr, 0, sizeof(sr)); p_args = (RIL_SIM_APDU *)data; if ((p_args->data == NULL) || (strlen(p_args->data) == 0)) { if (p_args->p3 < 0) { asprintf(&cmd, "AT+CSIM=%d,\"%02x%02x%02x%02x\"", 8, p_args->cla, p_args->instruction, p_args->p1, p_args->p2); } else { asprintf(&cmd, "AT+CSIM=%d,\"%02x%02x%02x%02x%02x\"", 10, p_args->cla, p_args->instruction, p_args->p1, p_args->p2, p_args->p3); } } else { asprintf(&cmd, "AT+CSIM=%d,\"%02x%02x%02x%02x%02x%s\"", 10 + (int)strlen(p_args->data), p_args->cla, p_args->instruction, p_args->p1, p_args->p2, p_args->p3, p_args->data); } err = at_send_command_singleline(cmd, "+CSIM:", &p_response); free(cmd); if (err < 0 || p_response->success == 0) { goto error; } line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &len); if (err < 0) goto error; err = at_tok_nextstr(&line, &(sr.simResponse)); if (err < 0) goto error; sscanf(&(sr.simResponse[len - 4]), "%02x%02x", &(sr.sw1), &(sr.sw2)); sr.simResponse[len - 4] = '\0'; RIL_onRequestComplete(t, RIL_E_SUCCESS, &sr, sizeof(sr)); at_response_free(p_response); return; error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); } static int getPDP() { int ret = -1; for (int i = 0; i < MAX_PDP; i++) { if (s_PDP[i].state == PDP_IDLE) { s_PDP[i].state = PDP_BUSY; ret = s_PDP[i].cid; break; } } return ret; } static void putPDP(int cid) { if (cid < 1 || cid > MAX_PDP ) { return; } s_PDP[cid - 1].state = PDP_IDLE; } static void requestSetupDataCall(void *data, size_t datalen, RIL_Token t) { const char *apn = NULL; char *cmd = NULL; int err = -1; int cid = -1; ATResponse *p_response = NULL; apn = ((const char **)data)[2]; #ifdef USE_TI_COMMANDS // Config for multislot class 10 (probably default anyway eh?) err = at_send_command("AT%CPRIM=\"GMM\",\"CONFIG MULTISLOT_CLASS=<10>\"", NULL); err = at_send_command("AT%DATA=2,\"UART\",1,,\"SER\",\"UART\",0", NULL); #endif /* USE_TI_COMMANDS */ int fd, qmistatus; size_t cur = 0; size_t len; ssize_t written, rlen; char status[32] = {0}; int retry = 10; const char *pdp_type; RLOGD("requesting data connection to APN '%s'", apn); fd = open ("/dev/qmi", O_RDWR); if (fd >= 0) { /* the device doesn't exist on the emulator */ RLOGD("opened the qmi device\n"); asprintf(&cmd, "up:%s", apn); len = strlen(cmd); while (cur < len) { do { written = write (fd, cmd + cur, len - cur); } while (written < 0 && errno == EINTR); if (written < 0) { RLOGE("### ERROR writing to /dev/qmi"); close(fd); goto error; } cur += written; } // wait for interface to come online do { sleep(1); do { rlen = read(fd, status, 31); } while (rlen < 0 && errno == EINTR); if (rlen < 0) { RLOGE("### ERROR reading from /dev/qmi"); close(fd); goto error; } else { status[rlen] = '\0'; RLOGD("### status: %s", status); } } while (strncmp(status, "STATE=up", 8) && strcmp(status, "online") && --retry); close(fd); if (retry == 0) { RLOGE("### Failed to get data connection up\n"); goto error; } qmistatus = system("netcfg buried_eth0 dhcp"); RLOGD("netcfg buried_eth0 dhcp: status %d\n", qmistatus); if (qmistatus < 0) goto error; } else { const char* radioInterfaceName = getRadioInterfaceName(); if (setInterfaceState(radioInterfaceName, kInterfaceUp) != RIL_E_SUCCESS) { goto error; } if (datalen > 6 * sizeof(char *)) { pdp_type = ((const char **)data)[6]; } else { pdp_type = "IP"; } cid = getPDP(); if (cid < 1) { RLOGE("SETUP_DATA_CALL MAX_PDP reached."); RIL_Data_Call_Response_v11 response; response.status = 0x41 /* PDP_FAIL_MAX_ACTIVE_PDP_CONTEXT_REACHED */; response.suggestedRetryTime = -1; response.cid = cid; response.active = -1; response.type = ""; response.ifname = ""; response.addresses = ""; response.dnses = ""; response.gateways = ""; response.pcscf = ""; response.mtu = 0; RIL_onRequestComplete(t, RIL_E_SUCCESS, &response, sizeof(RIL_Data_Call_Response_v11)); at_response_free(p_response); return; } asprintf(&cmd, "AT+CGDCONT=%d,\"%s\",\"%s\",,0,0", cid, pdp_type, apn); //FIXME check for error here err = at_send_command(cmd, NULL); free(cmd); // Set required QoS params to default err = at_send_command("AT+CGQREQ=1", NULL); // Set minimum QoS params to default err = at_send_command("AT+CGQMIN=1", NULL); // packet-domain event reporting err = at_send_command("AT+CGEREP=1,0", NULL); // Hangup anything that's happening there now err = at_send_command("AT+CGACT=1,0", NULL); // Start data on PDP context 1 err = at_send_command("ATD*99***1#", &p_response); if (err < 0 || p_response->success == 0) { goto error; } } requestOrSendDataCallList(cid, &t); at_response_free(p_response); return; error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); } static void requestDeactivateDataCall(void *data, RIL_Token t) { const char *p_cid = ((const char **)data)[0]; int cid = p_cid ? atoi(p_cid) : -1; RIL_Errno rilErrno = RIL_E_GENERIC_FAILURE; if (cid < 1 || cid > MAX_PDP) { RIL_onRequestComplete(t, rilErrno, NULL, 0); return; } const char* radioInterfaceName = getRadioInterfaceName(); rilErrno = setInterfaceState(radioInterfaceName, kInterfaceDown); RIL_onRequestComplete(t, rilErrno, NULL, 0); putPDP(cid); requestOrSendDataCallList(-1, NULL); } static void requestSMSAcknowledge(void *data, size_t datalen __unused, RIL_Token t) { int ackSuccess; int err; if (getSIMStatus() == SIM_ABSENT) { RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0); return; } ackSuccess = ((int *)data)[0]; if (ackSuccess == 1) { err = at_send_command("AT+CNMA=1", NULL); if (err < 0) { goto error; } } else if (ackSuccess == 0) { err = at_send_command("AT+CNMA=2", NULL); if (err < 0) { goto error; } } else { RLOGE("unsupported arg to RIL_REQUEST_SMS_ACKNOWLEDGE\n"); goto error; } RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); return; error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } void convertBytesToHex(uint8_t *bytes, int length, uint8_t *hex_str) { int i; unsigned char tmp; if (bytes == NULL || hex_str == NULL) { return; } for (i = 0; i < length; i++) { tmp = (unsigned char)((bytes[i] & 0xf0) >> 4); if (tmp <= 9) { *hex_str = (unsigned char)(tmp + '0'); } else { *hex_str = (unsigned char)(tmp + 'A' - 10); } hex_str++; tmp = (unsigned char)(bytes[i] & 0x0f); if (tmp <= 9) { *hex_str = (unsigned char)(tmp + '0'); } else { *hex_str = (unsigned char)(tmp + 'A' - 10); } hex_str++; } } #define TYPE_EF 4 #define RESPONSE_EF_SIZE 15 #define TYPE_FILE_DES_LEN 5 #define RESPONSE_DATA_FILE_DES_FLAG 2 #define RESPONSE_DATA_FILE_DES_LEN_FLAG 3 #define RESPONSE_DATA_FILE_TYPE 6 #define RESPONSE_DATA_FILE_SIZE_1 2 #define RESPONSE_DATA_FILE_SIZE_2 3 #define RESPONSE_DATA_STRUCTURE 13 #define RESPONSE_DATA_RECORD_LENGTH 14 #define RESPONSE_DATA_FILE_RECORD_LEN_1 6 #define RESPONSE_DATA_FILE_RECORD_LEN_2 7 #define EF_TYPE_TRANSPARENT 0x01 #define EF_TYPE_LINEAR_FIXED 0x02 #define EF_TYPE_CYCLIC 0x06 #define USIM_DATA_OFFSET_2 2 #define USIM_DATA_OFFSET_3 3 #define USIM_FILE_DES_TAG 0x82 #define USIM_FILE_SIZE_TAG 0x80 bool convertUsimToSim(uint8_t *byteUSIM, int len, uint8_t *hexSIM) { int desIndex = 0; int sizeIndex = 0; int i = 0; uint8_t byteSIM[RESPONSE_EF_SIZE] = {0}; for (i = 0; i < len; i++) { if (byteUSIM[i] == USIM_FILE_DES_TAG) { desIndex = i; break; } } for (i = desIndex; i < len;) { if (byteUSIM[i] == USIM_FILE_SIZE_TAG) { sizeIndex = i; break; } else { i += (byteUSIM[i + 1] + 2); } } byteSIM[RESPONSE_DATA_FILE_SIZE_1] = byteUSIM[sizeIndex + USIM_DATA_OFFSET_2]; byteSIM[RESPONSE_DATA_FILE_SIZE_2] = byteUSIM[sizeIndex + USIM_DATA_OFFSET_3]; byteSIM[RESPONSE_DATA_FILE_TYPE] = TYPE_EF; if ((byteUSIM[desIndex + RESPONSE_DATA_FILE_DES_FLAG] & 0x07) == EF_TYPE_TRANSPARENT) { byteSIM[RESPONSE_DATA_STRUCTURE] = 0; } else if ((byteUSIM[desIndex + RESPONSE_DATA_FILE_DES_FLAG] & 0x07) == EF_TYPE_LINEAR_FIXED) { if (USIM_FILE_DES_TAG != byteUSIM[RESPONSE_DATA_FILE_DES_FLAG]) { RLOGE("USIM_FILE_DES_TAG != ..."); goto error; } if (TYPE_FILE_DES_LEN != byteUSIM[RESPONSE_DATA_FILE_DES_LEN_FLAG]) { goto error; } byteSIM[RESPONSE_DATA_STRUCTURE] = 1; byteSIM[RESPONSE_DATA_RECORD_LENGTH] = ((byteUSIM[RESPONSE_DATA_FILE_RECORD_LEN_1] & 0xff) << 8) + (byteUSIM[RESPONSE_DATA_FILE_RECORD_LEN_2] & 0xff); } else if ((byteUSIM[desIndex + RESPONSE_DATA_FILE_DES_FLAG] & 0x07) == EF_TYPE_CYCLIC) { byteSIM[RESPONSE_DATA_STRUCTURE] = 3; byteSIM[RESPONSE_DATA_RECORD_LENGTH] = ((byteUSIM[RESPONSE_DATA_FILE_RECORD_LEN_1] & 0xff) << 8) + (byteUSIM[RESPONSE_DATA_FILE_RECORD_LEN_2] & 0xff); } convertBytesToHex(byteSIM, RESPONSE_EF_SIZE, hexSIM); return true; error: return false; } static void requestSIM_IO(void *data, size_t datalen __unused, RIL_Token t) { ATResponse *p_response = NULL; RIL_SIM_IO_Response sr; int err; char *cmd = NULL; RIL_SIM_IO_v6 *p_args; char *line; /* For Convert USIM to SIM */ uint8_t hexSIM[RESPONSE_EF_SIZE * 2 + sizeof(char)] = {0}; memset(&sr, 0, sizeof(sr)); p_args = (RIL_SIM_IO_v6 *)data; /* FIXME handle pin2 */ if (p_args->data == NULL) { asprintf(&cmd, "AT+CRSM=%d,%d,%d,%d,%d", p_args->command, p_args->fileid, p_args->p1, p_args->p2, p_args->p3); } else { asprintf(&cmd, "AT+CRSM=%d,%d,%d,%d,%d,%s", p_args->command, p_args->fileid, p_args->p1, p_args->p2, p_args->p3, p_args->data); } err = at_send_command_singleline(cmd, "+CRSM:", &p_response); if (err < 0 || p_response->success == 0) { goto error; } line = p_response->p_intermediates->line; err = parseSimResponseLine(line, &sr); if (err < 0) { goto error; } if (sr.simResponse != NULL && // Default to be USIM card p_args->command == 192) { // Get response uint8_t *bytes = convertHexStringToBytes(sr.simResponse, strlen(sr.simResponse)); if (bytes == NULL) { RLOGE("Failed to convert sim response to bytes"); goto error; } if (bytes[0] != 0x62) { RLOGE("Wrong FCP flag, unable to convert to sim "); free(bytes); goto error; } if (convertUsimToSim(bytes, strlen(sr.simResponse) / 2, hexSIM)) { sr.simResponse = (char *)hexSIM; } free(bytes); } RIL_onRequestComplete(t, RIL_E_SUCCESS, &sr, sizeof(sr)); at_response_free(p_response); free(cmd); return; error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); free(cmd); } static int getSimlockRemainTimes(const char* type) { int err = -1; int remain_times = -1; char cmd[32] = {0}; char *line = NULL; char *lock_type = NULL; ATResponse *p_response = NULL; snprintf(cmd, sizeof(cmd), "AT+CPINR=\"%s\"", type); err = at_send_command_multiline(cmd, "+CPINR:", &p_response); if (err < 0 || p_response->success == 0) { goto error; } line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextstr(&line, &lock_type); if (err < 0) goto error; err = at_tok_nextint(&line, &remain_times); if (err < 0) goto error; error: at_response_free(p_response); return remain_times; } static void requestEnterSimPin(int request, void* data, size_t datalen, RIL_Token t) { ATResponse *p_response = NULL; int err; int remaintimes = -1; char* cmd = NULL; const char** strings = (const char**)data;; if (datalen == sizeof(char*) || datalen == 2 * sizeof(char*)) { asprintf(&cmd, "AT+CPIN=%s", strings[0]); } else goto error; err = at_send_command_singleline(cmd, "+CPIN:", &p_response); free(cmd); if (err < 0 || p_response->success == 0) { error: if (request == RIL_REQUEST_ENTER_SIM_PIN) { remaintimes = getSimlockRemainTimes("SIM PIN"); } else if (request == RIL_REQUEST_ENTER_SIM_PIN2) { remaintimes = getSimlockRemainTimes("SIM PIN2"); } RIL_onRequestComplete(t, RIL_E_PASSWORD_INCORRECT, &remaintimes, sizeof(remaintimes)); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } at_response_free(p_response); } static void requestChangeSimPin(int request, void* data, size_t datalen, RIL_Token t) { ATResponse *p_response = NULL; int err; int remaintimes = -1; char* cmd = NULL; const char** strings = (const