/* * Copyright (C) 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "C2SoftAomEnc" #include #include #include #include #include #include #include #include #include "C2SoftAomEnc.h" /* Quantization param values defined by the spec */ #define AOM_QP_MIN 0 #define AOM_QP_MAX 63 #define AOM_QP_DEFAULT_MIN AOM_QP_MIN #define AOM_QP_DEFAULT_MAX AOM_QP_MAX namespace android { constexpr char COMPONENT_NAME[] = "c2.android.av1.encoder"; #define DEFAULT_SPEED 10 C2SoftAomEnc::IntfImpl::IntfImpl(const std::shared_ptr& helper) : SimpleInterface::BaseParams(helper, COMPONENT_NAME, C2Component::KIND_ENCODER, C2Component::DOMAIN_VIDEO, MEDIA_MIMETYPE_VIDEO_AV1) { noPrivateBuffers(); // TODO: account for our buffers here noInputReferences(); noOutputReferences(); noInputLatency(); noTimeStretch(); setDerivedInstance(this); addParameter(DefineParam(mUsage, C2_PARAMKEY_INPUT_STREAM_USAGE) .withConstValue(new C2StreamUsageTuning::input( 0u, (uint64_t)C2MemoryUsage::CPU_READ)) .build()); // Odd dimension support in encoders requires Android V and above size_t stepSize = isAtLeastV() ? 1 : 2; addParameter(DefineParam(mSize, C2_PARAMKEY_PICTURE_SIZE) .withDefault(new C2StreamPictureSizeInfo::input(0u, 320, 240)) .withFields({ C2F(mSize, width).inRange(2, 2048, stepSize), C2F(mSize, height).inRange(2, 2048, stepSize), }) .withSetter(SizeSetter) .build()); addParameter(DefineParam(mBitrateMode, C2_PARAMKEY_BITRATE_MODE) .withDefault(new C2StreamBitrateModeTuning::output( 0u, C2Config::BITRATE_VARIABLE)) .withFields({C2F(mBitrateMode, value) .oneOf({C2Config::BITRATE_CONST, C2Config::BITRATE_VARIABLE, C2Config::BITRATE_IGNORE})}) .withSetter(Setter::StrictValueWithNoDeps) .build()); addParameter(DefineParam(mFrameRate, C2_PARAMKEY_FRAME_RATE) .withDefault(new C2StreamFrameRateInfo::output(0u, 30.)) // TODO: More restriction? .withFields({C2F(mFrameRate, value).greaterThan(0.)}) .withSetter(Setter::StrictValueWithNoDeps) .build()); addParameter(DefineParam(mSyncFramePeriod, C2_PARAMKEY_SYNC_FRAME_INTERVAL) .withDefault(new C2StreamSyncFrameIntervalTuning::output(0u, 1000000)) .withFields({C2F(mSyncFramePeriod, value).any()}) .withSetter(Setter::StrictValueWithNoDeps) .build()); addParameter(DefineParam(mBitrate, C2_PARAMKEY_BITRATE) .withDefault(new C2StreamBitrateInfo::output(0u, 64000)) .withFields({C2F(mBitrate, value).inRange(4096, 40000000)}) .withSetter(BitrateSetter) .build()); addParameter(DefineParam(mComplexity, C2_PARAMKEY_COMPLEXITY) .withDefault(new C2StreamComplexityTuning::output(0u, 0)) .withFields({C2F(mComplexity, value).inRange(0, 5)}) .withSetter(Setter::NonStrictValueWithNoDeps) .build()); addParameter(DefineParam(mQuality, C2_PARAMKEY_QUALITY) .withDefault(new C2StreamQualityTuning::output(0u, 80)) .withFields({C2F(mQuality, value).inRange(0, 100)}) .withSetter(Setter::NonStrictValueWithNoDeps) .build()); addParameter(DefineParam(mIntraRefresh, C2_PARAMKEY_INTRA_REFRESH) .withConstValue(new C2StreamIntraRefreshTuning::output( 0u, C2Config::INTRA_REFRESH_DISABLED, 0.)) .build()); addParameter(DefineParam(mProfileLevel, C2_PARAMKEY_PROFILE_LEVEL) .withDefault(new C2StreamProfileLevelInfo::output(0u, PROFILE_AV1_0, LEVEL_AV1_2)) .withFields({ C2F(mProfileLevel, profile).equalTo(PROFILE_AV1_0), C2F(mProfileLevel, level) .oneOf({LEVEL_AV1_2, LEVEL_AV1_2_1, LEVEL_AV1_2_2, LEVEL_AV1_2_3, LEVEL_AV1_3, LEVEL_AV1_3_1, LEVEL_AV1_3_2, LEVEL_AV1_3_3, LEVEL_AV1_4, LEVEL_AV1_4_1}), }) .withSetter(ProfileLevelSetter, mSize, mFrameRate, mBitrate) .build()); std::vector pixelFormats = {HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, HAL_PIXEL_FORMAT_YCBCR_420_888}; if (isHalPixelFormatSupported((AHardwareBuffer_Format)HAL_PIXEL_FORMAT_YCBCR_P010)) { pixelFormats.push_back(HAL_PIXEL_FORMAT_YCBCR_P010); } addParameter(DefineParam(mPixelFormat, C2_PARAMKEY_PIXEL_FORMAT) .withDefault(new C2StreamPixelFormatInfo::input( 0u, HAL_PIXEL_FORMAT_YCBCR_420_888)) .withFields({C2F(mPixelFormat, value).oneOf({pixelFormats})}) .withSetter((Setter::StrictValueWithNoDeps)) .build()); addParameter(DefineParam(mRequestSync, C2_PARAMKEY_REQUEST_SYNC_FRAME) .withDefault(new