char**)data;; if (datalen == 2 * sizeof(char*) || datalen == 3 * sizeof(char*)) { asprintf(&cmd, "AT+CPIN=%s,%s", strings[0], strings[1]); } else goto error; err = at_send_command_singleline(cmd, "+CPIN:", &p_response); free(cmd); if (err < 0 || p_response->success == 0) { error: if (request == RIL_REQUEST_CHANGE_SIM_PIN) { remaintimes = getSimlockRemainTimes("SIM PIN"); } else if (request == RIL_REQUEST_ENTER_SIM_PUK) { remaintimes = getSimlockRemainTimes("SIM PUK"); } else if (request == RIL_REQUEST_ENTER_SIM_PUK2) { remaintimes = getSimlockRemainTimes("SIM PUK2"); } RIL_onRequestComplete(t, RIL_E_PASSWORD_INCORRECT, &remaintimes, sizeof(remaintimes)); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } at_response_free(p_response); } static void requestChangeSimPin2(void *data, size_t datalen, RIL_Token t) { int err, ret; int remaintime = -1; char cmd[64] = {0}; const char **strings = (const char **)data; ATResponse *p_response = NULL; if (datalen != 3 * sizeof(char *)) { goto error; } snprintf(cmd, sizeof(cmd), "AT+CPWD=\"P2\",\"%s\",\"%s\"", strings[0], strings[1]); err = at_send_command(cmd, &p_response); if (err < 0 || p_response->success == 0) { remaintime = getSimlockRemainTimes("SIM PIN2"); goto error; } RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); at_response_free(p_response); return; error: RIL_onRequestComplete(t, RIL_E_PASSWORD_INCORRECT, &remaintime, sizeof(remaintime)); at_response_free(p_response); } static void requestSendUSSD(void *data, size_t datalen, RIL_Token t) { RIL_UNUSED_PARM(datalen); int err = -1; char cmd[128] = {0}; const char *ussdRequest = (char *)(data); ATResponse *p_response = NULL; snprintf(cmd, sizeof(cmd), "AT+CUSD=1,\"%s\"", ussdRequest); err = at_send_command(cmd, &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } at_response_free(p_response); } static void requestExitEmergencyMode(void *data __unused, size_t datalen __unused, RIL_Token t) { int err; ATResponse *p_response = NULL; err = at_send_command("AT+WSOS=0", &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); return; } RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } static uint64_t s_last_activity_info_query = 0; static void requestGetActivityInfo(void *data __unused, size_t datalen __unused, RIL_Token t) { uint64_t curTime = ril_nano_time(); RIL_ActivityStatsInfo stats = { 0, // sleep_mode_time_ms ((curTime - s_last_activity_info_query) / 1000000) - 1, // idle_mode_time_ms {0, 0, 0, 0, 0}, // tx_mode_time_ms 0 // rx_mode_time_ms }; s_last_activity_info_query = curTime; RIL_onRequestComplete(t, RIL_E_SUCCESS, &stats, sizeof(stats)); } // TODO: Use all radio types static int techFromModemType(int mdmtype) { int ret = -1; switch (mdmtype) { case MDM_CDMA: ret = RADIO_TECH_1xRTT; break; case MDM_EVDO: ret = RADIO_TECH_EVDO_A; break; case MDM_GSM: ret = RADIO_TECH_GPRS; break; case MDM_WCDMA: ret = RADIO_TECH_HSPA; break; case MDM_LTE: ret = RADIO_TECH_LTE; case MDM_NR: ret = RADIO_TECH_NR; break; } return ret; } static void requestGetCellInfoList(void *data __unused, size_t datalen __unused, RIL_Token t) { uint64_t curTime = ril_nano_time(); RIL_CellInfo_v12 ci[1] = { { // ci[0] 1, // cellInfoType 1, // registered RIL_TIMESTAMP_TYPE_MODEM, curTime - 1000, // Fake some time in the past { // union CellInfo { // RIL_CellInfoGsm gsm { // gsm.cellIdneityGsm s_mcc, // mcc s_mnc, // mnc s_lac, // lac s_cid, // cid 0, //arfcn unknown 0x1, // Base Station Identity Code set to arbitrarily 1 }, { // gsm.signalStrengthGsm 10, // signalStrength 0 // bitErrorRate , INT_MAX // timingAdvance invalid value } } } } }; RIL_onRequestComplete(t, RIL_E_SUCCESS, ci, sizeof(ci)); } static void requestGetCellInfoList_1_6(void* data __unused, size_t datalen __unused, RIL_Token t) { RIL_CellInfo_v16 ci[1] = {{ // ci[0] 3, // cellInfoType 1, // registered CELL_CONNECTION_PRIMARY_SERVING, { // union CellInfo .lte = {// RIL_CellInfoLte_v12 lte { // RIL_CellIdentityLte_v12 // lte.cellIdentityLte s_mcc, // mcc s_mnc, // mnc s_cid, // ci 0, // pci s_lac, // tac 7, // earfcn }, { // RIL_LTE_SignalStrength_v8 // lte.signalStrengthLte 10, // signalStrength 44, // rsrp 3, // rsrq 30, // rssnr 0, // cqi INT_MAX // timingAdvance invalid value }}}}}; RIL_onRequestComplete(t, RIL_E_SUCCESS, ci, sizeof(ci)); } static void requestSetCellInfoListRate(void *data, size_t datalen __unused, RIL_Token t) { // For now we'll save the rate but no RIL_UNSOL_CELL_INFO_LIST messages // will be sent. assert (datalen == sizeof(int)); s_cell_info_rate_ms = ((int *)data)[0]; RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } static void requestGetHardwareConfig(void *data, size_t datalen, RIL_Token t) { // TODO - hook this up with real query/info from radio. RIL_HardwareConfig hwCfg; RIL_UNUSED_PARM(data); RIL_UNUSED_PARM(datalen); hwCfg.type = -1; RIL_onRequestComplete(t, RIL_E_SUCCESS, &hwCfg, sizeof(hwCfg)); } static void requestGetTtyMode(void *data, size_t datalen, RIL_Token t) { int ttyModeResponse; RIL_UNUSED_PARM(data); RIL_UNUSED_PARM(datalen); ttyModeResponse = (getSIMStatus() == SIM_READY) ? 1 // TTY Full : 0; // TTY Off RIL_onRequestComplete(t, RIL_E_SUCCESS, &ttyModeResponse, sizeof(ttyModeResponse)); } static void requestGetRadioCapability(void *data, size_t datalen, RIL_Token t) { RIL_RadioCapability radioCapability; RIL_UNUSED_PARM(data); RIL_UNUSED_PARM(datalen); radioCapability.version = RIL_RADIO_CAPABILITY_VERSION; radioCapability.session = 0; radioCapability.phase = 0; radioCapability.rat = NR | LTE | WCDMA | GSM; strncpy(radioCapability.logicalModemUuid, "com.android.modem.simulator", MAX_UUID_LENGTH); radioCapability.status = RC_STATUS_SUCCESS; RIL_onRequestComplete(t, RIL_E_SUCCESS, &radioCapability, sizeof(radioCapability)); } static void requestSetRadioCapability(void *data, size_t datalen, RIL_Token t) { RIL_RadioCapability* rc = (RIL_RadioCapability*)data; RLOGV( "RadioCapability version %d session %d phase %d rat %d " "logicalModemUuid %s status %d", rc->version, rc->session, rc->phase, rc->rat, rc->logicalModemUuid, rc->status); // TODO(ender): do something about these numbers. RIL_onRequestComplete(t, RIL_E_SUCCESS, rc, datalen); } static void requestGetMute(void *data, size_t datalen, RIL_Token t) { RIL_UNUSED_PARM(data); RIL_UNUSED_PARM(datalen); int err = -1; int muteResponse = 0; // Mute disabled char *line = NULL; ATResponse *p_response = NULL; err = at_send_command_singleline("AT+CMUT?", "+CMUT:", &p_response); if (err < 0 || p_response->success) { goto done; } line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto done; at_tok_nextint(&line, &muteResponse); done: RIL_onRequestComplete(t, RIL_E_SUCCESS, &muteResponse, sizeof(muteResponse)); at_response_free(p_response); } static void requestSetMute(void *data, size_t datalen, RIL_Token t) { RIL_UNUSED_PARM(datalen); int err = -1; char cmd[64] = {0}; ATResponse *p_response = NULL; snprintf(cmd, sizeof(cmd), "AT+CMUT=%d", ((int *)data)[0]); err = at_send_command(cmd, &p_response); if (err < 0 || p_response->success) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } at_response_free(p_response); } static void requestScreenState(void *data, RIL_Token t) { int status = *((int *)data); if (!status) { /* Suspend */ at_send_command("AT+CEREG=1", NULL); at_send_command("AT+CREG=1", NULL); at_send_command("AT+CGREG=1", NULL); } else { /* Resume */ at_send_command("AT+CEREG=2", NULL); at_send_command("AT+CREG=2", NULL); at_send_command("AT+CGREG=2", NULL); } RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } static void requestQueryClip(void *data, size_t datalen, RIL_Token t) { RIL_UNUSED_PARM(datalen); RIL_UNUSED_PARM(data); int err = -1; int skip = 0; int response = 0; char *line = NULL; ATResponse *p_response = NULL; if (getSIMStatus() == SIM_ABSENT) { RIL_onRequestComplete(t, RIL_E_MODEM_ERR, NULL, 0); return; } err = at_send_command_singleline("AT+CLIP?", "+CLIP:", &p_response); if (err < 0 || p_response->success == 0) { goto error; } line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &skip); if (err < 0) goto error; err = at_tok_nextint(&line, &response); if (err < 0) goto error; RIL_onRequestComplete(t, RIL_E_SUCCESS, &response, sizeof(response)); at_response_free(p_response); return; error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); } static void requestQueryClir(void *data, size_t datalen, RIL_Token t) { RIL_UNUSED_PARM(datalen); RIL_UNUSED_PARM(data); int err = -1; int response[2] = {1, 1}; char *line = NULL; ATResponse *p_response = NULL; if (getSIMStatus() == SIM_ABSENT) { RIL_onRequestComplete(t, RIL_E_MODEM_ERR, NULL, 0); return; } err = at_send_command_singleline("AT+CLIR?", "+CLIR:", &p_response); if (err < 0 || p_response->success == 0) { goto error; } line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &response[0]); if (err < 0) goto error; err = at_tok_nextint(&line, &response[1]); if (err < 0) goto error; RIL_onRequestComplete(t, RIL_E_SUCCESS, response, sizeof(response)); at_response_free(p_response); return; error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); } static void requestSetClir(void *data, size_t datalen, RIL_Token t) { RIL_UNUSED_PARM(datalen); int err = -1; int n = ((int *)data)[0]; char cmd[64] = {0}; ATResponse *p_response = NULL; snprintf(cmd, sizeof(cmd), "AT+CLIR=%d", n); err = at_send_command(cmd, &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } at_response_free(p_response); } static int forwardFromCCFCULine(char *line, RIL_CallForwardInfo *p_forward) { int err = -1; int i = 0; if (line == NULL || p_forward == NULL) { goto error; } err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &(p_forward->status)); if (err < 0) goto error; err = at_tok_nextint(&line, &(p_forward->serviceClass)); if (err < 0) goto error; if (at_tok_hasmore(&line)) { int numberType = 0; err = at_tok_nextint(&line, &numberType); if (err < 0) goto error; err = at_tok_nextint(&line, &p_forward->toa); if (err < 0) goto error; err = at_tok_nextstr(&line, &(p_forward->number)); /* tolerate null here */ if (err < 0) return 0; if (at_tok_hasmore(&line)) { for (i = 0; i < 2; i++) { skipNextComma(&line); } if (at_tok_hasmore(&line)) { err = at_tok_nextint(&line, &p_forward->timeSeconds); if (err < 0) { p_forward->timeSeconds = 0; } } } } return 0; error: return -1; } static void requestSetCallForward(RIL_CallForwardInfo *data, size_t datalen, RIL_Token t) { int err = -1; char cmd[128] = {0}; size_t offset = 0; ATResponse *p_response = NULL; if (datalen != sizeof(*data) || (data->status == 3 && data->number == NULL)) { goto error; } snprintf(cmd, sizeof(cmd), "AT+CCFCU=%d,%d,%d,%d,\"%s\",%d", data->reason, data->status, 2, data->toa, data->number ? data->number : "", data->serviceClass); offset += strlen(cmd); if (data->serviceClass == 0) { if (data->timeSeconds != 0 && data->status == 3) { snprintf(cmd + offset, sizeof(cmd) - offset, ",\"\",\"\",,%d", data->timeSeconds); } } else { if (data->timeSeconds != 0 && data->status == 3) { snprintf(cmd + offset, sizeof(cmd) - offset, ",\"\",\"\",,%d", data->timeSeconds); } else { strlcat(cmd, ",\"\"", sizeof(cmd) - offset); } } err = at_send_command_multiline(cmd, "+CCFCU:", &p_response); if (err < 0 || p_response->success == 0) { goto error; } RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); at_response_free(p_response); return; error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); } static void requestQueryCallForward(RIL_CallForwardInfo *data, size_t datalen, RIL_Token t) { int err = -1; char cmd[128] = {0}; ATResponse *p_response = NULL; ATLine *p_cur = NULL; if (datalen != sizeof(*data)) { goto error; } snprintf(cmd, sizeof(cmd), "AT+CCFCU=%d,2,%d,%d,\"%s\",%d", data->reason, 2, data->toa, data->number ? data->number : "", data->serviceClass); err = at_send_command_multiline(cmd, "+CCFCU:", &p_response); if (err < 0 || p_response->success == 0) { goto error; } RIL_CallForwardInfo **forwardList = NULL, *forwardPool = NULL; int forwardCount = 0; int validCount = 0; int i = 0; for (p_cur = p_response->p_intermediates; p_cur != NULL; p_cur = p_cur->p_next, forwardCount++) { } forwardList = (RIL_CallForwardInfo **) alloca(forwardCount * sizeof(RIL_CallForwardInfo *)); forwardPool = (RIL_CallForwardInfo *) alloca(forwardCount * sizeof(RIL_CallForwardInfo)); memset(forwardPool, 0, forwardCount * sizeof(RIL_CallForwardInfo)); /* init the pointer array */ for (i = 0; i < forwardCount; i++) { forwardList[i] = &(forwardPool[i]); } for (p_cur = p_response->p_intermediates; p_cur != NULL; p_cur = p_cur->p_next) { err = forwardFromCCFCULine(p_cur->line, forwardList[validCount]); forwardList[validCount]->reason = data->reason; if (err == 0) validCount++; } RIL_onRequestComplete(t, RIL_E_SUCCESS, validCount ? forwardList : NULL, validCount * sizeof (RIL_CallForwardInfo *)); at_response_free(p_response); return; error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); } static void requestQueryCallWaiting(void *data, size_t datalen, RIL_Token t) { RIL_UNUSED_PARM(datalen); int err = -1, mode = 0; int serviceClass = ((int *)data)[0]; int response[2] = {0, 0}; char cmd[32] = {0}; char *line; ATLine *p_cur; ATResponse *p_response = NULL; if (serviceClass == 0) { snprintf(cmd, sizeof(cmd), "AT+CCWA=1,2"); } else { snprintf(cmd, sizeof(cmd), "AT+CCWA=1,2,%d", serviceClass); } err = at_send_command_multiline(cmd, "+CCWA:", &p_response); if (err < 0 || p_response->success == 0) { goto error; } for (p_cur = p_response->p_intermediates; p_cur != NULL; p_cur = p_cur->p_next) { line = p_cur->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &mode); if (err < 0) goto error; err = at_tok_nextint(&line, &serviceClass); if (err < 0) goto error; response[0] = mode; response[1] |= serviceClass; } RIL_onRequestComplete(t, RIL_E_SUCCESS, response, sizeof(response)); at_response_free(p_response); return; error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); } static void requestSetCallWaiting(void *data, size_t datalen, RIL_Token t) { RIL_UNUSED_PARM(datalen); ATResponse *p_response = NULL; int err = -1; char cmd[32] = {0}; int enable = ((int *)data)[0]; int serviceClass = ((int *)data)[1]; if (serviceClass == 0) { snprintf(cmd, sizeof(cmd), "AT+CCWA=1,%d", enable); } else { snprintf(cmd, sizeof(cmd), "AT+CCWA=1,%d,%d", enable, serviceClass); } err = at_send_command(cmd, &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } at_response_free(p_response); } static void requestSetSuppServiceNotifications(void *data, size_t datalen, RIL_Token t) { RIL_UNUSED_PARM(datalen); int err = 0; ATResponse *p_response = NULL; int mode = ((int *)data)[0]; char cmd[32] = {0}; snprintf(cmd, sizeof(cmd), "AT+CSSN=%d,%d", mode, mode); err = at_send_command(cmd, &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } at_response_free(p_response); } static void requestChangeBarringPassword(char **data, size_t datalen, RIL_Token t) { int err = -1; int result; char cmd[64] = {0}; ATResponse *p_response = NULL; if (datalen != 3 * sizeof(char *) || data[0] == NULL || data[1] == NULL || data[2] == NULL || strlen(data[0]) == 0 || strlen(data[1]) == 0 || strlen(data[2]) == 0) { RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0); return; } snprintf(cmd, sizeof(cmd), "AT+CPWD=\"%s\",\"%s\",\"%s\"", data[0], data[1], data[2]); err = at_send_command(cmd, &p_response); if (err < 0 || p_response->success == 0) { goto error; } RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); at_response_free(p_response); return; error: RIL_onRequestComplete(t, RIL_E_PASSWORD_INCORRECT, NULL, 0); at_response_free(p_response); } static void requestFacilityLock(int request, char **data, size_t datalen, RIL_Token t) { int err = -1; int status = 0; int serviceClass = 0; int remainTimes = 10; char cmd[128] = {0}; char *line = NULL; ATLine *p_cur = NULL; ATResponse *p_response = NULL; RIL_Errno errnoType = RIL_E_GENERIC_FAILURE; char *type = data[0]; if (datalen != 5 * sizeof(char *)) { goto error; } if (data[0] == NULL || data[1] == NULL || (data[2] == NULL && request == RIL_REQUEST_SET_FACILITY_LOCK) || strlen(data[0]) == 0 || strlen(data[1]) == 0 || (request == RIL_REQUEST_SET_FACILITY_LOCK && strlen(data[2]) == 0 )) { errnoType = RIL_E_INVALID_ARGUMENTS; RLOGE("FacilityLock invalid arguments"); goto error; } serviceClass = atoi(data[3]); if (serviceClass == 0) { snprintf(cmd, sizeof(cmd), "AT+CLCK=\"%s\",%c,\"%s\"", data[0], *data[1], data[2]); } else { snprintf(cmd, sizeof(cmd), "AT+CLCK=\"%s\",%c,\"%s\",%s", data[0], *data[1], data[2], data[3]); } if (*data[1] == '2') { // query status err = at_send_command_multiline(cmd, "+CLCK: ", &p_response); if (err < 0 || p_response->success == 0) { goto error; } line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &status); if (err < 0) goto error; RIL_onRequestComplete(t, RIL_E_SUCCESS, &status, sizeof(int)); at_response_free(p_response); return; } else { // unlock/lock this facility err = at_send_command(cmd, &p_response); if (err < 0 || p_response->success == 0) { errnoType = RIL_E_PASSWORD_INCORRECT; goto error; } errnoType = RIL_E_SUCCESS; } error: if (!strcmp(data[0], "SC")) { remainTimes = getSimlockRemainTimes("SIM PIN"); } else if (!strcmp(data[0], "FD")) { remainTimes = getSimlockRemainTimes("SIM PIN2"); } else { remainTimes = 1; } RIL_onRequestComplete(t, errnoType, &remainTimes, sizeof(remainTimes)); at_response_free(p_response); } static void requestSetSmscAddress(void *data, size_t datalen, RIL_Token t) { ATResponse *p_response = NULL; char cmd[64] = {0}; int err = -1; if (getSIMStatus() != SIM_READY) { RIL_onRequestComplete(t, RIL_E_SIM_ABSENT, NULL, 0); return; } if (data == NULL || strlen(data) == 0) { RLOGE("SET_SMSC_ADDRESS invalid address: %s", (char *)data); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); return; } snprintf(cmd, sizeof(cmd), "AT+CSCA=%s,%d", (char *)data, (int)datalen); err = at_send_command_singleline(cmd, "+CSCA:", &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } at_response_free(p_response); } static void requestGetSmscAddress(void *data, size_t datalen, RIL_Token t) { RIL_UNUSED_PARM(data); RIL_UNUSED_PARM(datalen); ATResponse *p_response = NULL; int err = -1; char *decidata = NULL; err = at_send_command_singleline( "AT+CSCA?", "+CSCA:", &p_response); if (err < 0 || p_response->success == 0) { goto error; } char *line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextstr(&line, &decidata); if (err < 0) goto error; RIL_onRequestComplete(t, RIL_E_SUCCESS, decidata, strlen(decidata) + 1); at_response_free(p_response); return; error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); at_response_free(p_response); } static void setGsmBroadcastConfigData(int from, int to, int id, int outStrSize, char *outStr) { if (from < 0 || from > 0xffff || to < 0 || to > 0xffff) { RLOGE("setGsmBroadcastConfig data is invalid, [%d, %d]", from, to); return; } if (id != 0) { strlcat(outStr, ",", outStrSize); } int len = strlen(outStr); if (from == to) { snprintf(outStr + len, outStrSize - len, "%d", from); } else { snprintf(outStr + len, outStrSize - len, "%d-%d", from, to); } } static void requestSetSmsBroadcastConfig(void *data, size_t datalen, RIL_Token t) { int i = 0; int count = datalen / sizeof(RIL_GSM_BroadcastSmsConfigInfo *); int size = count * 16; char cmd[256] = {0}; char *channel = (char *)alloca(size); char *languageId = (char *)alloca(size); ATResponse *p_response = NULL; RIL_GSM_BroadcastSmsConfigInfo **pGsmBci = (RIL_GSM_BroadcastSmsConfigInfo **)data; RIL_GSM_BroadcastSmsConfigInfo gsmBci = {0}; memset(channel, 0, size); memset(languageId, 0, size); RLOGD("requestSetGsmBroadcastConfig %zu, count %d", datalen, count); for (i = 0; i < count; i++) { gsmBci = *(pGsmBci[i]); setGsmBroadcastConfigData(gsmBci.fromServiceId, gsmBci.toServiceId, i, size, channel); setGsmBroadcastConfigData(gsmBci.fromCodeScheme, gsmBci.toCodeScheme, i, size, languageId); } snprintf(cmd, sizeof(cmd), "AT+CSCB=%d,\"%s\",\"%s\"", (*pGsmBci[0]).selected ? 0 : 1, channel, languageId); int err = at_send_command_singleline( cmd, "+CSCB:", &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } at_response_free(p_response); } static void requestGetSmsBroadcastConfig(void *data, size_t datalen, RIL_Token t) { RIL_UNUSED_PARM(data); RIL_UNUSED_PARM(datalen); ATResponse *p_response = NULL; int err = -1, mode, commas = 0, i = 0; char *line = NULL; char *serviceIds = NULL, *codeSchemes = NULL, *p = NULL; char *serviceId = NULL, *codeScheme = NULL; err = at_send_command_singleline("AT+CSCB?", "+CSCB:", &p_response); if (err < 0 || p_response->success == 0) { goto error; } line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextint(&line, &mode); if (err < 0) goto error; err = at_tok_nextstr(&line, &serviceIds); if (err < 0) goto error; err = at_tok_nextstr(&line, &codeSchemes); if (err < 0) goto error; for (p = serviceIds; *p != '\0'; p++) { if (*p == ',') { commas++; } } RIL_GSM_BroadcastSmsConfigInfo **pGsmBci = (RIL_GSM_BroadcastSmsConfigInfo **)alloca((commas + 1) * sizeof(RIL_GSM_BroadcastSmsConfigInfo *)); memset(pGsmBci, 0, (commas + 1) * sizeof(RIL_GSM_BroadcastSmsConfigInfo *)); for (i = 0; i < commas + 1; i++) { pGsmBci[i] = (RIL_GSM_BroadcastSmsConfigInfo *)alloca( sizeof(RIL_GSM_BroadcastSmsConfigInfo)); memset(pGsmBci[i], 0, sizeof(RIL_GSM_BroadcastSmsConfigInfo)); err = at_tok_nextstr(&serviceIds, &serviceId); if (err < 0) goto error; pGsmBci[i]->toServiceId = pGsmBci[i]->fromServiceId = 0; if (strstr(serviceId, "-")) { sscanf(serviceId,"%d-%d", &pGsmBci[i]->fromServiceId, &pGsmBci[i]->toServiceId); } err = at_tok_nextstr(&codeSchemes, &codeScheme); if (err < 0) goto error; pGsmBci[i]->toCodeScheme = pGsmBci[i]->fromCodeScheme = 0; if (strstr(codeScheme, "-")) { sscanf(codeScheme, "%d-%d", &pGsmBci[i]->fromCodeScheme, &pGsmBci[i]->toCodeScheme); } pGsmBci[i]->selected = (mode == 0 ? false : true); } RIL_onRequestComplete(t, RIL_E_SUCCESS, pGsmBci, (commas + 1) * sizeof(RIL_GSM_BroadcastSmsConfigInfo *)); at_response_free(p_response); return; error: at_response_free(p_response); RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } /** * : integer type; access technology selected * 0 GSM * 1 GSM Compact * 2 UTRAN * 3 GSM w/EGPRS (see NOTE 1) * 4 UTRAN w/HSDPA (see NOTE 2) * 5 UTRAN w/HSUPA (see NOTE 2) * 6 UTRAN w/HSDPA and HSUPA (see NOTE 2) * 7 E-UTRAN * 8 EC-GSM-IoT (A/Gb mode) (see NOTE 3) * 9 E-UTRAN (NB-S1 mode) (see NOTE 4) * 10 E-UTRA connected to a 5GCN (see NOTE 5) * 11 NR connected to a 5GCN (see NOTE 5) * 12 NG-RAN * 13 E-UTRA-NR dual connectivity (see NOTE 6) */ int mapRadioAccessNetworkToTech(RIL_RadioAccessNetworks network) { switch (network) { case GERAN: // GSM EDGE return 3; case UTRAN: return 6; case EUTRAN: return 7; case NGRAN: return 11; default: return 7; // LTE } } static void requestSetNetworlSelectionManual(void *data, RIL_Token t) { int err = -1; char cmd[64] = {0}; ATResponse *p_response = NULL; RIL_NetworkOperator *operator = (RIL_NetworkOperator *)data; if (operator->act != UNKNOWN) { snprintf(cmd, sizeof(cmd), "AT+COPS=1,2,\"%s\"", operator->operatorNumeric); } else { snprintf(cmd, sizeof(cmd), "AT+COPS=1,2,\"%s\",%d", operator->operatorNumeric, operator->act); } err = at_send_command(cmd, &p_response); if (err < 0 || p_response->success == 0) { goto error; } RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); at_response_free(p_response); return; error: if (p_response != NULL && !strcmp(p_response->finalResponse, "+CME ERROR: 30")) { RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } at_response_free(p_response); } static void requestStkServiceIsRunning(RIL_Token t) { int err = -1; ATResponse *p_response = NULL; s_stkServiceRunning = true; if (NULL != s_stkUnsolResponse) { RIL_onUnsolicitedResponse(RIL_UNSOL_STK_PROACTIVE_COMMAND, s_stkUnsolResponse, strlen(s_stkUnsolResponse) + 1); free(s_stkUnsolResponse); s_stkUnsolResponse = NULL; RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); return; } err = at_send_command_singleline("AT+CUSATD?", "+CUSATD:", &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } at_response_free(p_response); } static void requestStkSendEnvelope(void *data, RIL_Token t) { int ret = -1, err = -1; char cmd[128] = {0}; ATResponse *p_response = NULL; if (data == NULL || strlen((char *)data) == 0) { RLOGE("STK sendEnvelope data is invalid"); RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0); return; } snprintf(cmd, sizeof(cmd), "AT+CUSATE=\"%s\"", (char *)data); err = at_send_command_singleline(cmd, "+CUSATE:", &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); // type of alpha data is 85, such as 850C546F6F6C6B6974204D656E75 char *p = strstr(p_response->p_intermediates->line, "85"); if (p != NULL) { char alphaStrHexLen[3] = {0}; char alphaStr[1024] = {0}; uint8_t *alphaBytes = NULL; int len = 0; p = p + strlen("85"); strncpy(alphaStrHexLen, p, 2); len = strtoul(alphaStrHexLen, NULL, 16); strncpy(alphaStr, p + 2, len * 2); alphaBytes = convertHexStringToBytes(alphaStr, strlen(alphaStr)); RIL_onUnsolicitedResponse(RIL_UNSOL_STK_CC_ALPHA_NOTIFY, alphaBytes, strlen((char *)alphaBytes)); free(alphaBytes); } } at_response_free(p_response); } static void requestStksendTerminalResponse(void *data, RIL_Token t) { int ret = -1, err = -1; char cmd[128] = {0}; ATResponse *p_response = NULL; if (data == NULL || strlen((char *)data) == 0) { RLOGE("STK sendTerminalResponse data is invalid"); RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0); return; } snprintf(cmd, sizeof(cmd), "AT+CUSATT=\"%s\"", (char *)data); err = at_send_command_singleline( cmd, "+CUSATT:", &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } at_response_free(p_response); } static void requestEccDial(void *data, RIL_Token t) { char cmd[64] = {0}; const char *clir = NULL; int err = -1; RIL_EmergencyDial *p_eccDial = (RIL_EmergencyDial *)data; switch (p_eccDial->dialInfo.clir) { case 0: /* subscription default */ clir = ""; break; case 1: /* invocation */ clir = "I"; break; case 2: /* suppression */ clir = "i"; break; default: break; } if (p_eccDial->routing == ROUTING_MERGENCY || p_eccDial->routing == ROUTING_UNKNOWN) { if (p_eccDial->categories == CATEGORY_UNSPECIFIED) { snprintf(cmd, sizeof(cmd), "ATD%s@,#%s;", p_eccDial->dialInfo.address, clir); } else { snprintf(cmd, sizeof(cmd), "ATD%s@%d,#%s;", p_eccDial->dialInfo.address, p_eccDial->categories, clir); } } else { // ROUTING_NORMAL snprintf(cmd, sizeof(cmd), "ATD%s%s;", p_eccDial->dialInfo.address, clir); } err = at_send_command(cmd, NULL); if (err != 0) goto error; RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); return; error: RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } static void requestStartKeepalive(void* data, size_t datalen __unused, RIL_Token t) { RIL_KeepaliveRequest* kaRequest = (RIL_KeepaliveRequest*)data; if (kaRequest->cid > MAX_PDP) { RLOGE("Invalid cid for keepalive!"); RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0); return; } RIL_KeepaliveStatus resp; resp.sessionHandle = __sync_fetch_and_add(&s_session_handle, 1); resp.code = KEEPALIVE_ACTIVE; RIL_onRequestComplete(t, RIL_E_SUCCESS, &resp, sizeof(resp)); } void getConfigSlotStatus(RIL_SimSlotStatus_V1_2 *pSimSlotStatus) { if (pSimSlotStatus == NULL) { return; } if (getSIMStatus() == SIM_ABSENT) { pSimSlotStatus->base.cardState = RIL_CARDSTATE_ABSENT; } else { pSimSlotStatus->base.cardState = RIL_CARDSTATE_PRESENT; } // TODO: slot state is always active now pSimSlotStatus->base.slotState = SLOT_STATE_ACTIVE; if (pSimSlotStatus->base.cardState != RIL_CARDSTATE_ABSENT) { pSimSlotStatus->base.atr = ""; pSimSlotStatus->base.iccid = (char *)calloc(64, sizeof(char)); getIccId(pSimSlotStatus->base.iccid, 64); } pSimSlotStatus->base.logicalSlotId = 0; pSimSlotStatus->eid = ""; } void sendUnsolNetworkScanResult() { RIL_NetworkScanResult scanr; memset(&scanr, 0, sizeof(scanr)); scanr.status = COMPLETE; scanr.error = RIL_E_SUCCESS; scanr.network_infos = NULL; scanr.network_infos_length = 0; RIL_onUnsolicitedResponse(RIL_UNSOL_NETWORK_SCAN_RESULT, &scanr, sizeof(scanr)); } void onIccSlotStatus(RIL_Token t) { RIL_SimSlotStatus_V1_2 *pSimSlotStatusList = (RIL_SimSlotStatus_V1_2 *)calloc(SIM_COUNT, sizeof(RIL_SimSlotStatus_V1_2)); getConfigSlotStatus(pSimSlotStatusList); if (t == NULL) { RIL_onUnsolicitedResponse(RIL_UNSOL_CONFIG_ICC_SLOT_STATUS, pSimSlotStatusList, SIM_COUNT * sizeof(RIL_SimSlotStatus_V1_2)); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, pSimSlotStatusList, SIM_COUNT * sizeof(RIL_SimSlotStatus_V1_2)); } if (pSimSlotStatusList != NULL) { free(pSimSlotStatusList->base.iccid); free(pSimSlotStatusList); } } /*** Callback methods from the RIL library to us ***/ /** * Call from RIL to us to make a RIL_REQUEST * * Must be completed with a call to RIL_onRequestComplete() * * RIL_onRequestComplete() may be called from any thread, before or after * this function returns. * * Because onRequest function could be called from multiple different thread, * we must ensure that the underlying at_send_command_* function * is atomic. */ static void onRequest (int request, void *data, size_t datalen, RIL_Token t) { ATResponse *p_response; int err; RLOGD("onRequest: %s, sState: %d", requestToString(request), sState); /* Ignore all requests except RIL_REQUEST_GET_SIM_STATUS * when RADIO_STATE_UNAVAILABLE. */ if (sState == RADIO_STATE_UNAVAILABLE && request != RIL_REQUEST_GET_SIM_STATUS ) { RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0); return; } /* Ignore all non-power requests when RADIO_STATE_OFF * (except RIL_REQUEST_GET_SIM_STATUS) */ if (sState == RADIO_STATE_OFF) { switch(request) { case RIL_REQUEST_BASEBAND_VERSION: case RIL_REQUEST_CDMA_GET_SUBSCRIPTION_SOURCE: case RIL_REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE: case RIL_REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE: case RIL_REQUEST_CDMA_SET_ROAMING_PREFERENCE: case RIL_REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE: case RIL_REQUEST_CDMA_SUBSCRIPTION: case RIL_REQUEST_DEVICE_IDENTITY: case RIL_REQUEST_EXIT_EMERGENCY_CALLBACK_MODE: case RIL_REQUEST_GET_ACTIVITY_INFO: case RIL_REQUEST_GET_CARRIER_RESTRICTIONS: case RIL_REQUEST_GET_CURRENT_CALLS: case RIL_REQUEST_GET_IMEI: case RIL_REQUEST_GET_MUTE: case RIL_REQUEST_SET_MUTE: case RIL_REQUEST_GET_NEIGHBORING_CELL_IDS: case RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE: case RIL_REQUEST_GET_RADIO_CAPABILITY: case RIL_REQUEST_GET_SIM_STATUS: case RIL_REQUEST_NV_RESET_CONFIG: case RIL_REQUEST_QUERY_AVAILABLE_BAND_MODE: case RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE: case RIL_REQUEST_QUERY_TTY_MODE: case RIL_REQUEST_RADIO_POWER: case RIL_REQUEST_SET_BAND_MODE: case RIL_REQUEST_SET_CARRIER_RESTRICTIONS: case RIL_REQUEST_SET_LOCATION_UPDATES: case RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE: case RIL_REQUEST_SET_TTY_MODE: case RIL_REQUEST_SET_UNSOL_CELL_INFO_LIST_RATE: case RIL_REQUEST_STOP_LCE: case RIL_REQUEST_VOICE_RADIO_TECH: case RIL_REQUEST_SCREEN_STATE: // Process all the above, even though the radio is off break; default: // For all others, say NOT_AVAILABLE because the radio is off RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0); return; } } switch (request) { case RIL_REQUEST_GET_SIM_STATUS: { RIL_CardStatus_v1_5 *p_card_status; char *p_buffer; int buffer_size; int result = getCardStatus(&p_card_status); if (result == RIL_E_SUCCESS) { p_buffer = (char *)p_card_status; buffer_size = sizeof(*p_card_status); } else { p_buffer = NULL; buffer_size = 0; } RIL_onRequestComplete(t, result, p_buffer, buffer_size); freeCardStatus(p_card_status); break; } case RIL_REQUEST_GET_CURRENT_CALLS: requestGetCurrentCalls(data, datalen, t); break; case RIL_REQUEST_DIAL: requestDial(data, datalen, t); break; case RIL_REQUEST_HANGUP: requestHangup(data, datalen, t); break; case RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND: case RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND: case RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE: case RIL_REQUEST_CONFERENCE: case RIL_REQUEST_UDUB: requestCallSelection(data, datalen, t, request); break; case RIL_REQUEST_ANSWER: at_send_command("ATA", NULL); #ifdef WORKAROUND_ERRONEOUS_ANSWER s_expectAnswer = 1; #endif /* WORKAROUND_ERRONEOUS_ANSWER */ if (getSIMStatus() != SIM_READY) { RIL_onRequestComplete(t, RIL_E_MODEM_ERR, NULL, 0); } else { // Success or failure is ignored by the upper layer here. // It will call GET_CURRENT_CALLS and determine success that way. RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } break; case RIL_REQUEST_SEPARATE_CONNECTION: { char cmd[12]; int party = ((int*)data)[0]; if (getSIMStatus() == SIM_ABSENT) { RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0); return; } // Make sure that party is in a valid range. // (Note: The Telephony middle layer imposes a range of 1 to 7. // It's sufficient for us to just make sure it's single digit.) if (party > 0 && party < 10) { sprintf(cmd, "AT+CHLD=2%d", party); at_send_command(cmd, NULL); RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } } break; case RIL_REQUEST_SIGNAL_STRENGTH: requestSignalStrength(data, datalen, t); break; case RIL_REQUEST_VOICE_REGISTRATION_STATE: case RIL_REQUEST_DATA_REGISTRATION_STATE: requestRegistrationState(request, data, datalen, t); break; case RIL_REQUEST_OPERATOR: requestOperator(data, datalen, t); break; case RIL_REQUEST_RADIO_POWER: requestRadioPower(data, datalen, t); break; case RIL_REQUEST_DTMF: { char c = ((char *)data)[0]; char *cmd; asprintf(&cmd, "AT+VTS=%c", (int)c); at_send_command(cmd, NULL); free(cmd); RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; } case RIL_REQUEST_SEND_SMS: case RIL_REQUEST_SEND_SMS_EXPECT_MORE: requestSendSMS(data, datalen, t); break; case RIL_REQUEST_CDMA_SEND_SMS: requestCdmaSendSMS(data, datalen, t); break; case RIL_REQUEST_IMS_SEND_SMS: requestImsSendSMS(data, datalen, t); break; case RIL_REQUEST_SIM_OPEN_CHANNEL: requestSimOpenChannel(data, datalen, t); break; case RIL_REQUEST_SIM_CLOSE_CHANNEL: requestSimCloseChannel(data, datalen, t); break; case RIL_REQUEST_SIM_TRANSMIT_APDU_CHANNEL: requestSimTransmitApduChannel(data, datalen, t); break; case RIL_REQUEST_SIM_AUTHENTICATION: { RIL_SimAuthentication *sim_auth = (RIL_SimAuthentication *)data; if ((sim_auth->authContext == AUTH_CONTEXT_EAP_SIM || sim_auth->authContext == AUTH_CONTEXT_EAP_AKA) && sim_auth->authData != NULL) { requestSimAuthentication(sim_auth->authContext, sim_auth->authData, t); } else { RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0); } break; } case RIL_REQUEST_SIM_TRANSMIT_APDU_BASIC: requestTransmitApduBasic(data, datalen, t); break; case RIL_REQUEST_SETUP_DATA_CALL: requestSetupDataCall(data, datalen, t); break; case RIL_REQUEST_DEACTIVATE_DATA_CALL: requestDeactivateDataCall(data, t); break; case RIL_REQUEST_SMS_ACKNOWLEDGE: requestSMSAcknowledge(data, datalen, t); break; case RIL_REQUEST_GET_IMSI: p_response = NULL; err = at_send_command_numeric("AT+CIMI", &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, p_response->p_intermediates->line, sizeof(char *)); } at_response_free(p_response); break; case RIL_REQUEST_GET_IMEI: p_response = NULL; err = at_send_command_numeric("AT+CGSN", &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, p_response->p_intermediates->line, sizeof(char *)); } at_response_free(p_response); break; case RIL_REQUEST_SIM_IO: requestSIM_IO(data,datalen,t); break; case RIL_REQUEST_SEND_USSD: requestSendUSSD(data, datalen, t); break; case RIL_REQUEST_CANCEL_USSD: if (getSIMStatus() == SIM_ABSENT) { RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0); break; } p_response = NULL; err = at_send_command_numeric("AT+CUSD=2", &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, p_response->p_intermediates->line, sizeof(char *)); } at_response_free(p_response); break; case RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC: if (getSIMStatus() == SIM_ABSENT) { RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0); break; } p_response = NULL; err = at_send_command("AT+COPS=0", &p_response); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } at_response_free(p_response); break; case RIL_REQUEST_SET_NETWORK_SELECTION_MANUAL: requestSetNetworlSelectionManual(data, t); break; case RIL_REQUEST_DATA_CALL_LIST: requestDataCallList(data, datalen, t); break; case RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE: requestQueryNetworkSelectionMode(data, datalen, t); break; case RIL_REQUEST_OEM_HOOK_RAW: // echo back data RIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen); break; case RIL_REQUEST_OEM_HOOK_STRINGS: { int i; const char ** cur; RLOGD("got OEM_HOOK_STRINGS: 0x%8p %lu", data, (long)datalen); for (i = (datalen / sizeof (char *)), cur = (const char **)data ; i > 0 ; cur++, i --) { RLOGD("> '%s'", *cur); } // echo back strings RIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen); break; } case RIL_REQUEST_WRITE_SMS_TO_SIM: requestWriteSmsToSim(data, datalen, t); break; case RIL_REQUEST_DELETE_SMS_ON_SIM: { char * cmd; p_response = NULL; asprintf(&cmd, "AT+CMGD=%d", ((int *)data)[0]); err = at_send_command(cmd, &p_response); free(cmd); if (err < 0 || p_response->success == 0) { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } at_response_free(p_response); break; } case RIL_REQUEST_ENTER_SIM_PIN: case RIL_REQUEST_ENTER_SIM_PIN2: requestEnterSimPin(request, data, datalen, t); break; case RIL_REQUEST_ENTER_SIM_PUK: case RIL_REQUEST_ENTER_SIM_PUK2: case RIL_REQUEST_CHANGE_SIM_PIN: requestChangeSimPin(request, data, datalen, t); break; case RIL_REQUEST_CHANGE_SIM_PIN2: requestChangeSimPin2(data, datalen, t); break; case RIL_REQUEST_IMS_REGISTRATION_STATE: { int reply[2]; //0==unregistered, 1==registered reply[0] = s_ims_registered; //to be used when changed to include service supporated info //reply[1] = s_ims_services; // FORMAT_3GPP(1) vs FORMAT_3GPP2(2); reply[1] = s_ims_format; RLOGD("IMS_REGISTRATION=%d, format=%d ", reply[0], reply[1]); if (reply[1] != -1) { RIL_onRequestComplete(t, RIL_E_SUCCESS, reply, sizeof(reply)); } else { RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); } break; } case RIL_REQUEST_VOICE_RADIO_TECH: { int tech = techFromModemType(TECH(sMdmInfo)); if (tech < 0 ) RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0); else RIL_onRequestComplete(t, RIL_E_SUCCESS, &tech, sizeof(tech)); } break; case RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE: requestSetPreferredNetworkType(request, data, datalen, t); break; case RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE: requestGetPreferredNetworkType(request, data, datalen, t); break; case RIL_REQUEST_GET_CELL_INFO_LIST: requestGetCellInfoList(data, datalen, t); break; case RIL_REQUEST_GET_CELL_INFO_LIST_1_6: requestGetCellInfoList_1_6(data, datalen, t); break; case RIL_REQUEST_SET_UNSOL_CELL_INFO_LIST_RATE: requestSetCellInfoListRate(data, datalen, t); break; case RIL_REQUEST_GET_HARDWARE_CONFIG: requestGetHardwareConfig(data, datalen, t); break; case RIL_REQUEST_SHUTDOWN: requestShutdown(t); break; case RIL_REQUEST_QUERY_TTY_MODE: requestGetTtyMode(data, datalen, t); break; case RIL_REQUEST_GET_RADIO_CAPABILITY: requestGetRadioCapability(data, datalen, t); break; case RIL_REQUEST_SET_RADIO_CAPABILITY: requestSetRadioCapability(data, datalen, t); break; case RIL_REQUEST_GET_MUTE: requestGetMute(data, datalen, t); break; case RIL_REQUEST_SET_MUTE: requestSetMute(data, datalen, t); break; case RIL_REQUEST_QUERY_AVAILABLE_BAND_MODE: { int size = 5; int response[20] = {0}; for (int i = 1; i <= size; i++) { response[i] = i - 1; } RIL_onRequestComplete(t, RIL_E_SUCCESS, response, (size + 1) * sizeof(int)); break; } case RIL_REQUEST_SET_INITIAL_ATTACH_APN: case RIL_REQUEST_ALLOW_DATA: case RIL_REQUEST_ENTER_NETWORK_DEPERSONALIZATION: case RIL_REQUEST_SET_BAND_MODE: case RIL_REQUEST_SET_CARRIER_RESTRICTIONS: case RIL_REQUEST_GET_NEIGHBORING_CELL_IDS: case RIL_REQUEST_SET_LOCATION_UPDATES: case RIL_REQUEST_SET_TTY_MODE: case RIL_REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; case RIL_REQUEST_NV_RESET_CONFIG: requestNvResetConfig(data, datalen, t); break; case RIL_REQUEST_BASEBAND_VERSION: requestCdmaBaseBandVersion(request, data, datalen, t); break; case RIL_REQUEST_DEVICE_IDENTITY: requestDeviceIdentity(request, data, datalen, t); break; case RIL_REQUEST_CDMA_SUBSCRIPTION: requestCdmaSubscription(request, data, datalen, t); break; case RIL_REQUEST_CDMA_GET_SUBSCRIPTION_SOURCE: requestCdmaGetSubscriptionSource(request, data, datalen, t); break; case RIL_REQUEST_START_LCE: case RIL_REQUEST_STOP_LCE: case RIL_REQUEST_PULL_LCEDATA: if (getSIMStatus() == SIM_ABSENT) { RIL_onRequestComplete(t, RIL_E_SIM_ABSENT, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_LCE_NOT_SUPPORTED, NULL, 0); } break; case RIL_REQUEST_CDMA_QUERY_ROAMING_PREFERENCE: if (TECH_BIT(sMdmInfo) == MDM_CDMA) { requestCdmaGetRoamingPreference(request, data, datalen, t); } else { RIL_onRequestComplete(t, RIL_E_REQUEST_NOT_SUPPORTED, NULL, 0); } break; case RIL_REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE: if (TECH_BIT(sMdmInfo) == MDM_CDMA) { requestCdmaSetSubscriptionSource(request, data, datalen, t); } else { // VTS tests expect us to silently do nothing RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } break; case RIL_REQUEST_CDMA_SET_ROAMING_PREFERENCE: if (TECH_BIT(sMdmInfo) == MDM_CDMA) { requestCdmaSetRoamingPreference(request, data, datalen, t); } else { // VTS tests expect us to silently do nothing RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } break; case RIL_REQUEST_EXIT_EMERGENCY_CALLBACK_MODE: if (TECH_BIT(sMdmInfo) == MDM_CDMA) { requestExitEmergencyMode(data, datalen, t); } else { // VTS tests expect us to silently do nothing RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } break; case RIL_REQUEST_GET_ACTIVITY_INFO: requestGetActivityInfo(data, datalen, t); break; case RIL_REQUEST_SCREEN_STATE: requestScreenState(data, t); break; case RIL_REQUEST_SET_DATA_PROFILE: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; case RIL_REQUEST_QUERY_CALL_FORWARD_STATUS: requestQueryCallForward(data, datalen, t); break; case RIL_REQUEST_SET_CALL_FORWARD: requestSetCallForward(data, datalen, t); break; case RIL_REQUEST_QUERY_CLIP: requestQueryClip(data, datalen, t); break; case RIL_REQUEST_GET_CLIR: requestQueryClir(data, datalen, t); break; case RIL_REQUEST_SET_CLIR: requestSetClir(data, datalen, t); break; case RIL_REQUEST_QUERY_CALL_WAITING: requestQueryCallWaiting(data, datalen, t); break; case RIL_REQUEST_SET_CALL_WAITING: requestSetCallWaiting(data, datalen, t); break; case RIL_REQUEST_SET_SUPP_SVC_NOTIFICATION: requestSetSuppServiceNotifications(data, datalen, t); break; case RIL_REQUEST_CHANGE_BARRING_PASSWORD: requestChangeBarringPassword(data, datalen, t); break; case RIL_REQUEST_QUERY_FACILITY_LOCK: { char *lockData[4]; lockData[0] = ((char **)data)[0]; lockData[1] = "2"; lockData[2] = ((char **)data)[1]; lockData[3] = ((char **)data)[2]; requestFacilityLock(request, lockData, datalen + sizeof(char *), t); break; } case RIL_REQUEST_SET_FACILITY_LOCK: requestFacilityLock(request, data, datalen, t); break; case RIL_REQUEST_GET_SMSC_ADDRESS: requestGetSmscAddress(data, datalen, t); break; case RIL_REQUEST_SET_SMSC_ADDRESS: requestSetSmscAddress(data, datalen, t); break; case RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG: requestSetSmsBroadcastConfig(data, datalen, t); break; case RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG: requestGetSmsBroadcastConfig(data, datalen, t); break; case RIL_REQUEST_REPORT_STK_SERVICE_IS_RUNNING: requestStkServiceIsRunning(t); break; case RIL_REQUEST_STK_SEND_ENVELOPE_COMMAND: requestStkSendEnvelope(data, t); break; case RIL_REQUEST_STK_SEND_TERMINAL_RESPONSE: requestStksendTerminalResponse(data, t); break; // New requests after P. case RIL_REQUEST_START_NETWORK_SCAN: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); // send unsol network scan results after a short while RIL_requestTimedCallback (sendUnsolNetworkScanResult, NULL, &TIMEVAL_SIMPOLL); break; case RIL_REQUEST_GET_MODEM_STACK_STATUS: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; case RIL_REQUEST_ENABLE_MODEM: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; case RIL_REQUEST_EMERGENCY_DIAL: requestEccDial(data, t); break; case RIL_REQUEST_SET_SIM_CARD_POWER: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; case RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE_BITMAP: requestSetPreferredNetworkType(request, data, datalen, t); break; case RIL_REQUEST_SET_ALLOWED_NETWORK_TYPES_BITMAP: requestSetPreferredNetworkType(request, data, datalen, t); break; case RIL_REQUEST_GET_ALLOWED_NETWORK_TYPES_BITMAP: requestGetPreferredNetworkType(request, data, datalen, t); case RIL_REQUEST_ENABLE_NR_DUAL_CONNECTIVITY: if (data == NULL || datalen != sizeof(int)) { RIL_onRequestComplete(t, RIL_E_INTERNAL_ERR, NULL, 0); break; } int nrDualConnectivityState = *(int *)(data); isNrDualConnectivityEnabled = (nrDualConnectivityState == 1) ? true : false; RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; case RIL_REQUEST_IS_NR_DUAL_CONNECTIVITY_ENABLED: RIL_onRequestComplete(t, RIL_E_SUCCESS, &isNrDualConnectivityEnabled, sizeof(isNrDualConnectivityEnabled)); break; case RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE_BITMAP: requestGetPreferredNetworkType(request, data, datalen, t); break; case RIL_REQUEST_SET_SYSTEM_SELECTION_CHANNELS: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; case RIL_REQUEST_GET_SLICING_CONFIG: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; case RIL_REQUEST_GET_CARRIER_RESTRICTIONS: requestGetCarrierRestrictions(data, datalen, t); // Radio config requests case RIL_REQUEST_CONFIG_GET_SLOT_STATUS: RIL_requestTimedCallback(onIccSlotStatus, (void *)t, NULL); break; case RIL_REQUEST_CONFIG_SET_SLOT_MAPPING: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; case RIL_REQUEST_CONFIG_GET_PHONE_CAPABILITY: { RIL_PhoneCapability *phoneCapability = (RIL_PhoneCapability *)alloca(sizeof(RIL_PhoneCapability)); phoneCapability->maxActiveData = 1; // DSDS is 1, and DSDA is 2, now only support DSDS phoneCapability->maxActiveInternetData = 1; // DSDA can support internet lingering phoneCapability->isInternetLingeringSupported = false; for (int num = 0; num < SIM_COUNT; num++) { phoneCapability->logicalModemList[num].modemId = num; } RIL_onRequestComplete(t, RIL_E_SUCCESS, phoneCapability, sizeof(RIL_PhoneCapability)); break; } case RIL_REQUEST_CONFIG_SET_MODEM_CONFIG: { RIL_ModemConfig *mdConfig = (RIL_ModemConfig*)(data); if (mdConfig == NULL || mdConfig->numOfLiveModems != 1) { RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } break; } case RIL_REQUEST_CONFIG_GET_MODEM_CONFIG: { RIL_ModemConfig mdConfig; mdConfig.numOfLiveModems = 1; RIL_onRequestComplete(t, RIL_E_SUCCESS, &mdConfig, sizeof(RIL_ModemConfig)); break; } case RIL_REQUEST_CONFIG_SET_PREFER_DATA_MODEM: { int *modemId = (int*)(data); if (modemId == NULL || *modemId != 0) { RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0); } else { RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } break; } case RIL_REQUEST_SET_SIGNAL_STRENGTH_REPORTING_CRITERIA: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; case RIL_REQUEST_SET_LINK_CAPACITY_REPORTING_CRITERIA: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; case RIL_REQUEST_ENABLE_UICC_APPLICATIONS: { if (data == NULL || datalen != sizeof(int)) { RIL_onRequestComplete(t, RIL_E_INTERNAL_ERR, NULL, 0); break; } areUiccApplicationsEnabled = *(int *)(data); RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; } case RIL_REQUEST_ARE_UICC_APPLICATIONS_ENABLED: RIL_onRequestComplete(t, RIL_E_SUCCESS, &areUiccApplicationsEnabled, sizeof(areUiccApplicationsEnabled)); break; case RIL_REQUEST_CDMA_SEND_SMS_EXPECT_MORE: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; case RIL_REQUEST_GET_BARRING_INFO: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; case RIL_REQUEST_SET_DATA_THROTTLING: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; case RIL_REQUEST_START_KEEPALIVE: requestStartKeepalive(data, datalen, t); break; case RIL_REQUEST_STOP_KEEPALIVE: if (data == NULL || datalen != sizeof(int)) { RIL_onRequestComplete(t, RIL_E_INTERNAL_ERR, NULL, 0); break; } int sessionHandle = *(int*)(data); if ((int32_t)sessionHandle < s_session_handle) { // check that the session handle is one we've assigned previously // note that this doesn't handle duplicate stop requests properly RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); } else { RLOGE("Invalid session handle for keepalive!"); RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0); } break; case RIL_REQUEST_SET_UNSOLICITED_RESPONSE_FILTER: RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0); break; default: RLOGD("Request not supported. Tech: %d",TECH(sMdmInfo)); RIL_onRequestComplete(t, RIL_E_REQUEST_NOT_SUPPORTED, NULL, 0); break; } } /** * Synchronous call from the RIL to us to return current radio state. * RADIO_STATE_UNAVAILABLE should be the initial state. */ static RIL_RadioState currentState() { return sState; } /** * Call from RIL to us to find out whether a specific request code * is supported by this implementation. * * Return 1 for "supported" and 0 for "unsupported" */ static int onSupports (int requestCode __unused) { //@@@ todo return 1; } static void onCancel (RIL_Token t __unused) { //@@@todo } static const char * getVersion(void) { return "android reference-ril 1.0"; } static void setRadioTechnology(ModemInfo *mdm, int newtech) { RLOGD("setRadioTechnology(%d)", newtech); int oldtech = TECH(mdm); if (newtech != oldtech) { RLOGD("Tech change (%d => %d)", oldtech, newtech); TECH(mdm) = newtech; if (techFromModemType(newtech) != techFromModemType(oldtech)) { int tech = techFromModemType(TECH(sMdmInfo)); if (tech > 0 ) { RIL_onUnsolicitedResponse(RIL_UNSOL_VOICE_RADIO_TECH_CHANGED, &tech, sizeof(tech)); } } } } static void setRadioState(RIL_RadioState newState) { RLOGD("setRadioState(%d)", newState); RIL_RadioState oldState; pthread_mutex_lock(&s_state_mutex); oldState = sState; if (s_closed > 0) { // If we're closed, the only reasonable state is // RADIO_STATE_UNAVAILABLE // This is here because things on the main thread // may attempt to change the radio state after the closed // event happened in another thread newState = RADIO_STATE_UNAVAILABLE; } if (sState != newState || s_closed > 0) { sState = newState; pthread_cond_broadcast (&s_state_cond); } pthread_mutex_unlock(&s_state_mutex); /* do these outside of the mutex */ if (sState != oldState) { RIL_onUnsolicitedResponse (RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED, NULL, 0); // Sim state can change as result of radio state change RIL_onUnsolicitedResponse (RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED, NULL, 0); /* FIXME onSimReady() and onRadioPowerOn() cannot be called * from the AT reader thread * Currently, this doesn't happen, but if that changes then these * will need to be dispatched on the request thread */ if (sState == RADIO_STATE_ON) { onRadioPowerOn(); } } } /** Returns RUIM_NOT_READY on error */ static SIM_Status getRUIMStatus() { ATResponse *p_response = NULL; int err; int ret; char *cpinLine; char *cpinResult; if (sState == RADIO_STATE_OFF || sState == RADIO_STATE_UNAVAILABLE) { ret = SIM_NOT_READY; goto done; } err = at_send_command_singleline("AT+CPIN?", "+CPIN:", &p_response); if (err != 0) { ret = SIM_NOT_READY; goto done; } switch (at_get_cme_error(p_response)) { case CME_SUCCESS: break; case CME_SIM_NOT_INSERTED: ret = SIM_ABSENT; goto done; default: ret = SIM_NOT_READY; goto done; } /* CPIN? has succeeded, now look at the result */ cpinLine = p_response->p_intermediates->line; err = at_tok_start (&cpinLine); if (err < 0) { ret = SIM_NOT_READY; goto done; } err = at_tok_nextstr(&cpinLine, &cpinResult); if (err < 0) { ret = SIM_NOT_READY; goto done; } if (0 == strcmp (cpinResult, "SIM PIN")) { ret = SIM_PIN; goto done; } else if (0 == strcmp (cpinResult, "SIM PUK")) { ret = SIM_PUK; goto done; } else if (0 == strcmp (cpinResult, "PH-NET PIN")) { return SIM_NETWORK_PERSONALIZATION; } else if (0 != strcmp (cpinResult, "READY")) { /* we're treating unsupported lock types as "sim absent" */ ret = SIM_ABSENT; goto done; } at_response_free(p_response); p_response = NULL; cpinResult = NULL; ret = SIM_READY; done: at_response_free(p_response); return ret; } /** Returns SIM_NOT_READY on error */ static SIM_Status getSIMStatus() { ATResponse *p_response = NULL; int err; int ret; char *cpinLine; char *cpinResult; RLOGD("getSIMStatus(). sState: %d",sState); err = at_send_command_singleline("AT+CPIN?", "+CPIN:", &p_response); if (err != 0) { ret = SIM_NOT_READY; goto done; } switch (at_get_cme_error(p_response)) { case CME_SUCCESS: break; case CME_SIM_NOT_INSERTED: ret = SIM_ABSENT; goto done; default: ret = SIM_NOT_READY; goto done; } /* CPIN? has succeeded, now look at the result */ cpinLine = p_response->p_intermediates->line; err = at_tok_start (&cpinLine); if (err < 0) { ret = SIM_NOT_READY; goto done; } err = at_tok_nextstr(&cpinLine, &cpinResult); if (err < 0) { ret = SIM_NOT_READY; goto done; } if (0 == strcmp (cpinResult, "SIM PIN")) { ret = SIM_PIN; goto done; } else if (0 == strcmp (cpinResult, "SIM PUK")) { ret = SIM_PUK; goto done; } else if (0 == strcmp (cpinResult, "PH-NET PIN")) { return SIM_NETWORK_PERSONALIZATION; } else if (0 != strcmp (cpinResult, "READY")) { /* we're treating unsupported lock types as "sim absent" */ ret = SIM_ABSENT; goto done; } at_response_free(p_response); p_response = NULL; cpinResult = NULL; ret = (sState == RADIO_STATE_ON) ? SIM_READY : SIM_NOT_READY; done: at_response_free(p_response); return ret; } static void getIccId(char *iccid, int size) { int err = 0; ATResponse *p_response = NULL; if (iccid == NULL) { RLOGE("iccid buffer is null"); return; } err = at_send_command_numeric("AT+CICCID", &p_response); if (err < 0 || p_response->success == 0) { goto error; } snprintf(iccid, size, "%s", p_response->p_intermediates->line); error: at_response_free(p_response); } /** * Get the current card status. * * This must be freed using freeCardStatus. * @return: On success returns RIL_E_SUCCESS */ static int getCardStatus(RIL_CardStatus_v1_5 **pp_card_status) { static RIL_AppStatus app_status_array[] = { // SIM_ABSENT = 0 { RIL_APPTYPE_UNKNOWN, RIL_APPSTATE_UNKNOWN, RIL_PERSOSUBSTATE_UNKNOWN, NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN }, // SIM_NOT_READY = 1 { RIL_APPTYPE_USIM, RIL_APPSTATE_DETECTED, RIL_PERSOSUBSTATE_UNKNOWN, NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN }, // SIM_READY = 2 { RIL_APPTYPE_USIM, RIL_APPSTATE_READY, RIL_PERSOSUBSTATE_READY, NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN }, // SIM_PIN = 3 { RIL_APPTYPE_USIM, RIL_APPSTATE_PIN, RIL_PERSOSUBSTATE_UNKNOWN, NULL, NULL, 0, RIL_PINSTATE_ENABLED_NOT_VERIFIED, RIL_PINSTATE_UNKNOWN }, // SIM_PUK = 4 { RIL_APPTYPE_USIM, RIL_APPSTATE_PUK, RIL_PERSOSUBSTATE_UNKNOWN, NULL, NULL, 0, RIL_PINSTATE_ENABLED_BLOCKED, RIL_PINSTATE_UNKNOWN }, // SIM_NETWORK_PERSONALIZATION = 5 { RIL_APPTYPE_USIM, RIL_APPSTATE_SUBSCRIPTION_PERSO, RIL_PERSOSUBSTATE_SIM_NETWORK, NULL, NULL, 0, RIL_PINSTATE_ENABLED_NOT_VERIFIED, RIL_PINSTATE_UNKNOWN }, // RUIM_ABSENT = 6 { RIL_APPTYPE_UNKNOWN, RIL_APPSTATE_UNKNOWN, RIL_PERSOSUBSTATE_UNKNOWN, NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN }, // RUIM_NOT_READY = 7 { RIL_APPTYPE_RUIM, RIL_APPSTATE_DETECTED, RIL_PERSOSUBSTATE_UNKNOWN, NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN }, // RUIM_READY = 8 { RIL_APPTYPE_RUIM, RIL_APPSTATE_READY, RIL_PERSOSUBSTATE_READY, NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN }, // RUIM_PIN = 9 { RIL_APPTYPE_RUIM, RIL_APPSTATE_PIN, RIL_PERSOSUBSTATE_UNKNOWN, NULL, NULL, 0, RIL_PINSTATE_ENABLED_NOT_VERIFIED, RIL_PINSTATE_UNKNOWN }, // RUIM_PUK = 10 { RIL_APPTYPE_RUIM, RIL_APPSTATE_PUK, RIL_PERSOSUBSTATE_UNKNOWN, NULL, NULL, 0, RIL_PINSTATE_ENABLED_BLOCKED, RIL_PINSTATE_UNKNOWN }, // RUIM_NETWORK_PERSONALIZATION = 11 { RIL_APPTYPE_RUIM, RIL_APPSTATE_SUBSCRIPTION_PERSO, RIL_PERSOSUBSTATE_SIM_NETWORK, NULL, NULL, 0, RIL_PINSTATE_ENABLED_NOT_VERIFIED, RIL_PINSTATE_UNKNOWN }, // ISIM_ABSENT = 12 { RIL_APPTYPE_UNKNOWN, RIL_APPSTATE_UNKNOWN, RIL_PERSOSUBSTATE_UNKNOWN, NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN }, // ISIM_NOT_READY = 13 { RIL_APPTYPE_ISIM, RIL_APPSTATE_DETECTED, RIL_PERSOSUBSTATE_UNKNOWN, NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN }, // ISIM_READY = 14 { RIL_APPTYPE_ISIM, RIL_APPSTATE_READY, RIL_PERSOSUBSTATE_READY, NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN }, // ISIM_PIN = 15 { RIL_APPTYPE_ISIM, RIL_APPSTATE_PIN, RIL_PERSOSUBSTATE_UNKNOWN, NULL, NULL, 0, RIL_PINSTATE_ENABLED_NOT_VERIFIED, RIL_PINSTATE_UNKNOWN }, // ISIM_PUK = 16 { RIL_APPTYPE_ISIM, RIL_APPSTATE_PUK, RIL_PERSOSUBSTATE_UNKNOWN, NULL, NULL, 0, RIL_PINSTATE_ENABLED_BLOCKED, RIL_PINSTATE_UNKNOWN }, // ISIM_NETWORK_PERSONALIZATION = 17 { RIL_APPTYPE_ISIM, RIL_APPSTATE_SUBSCRIPTION_PERSO, RIL_PERSOSUBSTATE_SIM_NETWORK, NULL, NULL, 0, RIL_PINSTATE_ENABLED_NOT_VERIFIED, RIL_PINSTATE_UNKNOWN }, }; RIL_CardState card_state; int num_apps; int sim_status = getSIMStatus(); if (sim_status == SIM_ABSENT) { card_state = RIL_CARDSTATE_ABSENT; num_apps = 0; } else { card_state = RIL_CARDSTATE_PRESENT; num_apps = 3; } // Allocate and initialize base card status. RIL_CardStatus_v1_5 *p_card_status = calloc(1, sizeof(RIL_CardStatus_v1_5)); p_card_status->base.base.base.card_state = card_state; p_card_status->base.base.base.universal_pin_state = RIL_PINSTATE_UNKNOWN; p_card_status->base.base.base.gsm_umts_subscription_app_index = -1; p_card_status->base.base.base.cdma_subscription_app_index = -1; p_card_status->base.base.base.ims_subscription_app_index = -1; p_card_status->base.base.base.num_applications = num_apps; p_card_status->base.base.physicalSlotId = 0; p_card_status->base.base.atr = NULL; p_card_status->base.base.iccid = NULL; p_card_status->base.eid = ""; if (sim_status != SIM_ABSENT) { p_card_status->base.base.iccid = (char *)calloc(64, sizeof(char)); getIccId(p_card_status->base.base.iccid, 64); } // Initialize application status int i; for (i = 0; i < RIL_CARD_MAX_APPS; i++) { p_card_status->base.base.base.applications[i] = app_status_array[SIM_ABSENT]; } RLOGD("enter getCardStatus module, num_apps= %d",num_apps); // Pickup the appropriate application status // that reflects sim_status for gsm. if (num_apps != 0) { p_card_status->base.base.base.num_applications = 3; p_card_status->base.base.base.gsm_umts_subscription_app_index = 0; p_card_status->base.base.base.cdma_subscription_app_index = 1; p_card_status->base.base.base.ims_subscription_app_index = 2; // Get the correct app status p_card_status->base.base.base.applications[0] = app_status_array[sim_status]; p_card_status->base.base.base.applications[1] = app_status_array[sim_status + RUIM_ABSENT]; p_card_status->base.base.base.applications[2] = app_status_array[sim_status + ISIM_ABSENT]; } *pp_card_status = p_card_status; return RIL_E_SUCCESS; } /** * Free the card status returned by getCardStatus */ static void freeCardStatus(RIL_CardStatus_v1_5 *p_card_status) { if (p_card_status == NULL) { return; } free(p_card_status->base.base.iccid); free(p_card_status); } /** * SIM ready means any commands that access the SIM will work, including: * AT+CPIN, AT+CSMS, AT+CNMI, AT+CRSM * (all SMS-related commands) */ static void pollSIMState (void *param __unused) { ATResponse *p_response; int ret; if (sState != RADIO_STATE_UNAVAILABLE) { // no longer valid to poll return; } switch(getSIMStatus()) { case SIM_ABSENT: case SIM_PIN: case SIM_PUK: case SIM_NETWORK_PERSONALIZATION: default: RLOGI("SIM ABSENT or LOCKED"); RIL_onUnsolicitedResponse(RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED, NULL, 0); return; case SIM_NOT_READY: RIL_requestTimedCallback (pollSIMState, NULL, &TIMEVAL_SIMPOLL); return; case SIM_READY: RLOGI("SIM_READY"); onSIMReady(); RIL_onUnsolicitedResponse(RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED, NULL, 0); return; } } /** returns 1 if on, 0 if off, and -1 on error */ static int isRadioOn() { ATResponse *p_response = NULL; int err; char *line; char ret; err = at_send_command_singleline("AT+CFUN?", "+CFUN:", &p_response); if (err < 0 || p_response->success == 0) { // assume radio is off goto error; } line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err < 0) goto error; err = at_tok_nextbool(&line, &ret); if (err < 0) goto error; at_response_free(p_response); return (int)ret; error: at_response_free(p_response); return -1; } /** * Parse the response generated by a +CTEC AT command * The values read from the response are stored in current and preferred. * Both current and preferred may be null. The corresponding value is ignored in that case. * * @return: -1 if some error occurs (or if the modem doesn't understand the +CTEC command) * 1 if the response includes the current technology only * 0 if the response includes both current technology and preferred mode */ int parse_technology_response( const char *response, int *current, int32_t *preferred ) { int err; char *line, *p; int ct; int32_t pt = 0; char *str_pt; line = p = strdup(response); RLOGD("Response: %s", line); err = at_tok_start(&p); if (err || !at_tok_hasmore(&p)) { RLOGD("err: %d. p: %s", err, p); free(line); return -1; } err = at_tok_nextint(&p, &ct); if (err) { free(line); return -1; } if (current) *current = ct; RLOGD("line remaining after int: %s", p); err = at_tok_nexthexint(&p, &pt); if (err) { free(line); return 1; } if (preferred) { *preferred = pt; } free(line); return 0; } int query_supported_techs( ModemInfo *mdm __unused, int *supported ) { ATResponse *p_response; int err, val, techs = 0; char *tok; char *line; RLOGD("query_supported_techs"); err = at_send_command_singleline("AT+CTEC=?", "+CTEC:", &p_response); if (err || !p_response->success) goto error; line = p_response->p_intermediates->line; err = at_tok_start(&line); if (err || !at_tok_hasmore(&line)) goto error; while (!at_tok_nextint(&line, &val)) { techs |= ( 1 << val ); } if (supported) *supported = techs; return 0; error: at_response_free(p_response); return -1; } /** * query_ctec. Send the +CTEC AT command to the modem to query the current * and preferred modes. It leaves values in the addresses pointed to by * current and preferred. If any of those pointers are NULL, the corresponding value * is ignored, but the return value will still reflect if retrieving and parsing of the * values succeeded. * * @mdm Currently unused * @current A pointer to store the current mode returned by the modem. May be null. * @preferred A pointer to store the preferred mode returned by the modem. May be null. * @return -1 on error (or failure to parse) * 1 if only the current mode was returned by modem (or failed to parse preferred) * 0 if both current and preferred were returned correctly */ int query_ctec(ModemInfo *mdm __unused, int *current, int32_t *preferred) { ATResponse *response = NULL; int err; int res; RLOGD("query_ctec. current: %p, preferred: %p", current, preferred); err = at_send_command_singleline("AT+CTEC?", "+CTEC:", &response); if (!err && response->success) { res = parse_technology_response(response->p_intermediates->line, current, preferred); at_response_free(response); return res; } RLOGE("Error executing command: %d. response: %p. status: %d", err, response, response? response->success : -1); at_response_free(response); return -1; } int is_multimode_modem(ModemInfo *mdm) { ATResponse *response; int err; char *line; int tech; int32_t preferred; if (query_ctec(mdm, &tech, &preferred) == 0) { mdm->currentTech = tech; mdm->preferredNetworkMode = preferred; if (query_supported_techs(mdm, &mdm->supportedTechs)) { return 0; } return 1; } return 0; } /** * Find out if our modem is GSM, CDMA or both (Multimode) */ static void probeForModemMode(ModemInfo *info) { ATResponse *response; int err; assert (info); // Currently, our only known multimode modem is qemu's android modem, // which implements the AT+CTEC command to query and set mode. // Try that first if (is_multimode_modem(info)) { RLOGI("Found Multimode Modem. Supported techs mask: %8.8x. Current tech: %d", info->supportedTechs, info->currentTech); return; } /* Being here means that our modem is not multimode */ info->isMultimode = 0; /* CDMA Modems implement the AT+WNAM command */ err = at_send_command_singleline("AT+WNAM","+WNAM:", &response); if (!err && response->success) { at_response_free(response); // TODO: find out if we really support EvDo info->supportedTechs = MDM_CDMA | MDM_EVDO; info->currentTech = MDM_CDMA; RLOGI("Found CDMA Modem"); return; } if (!err) at_response_free(response); // TODO: find out if modem really supports WCDMA/LTE info->supportedTechs = MDM_GSM | MDM_WCDMA | MDM_LTE; info->currentTech = MDM_GSM; RLOGI("Found GSM Modem"); } /** * Initialize everything that can be configured while we're still in * AT+CFUN=0 */ static void initializeCallback(void *param __unused) { ATResponse *p_response = NULL; int err; setRadioState (RADIO_STATE_OFF); at_handshake(); probeForModemMode(sMdmInfo); /* note: we don't check errors here. Everything important will be handled in onATTimeout and onATReaderClosed */ /* atchannel is tolerant of echo but it must */ /* have verbose result codes */ at_send_command("ATE0Q0V1", NULL); /* No auto-answer */ at_send_command("ATS0=0", NULL); /* Extended errors */ at_send_command("AT+CMEE=1", NULL); /* Network registration events */ err = at_send_command("AT+CREG=2", &p_response); /* some handsets -- in tethered mode -- don't support CREG=2 */ if (err < 0 || p_response->success == 0) { at_send_command("AT+CREG=1", NULL); } at_response_free(p_response); /* GPRS registration events */ at_send_command("AT+CGREG=1", NULL); /* Call Waiting notifications */ at_send_command("AT+CCWA=1", NULL); /* Alternating voice/data off */ at_send_command("AT+CMOD=0", NULL); /* Not muted */ at_send_command("AT+CMUT=0", NULL); /* +CSSU unsolicited supp service notifications */ at_send_command("AT+CSSN=0,1", NULL); /* no connected line identification */ at_send_command("AT+COLP=0", NULL); /* HEX character set */ at_send_command("AT+CSCS=\"HEX\"", NULL); /* USSD unsolicited */ at_send_command("AT+CUSD=1", NULL); /* Enable +CGEV GPRS event notifications, but don't buffer */ at_send_command("AT+CGEREP=1,0", NULL); /* SMS PDU mode */ at_send_command("AT+CMGF=0", NULL); #ifdef USE_TI_COMMANDS at_send_command("AT%CPI=3", NULL); /* TI specific -- notifications when SMS is ready (currently ignored) */ at_send_command("AT%CSTAT=1", NULL); #endif /* USE_TI_COMMANDS */ /* assume radio is off on error */ if (isRadioOn() > 0) { setRadioState (RADIO_STATE_ON); } } static void waitForClose() { pthread_mutex_lock(&s_state_mutex); while (s_closed == 0) { pthread_cond_wait(&s_state_cond, &s_state_mutex); } pthread_mutex_unlock(&s_state_mutex); } static void sendUnsolImsNetworkStateChanged() { #if 0 // to be used when unsol is changed to return data. int reply[2]; reply[0] = s_ims_registered; reply[1] = s_ims_services; reply[1] = s_ims_format; #endif RIL_onUnsolicitedResponse(RIL_UNSOL_RESPONSE_IMS_NETWORK_STATE_CHANGED, NULL, 0); } static int parseProactiveCmdInd(char *response) { int typePos = 0; int cmdType = 0; char tempStr[3] = {0}; char *end = NULL; StkUnsolEvent ret = STK_UNSOL_EVENT_UNKNOWN; if (response == NULL || strlen(response) < 3) { return ret; } if (response[2] <= '7') { typePos = 10; } else { typePos = 12; } if ((int)strlen(response) < typePos + 1) { return ret; } memcpy(tempStr, &(response[typePos]), 2); cmdType = strtoul(tempStr, &end, 16); cmdType = 0xFF & cmdType; RLOGD("cmdType: %d",cmdType); switch (cmdType) { case STK_RUN_AT: case STK_SEND_DTMF: case STK_SEND_SMS: case STK_SEND_SS: case STK_SEND_USSD: case STK_PLAY_TONE: case STK_CLOSE_CHANNEL: ret = STK_UNSOL_EVENT_NOTIFY; break; case STK_REFRESH: if (strncasecmp(&(response[typePos + 2]), "04", 2) == 0) { // SIM_RESET RLOGD("Type of Refresh is SIM_RESET"); s_stkServiceRunning = false; ret = STK_UNSOL_PROACTIVE_CMD; } else { ret = STK_UNSOL_EVENT_NOTIFY; } break; default: ret = STK_UNSOL_PROACTIVE_CMD; break; } if (getSIMStatus() == SIM_ABSENT && s_stkServiceRunning) { s_stkServiceRunning = false; } if (false == s_stkServiceRunning) { ret = STK_UNSOL_EVENT_UNKNOWN; s_stkUnsolResponse = (char *)calloc((strlen(response) + 1), sizeof(char)); snprintf(s_stkUnsolResponse, strlen(response) + 1, "%s", response); RLOGD("STK service is not running [%s]", s_stkUnsolResponse); } return ret; } /** * Called by atchannel when an unsolicited line appears * This is called on atchannel's reader thread. AT commands may * not be issued here */ static void onUnsolicited (const char *s, const char *sms_pdu) { char *line = NULL, *p; int err; /* Ignore unsolicited responses until we're initialized. * This is OK because the RIL library will poll for initial state */ if (sState == RADIO_STATE_UNAVAILABLE) { return; } #define CGFPCCFG "%CGFPCCFG:" if (strStartsWith(s, CGFPCCFG)) { /* cuttlefish/goldfish specific */ char *response; line = p = strdup(s); RLOGD("got CGFPCCFG line %s and %s\n", s, p); err = at_tok_start(&line); if(err) { RLOGE("invalid CGFPCCFG line %s and %s\n", s, p); } #define kSize 5 int configs[kSize]; for (int i=0; i < kSize && !err; ++i) { err = at_tok_nextint(&line, &(configs[i])); RLOGD("got i %d, val = %d", i, configs[i]); } if(err) { RLOGE("invalid CGFPCCFG line %s and %s\n", s, p); } else { int modem_tech = configs[2]; configs[2] = techFromModemType(modem_tech); RIL_onUnsolicitedResponse ( RIL_UNSOL_PHYSICAL_CHANNEL_CONFIGS, configs, kSize); } free(p); } else if (strStartsWith(s, "%CTZV:")) { /* TI specific -- NITZ time */ char *response; line = p = strdup(s); at_tok_start(&p); err = at_tok_nextstr(&p, &response); if (err != 0) { RLOGE("invalid NITZ line %s\n", s); } else { RIL_onUnsolicitedResponse ( RIL_UNSOL_NITZ_TIME_RECEIVED, response, strlen(response) + 1); } free(line); } else if (strStartsWith(s,"+CRING:") || strStartsWith(s,"RING") || strStartsWith(s,"NO CARRIER") || strStartsWith(s,"+CCWA") ) { RIL_onUnsolicitedResponse ( RIL_UNSOL_RESPONSE_CALL_STATE_CHANGED, NULL, 0); #ifdef WORKAROUND_FAKE_CGEV RIL_requestTimedCallback (onDataCallListChanged, NULL, NULL); //TODO use new function #endif /* WORKAROUND_FAKE_CGEV */ } else if (strStartsWith(s,"+CREG:") || strStartsWith(s,"+CGREG:") ) { RIL_onUnsolicitedResponse ( RIL_UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED, NULL, 0); #ifdef WORKAROUND_FAKE_CGEV RIL_requestTimedCallback (onDataCallListChanged, NULL, NULL); #endif /* WORKAROUND_FAKE_CGEV */ } else if (strStartsWith(s, "+CMT:")) { RIL_onUnsolicitedResponse ( RIL_UNSOL_RESPONSE_NEW_SMS, sms_pdu, strlen(sms_pdu)); } else if (strStartsWith(s, "+CDS:")) { RIL_onUnsolicitedResponse ( RIL_UNSOL_RESPONSE_NEW_SMS_STATUS_REPORT, sms_pdu, strlen(sms_pdu)); } else if (strStartsWith(s, "+CGEV:")) { /* Really, we can ignore NW CLASS and ME CLASS events here, * but right now we don't since extraneous * RIL_UNSOL_DATA_CALL_LIST_CHANGED calls are tolerated */ /* can't issue AT commands here -- call on main thread */ RIL_requestTimedCallback (onDataCallListChanged, NULL, NULL); #ifdef WORKAROUND_FAKE_CGEV } else if (strStartsWith(s, "+CME ERROR: 150")) { RIL_requestTimedCallback (onDataCallListChanged, NULL, NULL); #endif /* WORKAROUND_FAKE_CGEV */ } else if (strStartsWith(s, "+CTEC: ")) { int tech, mask; switch (parse_technology_response(s, &tech, NULL)) { case -1: // no argument could be parsed. RLOGE("invalid CTEC line %s\n", s); break; case 1: // current mode correctly parsed case 0: // preferred mode correctly parsed mask = 1 << tech; if (mask != MDM_GSM && mask != MDM_CDMA && mask != MDM_WCDMA && mask != MDM_LTE) { RLOGE("Unknown technology %d\n", tech); } else { setRadioTechnology(sMdmInfo, tech); } break; } } else if (strStartsWith(s, "+CCSS: ")) { int source = 0; line = p = strdup(s); if (!line) { RLOGE("+CCSS: Unable to allocate memory"); return; } if (at_tok_start(&p) < 0) { free(line); return; } if (at_tok_nextint(&p, &source) < 0) { RLOGE("invalid +CCSS response: %s", line); free(line); return; } SSOURCE(sMdmInfo) = source; RIL_onUnsolicitedResponse(RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED, &source, sizeof(source)); free(line); } else if (strStartsWith(s, "+WSOS: ")) { char state = 0; int unsol; line = p = strdup(s); if (!line) { RLOGE("+WSOS: Unable to allocate memory"); return; } if (at_tok_start(&p) < 0) { free(line); return; } if (at_tok_nextbool(&p, &state) < 0) { RLOGE("invalid +WSOS response: %s", line); free(line); return; } free(line); unsol = state ? RIL_UNSOL_ENTER_EMERGENCY_CALLBACK_MODE : RIL_UNSOL_EXIT_EMERGENCY_CALLBACK_MODE; RIL_onUnsolicitedResponse(unsol, NULL, 0); } else if (strStartsWith(s, "+WPRL: ")) { int version = -1; line = p = strdup(s); if (!line) { RLOGE("+WPRL: Unable to allocate memory"); return; } if (at_tok_start(&p) < 0) { RLOGE("invalid +WPRL response: %s", s); free(line); return; } if (at_tok_nextint(&p, &version) < 0) { RLOGE("invalid +WPRL response: %s", s); free(line); return; } free(line); RIL_onUnsolicitedResponse(RIL_UNSOL_CDMA_PRL_CHANGED, &version, sizeof(version)); } else if (strStartsWith(s, "+CFUN: 0")) { setRadioState(RADIO_STATE_OFF); } else if (strStartsWith(s, "+CSQ: ")) { // Accept a response that is at least v6, and up to v12 int minNumOfElements=sizeof(RIL_SignalStrength_v6)/sizeof(int); int maxNumOfElements=sizeof(RIL_SignalStrength_v12)/sizeof(int); int response[maxNumOfElements]; memset(response, 0, sizeof(response)); line = p = strdup(s); at_tok_start(&p); for (int count = 0; count < maxNumOfElements; count++) { err = at_tok_nextint(&p, &(response[count])); if (err < 0 && count < minNumOfElements) { free(line); return; } } RIL_onUnsolicitedResponse(RIL_UNSOL_SIGNAL_STRENGTH, response, sizeof(response)); free(line); } else if (strStartsWith(s, "+CUSATEND")) { // session end RIL_onUnsolicitedResponse(RIL_UNSOL_STK_SESSION_END, NULL, 0); } else if (strStartsWith(s, "+CUSATP:")) { line = p = strdup(s); if (!line) { RLOGE("+CUSATP: Unable to allocate memory"); return; } if (at_tok_start(&p) < 0) { RLOGE("invalid +CUSATP response: %s", s); free(line); return; } char *response = NULL; if (at_tok_nextstr(&p, &response) < 0) { RLOGE("%s fail", s); free(line); return; } StkUnsolEvent ret = parseProactiveCmdInd(response); if (ret == STK_UNSOL_EVENT_NOTIFY) { RIL_onUnsolicitedResponse(RIL_UNSOL_STK_EVENT_NOTIFY, response, strlen(response) + 1); } else if (ret == STK_UNSOL_PROACTIVE_CMD) { RIL_onUnsolicitedResponse(RIL_UNSOL_STK_PROACTIVE_COMMAND, response, strlen(response) + 1); } free(line); } else if (strStartsWith(s, "+REMOTEIDDISCLOSURE")) { RLOGD("starting REMOTEIDDISCLOSURE %s", s); line = p = strdup(s); if (!line) { RLOGE("+REMOTEIDDISCLOSURE unable to allocate memory"); return; } if (at_tok_start(&p) < 0) { RLOGE("invalid +REMOTEIDDISCLOSURE command: %s", s); free(line); return; } RIL_CellularIdentifierDisclosure disclosure; if (at_tok_nextstr(&p, &disclosure.plmn) < 0) { RLOGE("+REMOTEIDDISCLOSURE unable to parse plmn %s", s); return; } if (at_tok_nextint(&p, &disclosure.identifierType) < 0) { RLOGE("+REMOTEIDDISCLOSURE unable to parse identifier %s", s); return; } if (at_tok_nextint(&p, &disclosure.protocolMessage) < 0) { RLOGE("+REMOTEIDDISCLOSURE unable to parse protocol message %s", s); return; } if (at_tok_nextbool(&p, (char*)&disclosure.isEmergency) < 0) { RLOGE("+REMOTEIDDISCLOSURE unable to parse isEmergency %s", s); return; } RIL_onUnsolicitedResponse(RIL_UNSOL_CELLULAR_IDENTIFIER_DISCLOSED, (void*)&disclosure, sizeof(disclosure)); free(line); } else if (strStartsWith(s, "+UPDATESECURITYALGORITHM")) { RLOGD("starting UPDATESECURITYALGORITHM %s", s); line = p = strdup(s); if (!line) { RLOGE("+UPDATESECURITYALGORITHM unable to allocate memory"); return; } if (at_tok_start(&p) < 0) { RLOGE("invalid +UPDATESECURITYALGORITHM command: %s", s); free(line); return; } RIL_SecurityAlgorithmUpdate update; if (at_tok_nextint(&p, &update.connectionEvent) < 0) { RLOGE("+UPDATESECURITYALGORITHM unable to parse connection event %s", s); return; } if (at_tok_nextint(&p, &update.encryption) < 0) { RLOGE("+UPDATESECURITYALGORITHM unable to parse encryption %s", s); return; } if (at_tok_nextint(&p, &update.integrity) < 0) { RLOGE("+UPDATESECURITYALGORITHM unable to parse integrity %s", s); return; } if (at_tok_nextbool(&p, (char*)&update.isUnprotectedEmergency) < 0) { RLOGE("+UPDATESECURITYALGORITHM unable to parse isUnprotectedEmergency %s", s); return; } RIL_onUnsolicitedResponse(RIL_UNSOL_SECURITY_ALGORITHM_UPDATED, &update, sizeof(update)); free(line); } else { RLOGE("Unexpected unsolicited request: %s", s); } } /* Called on command or reader thread */ static void onATReaderClosed() { RLOGI("AT channel closed\n"); at_close(); s_closed = 1; setRadioState (RADIO_STATE_UNAVAILABLE); } /* Called on command thread */ static void onATTimeout() { RLOGI("AT channel timeout; closing\n"); at_close(); s_closed = 1; /* FIXME cause a radio reset here */ setRadioState (RADIO_STATE_UNAVAILABLE); } /* Called to pass hardware configuration information to telephony * framework. */ static void setHardwareConfiguration(int num, RIL_HardwareConfig *cfg) { RIL_onUnsolicitedResponse(RIL_UNSOL_HARDWARE_CONFIG_CHANGED, cfg, num*sizeof(*cfg)); } static void usage(char *s __unused) { #ifdef RIL_SHLIB fprintf(stderr, "reference-ril requires: -p or -d /dev/tty_device\n"); #else fprintf(stderr, "usage: %s [-p ] [-d /dev/tty_device]\n", s); exit(-1); #endif } static void * mainLoop(void *param __unused) { int fd; int ret; AT_DUMP("== ", "entering mainLoop()", -1 ); at_set_on_reader_closed(onATReaderClosed); at_set_on_timeout(onATTimeout); for (;;) { fd = -1; while (fd < 0) { if (isInEmulator()) { fd = qemu_open_modem_port(); RLOGD("opening qemu_modem_port %d!", fd); } else if (s_port > 0) { fd = socket_network_client("localhost", s_port, SOCK_STREAM); } else if (s_modem_simulator_port >= 0) { fd = socket(AF_VSOCK, SOCK_STREAM, 0); if (fd < 0) { RLOGD("Can't create AF_VSOCK socket!"); continue; } struct sockaddr_vm sa; memset(&sa, 0, sizeof(struct sockaddr_vm)); sa.svm_family = AF_VSOCK; sa.svm_cid = VMADDR_CID_HOST; sa.svm_port = s_modem_simulator_port; if (connect(fd, (struct sockaddr *)(&sa), sizeof(sa)) < 0) { RLOGD("Can't connect to port:%ud, errno: %s", s_modem_simulator_port, strerror(errno)); close(fd); fd = -1; continue; } } else if (s_device_socket) { fd = socket_local_client(s_device_path, ANDROID_SOCKET_NAMESPACE_FILESYSTEM, SOCK_STREAM); } else if (s_device_path != NULL) { fd = open (s_device_path, O_RDWR); if ( fd >= 0 && !memcmp( s_device_path, "/dev/ttyS", 9 ) ) { /* disable echo on serial ports */ struct termios ios; tcgetattr( fd, &ios ); ios.c_lflag = 0; /* disable ECHO, ICANON, etc... */ tcsetattr( fd, TCSANOW, &ios ); } } if (fd < 0) { perror ("opening AT interface. retrying..."); sleep(10); /* never returns */ } } s_closed = 0; ret = at_open(fd, onUnsolicited); if (ret < 0) { RLOGE ("AT error %d on at_open\n", ret); return 0; } RIL_requestTimedCallback(initializeCallback, NULL, &TIMEVAL_0); // Give initializeCallback a chance to dispatched, since // we don't presently have a cancellation mechanism sleep(1); waitForClose(); RLOGI("Re-opening after close"); } } #ifdef RIL_SHLIB pthread_t s_tid_mainloop; const RIL_RadioFunctions *RIL_Init(const struct RIL_Env *env, int argc, char **argv) { int ret; int fd = -1; int opt; pthread_attr_t attr; s_rilenv = env; RLOGD("RIL_Init"); while ( -1 != (opt = getopt(argc, argv, "p:d:s:c:m:"))) { switch (opt) { case 'p': s_port = atoi(optarg); if (s_port == 0) { usage(argv[0]); return NULL; } RLOGI("Opening loopback port %d\n", s_port); break; case 'd': s_device_path = optarg; RLOGI("Opening tty device %s\n", s_device_path); break; case 's': s_device_path = optarg; s_device_socket = 1; RLOGI("Opening socket %s\n", s_device_path); break; case 'c': RLOGI("Client id received %s\n", optarg); break; case 'm': s_modem_simulator_port = strtoul(optarg, NULL, 10); RLOGI("Opening modem simulator port %ud\n", s_modem_simulator_port); break; default: usage(argv[0]); return NULL; } } if (s_port < 0 && s_device_path == NULL && !isInEmulator() && s_modem_simulator_port < 0) { usage(argv[0]); return NULL; } sMdmInfo = calloc(1, sizeof(ModemInfo)); if (!sMdmInfo) { RLOGE("Unable to alloc memory for ModemInfo"); return NULL; } pthread_attr_init (&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); ret = pthread_create(&s_tid_mainloop, &attr, mainLoop, NULL); if (ret < 0) { RLOGE("pthread_create: %s:", strerror(errno)); return NULL; } return &s_callbacks; } #else /* RIL_SHLIB */ int main (int argc, char **argv) { int ret; int fd = -1; int opt; while ( -1 != (opt = getopt(argc, argv, "p:d:"))) { switch (opt) { case 'p': s_port = atoi(optarg); if (s_port == 0) { usage(argv[0]); } RLOGI("Opening loopback port %d\n", s_port); break; case 'd': s_device_path = optarg; RLOGI("Opening tty device %s\n", s_device_path); break; case 's': s_device_path = optarg; s_device_socket = 1; RLOGI("Opening socket %s\n", s_device_path); break; default: usage(argv[0]); } } if (s_port < 0 && s_device_path == NULL && !isInEmulator()) { usage(argv[0]); } RIL_register(&s_callbacks); mainLoop(NULL); return 0; } #endif /* RIL_SHLIB */