C2StreamRequestSyncFrameTuning::output(0u, C2_FALSE)) .withFields({C2F(mRequestSync, value).oneOf({C2_FALSE, C2_TRUE})}) .withSetter(Setter::NonStrictValueWithNoDeps) .build()); addParameter( DefineParam(mColorAspects, C2_PARAMKEY_COLOR_ASPECTS) .withDefault(new C2StreamColorAspectsInfo::input( 0u, C2Color::RANGE_UNSPECIFIED, C2Color::PRIMARIES_UNSPECIFIED, C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED)) .withFields( {C2F(mColorAspects, range) .inRange(C2Color::RANGE_UNSPECIFIED, C2Color::RANGE_OTHER), C2F(mColorAspects, primaries) .inRange(C2Color::PRIMARIES_UNSPECIFIED, C2Color::PRIMARIES_OTHER), C2F(mColorAspects, transfer) .inRange(C2Color::TRANSFER_UNSPECIFIED, C2Color::TRANSFER_OTHER), C2F(mColorAspects, matrix) .inRange(C2Color::MATRIX_UNSPECIFIED, C2Color::MATRIX_OTHER)}) .withSetter(ColorAspectsSetter) .build()); addParameter( DefineParam(mCodedColorAspects, C2_PARAMKEY_VUI_COLOR_ASPECTS) .withDefault(new C2StreamColorAspectsInfo::output( 0u, C2Color::RANGE_LIMITED, C2Color::PRIMARIES_UNSPECIFIED, C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED)) .withFields( {C2F(mCodedColorAspects, range) .inRange(C2Color::RANGE_UNSPECIFIED, C2Color::RANGE_OTHER), C2F(mCodedColorAspects, primaries) .inRange(C2Color::PRIMARIES_UNSPECIFIED, C2Color::PRIMARIES_OTHER), C2F(mCodedColorAspects, transfer) .inRange(C2Color::TRANSFER_UNSPECIFIED, C2Color::TRANSFER_OTHER), C2F(mCodedColorAspects, matrix) .inRange(C2Color::MATRIX_UNSPECIFIED, C2Color::MATRIX_OTHER)}) .withSetter(CodedColorAspectsSetter, mColorAspects) .build()); addParameter( DefineParam(mPictureQuantization, C2_PARAMKEY_PICTURE_QUANTIZATION) .withDefault(C2StreamPictureQuantizationTuning::output::AllocShared( 0 /* flexCount */, 0u /* stream */)) .withFields({C2F(mPictureQuantization, m.values[0].type_).oneOf( {C2Config::I_FRAME, C2Config::P_FRAME}), C2F(mPictureQuantization, m.values[0].min).inRange( AOM_QP_DEFAULT_MIN, AOM_QP_DEFAULT_MAX), C2F(mPictureQuantization, m.values[0].max).inRange( AOM_QP_DEFAULT_MIN, AOM_QP_DEFAULT_MAX)}) .withSetter(PictureQuantizationSetter) .build()); } C2R C2SoftAomEnc::IntfImpl::BitrateSetter(bool mayBlock, C2P& me) { (void)mayBlock; C2R res = C2R::Ok(); if (me.v.value < 4096) { me.set().value = 4096; } return res; } C2R C2SoftAomEnc::IntfImpl::SizeSetter(bool mayBlock, const C2P& oldMe, C2P& me) { (void)mayBlock; C2R res = C2R::Ok(); if (!me.F(me.v.width).supportsAtAll(me.v.width)) { res = res.plus(C2SettingResultBuilder::BadValue(me.F(me.v.width))); me.set().width = oldMe.v.width; } if (!me.F(me.v.height).supportsAtAll(me.v.height)) { res = res.plus(C2SettingResultBuilder::BadValue(me.F(me.v.height))); me.set().height = oldMe.v.height; } return res; } C2R C2SoftAomEnc::IntfImpl::ProfileLevelSetter(bool mayBlock, C2P& me, const C2P& size, const C2P& frameRate, const C2P& bitrate) { (void)mayBlock; if (!me.F(me.v.profile).supportsAtAll(me.v.profile)) { me.set().profile = PROFILE_AV1_0; } struct LevelLimits { C2Config::level_t level; float samplesPerSec; uint64_t samples; uint32_t bitrate; size_t maxHSize; size_t maxVSize; }; constexpr LevelLimits kLimits[] = { {LEVEL_AV1_2, 4423680, 147456, 1500000, 2048, 1152}, {LEVEL_AV1_2_1, 8363520, 278784, 3000000, 2816, 1584}, {LEVEL_AV1_3, 19975680, 665856, 6000000, 4352, 2448}, {LEVEL_AV1_3_1, 37950720, 1065024, 10000000, 5504, 3096}, {LEVEL_AV1_4, 70778880, 2359296, 12000000, 6144, 3456}, {LEVEL_AV1_4_1, 141557760, 2359296, 20000000, 6144, 3456}, }; uint64_t samples = size.v.width * size.v.height; float samplesPerSec = float(samples) * frameRate.v.value; // Check if the supplied level meets the samples / bitrate requirements. // If not, update the level with the lowest level meeting the requirements. bool found = false; // By default needsUpdate = false in case the supplied level does meet // the requirements. bool needsUpdate = false; if (!me.F(me.v.level).supportsAtAll(me.v.level)) { needsUpdate = true; } for (const LevelLimits& limit : kLimits) { if (samples <= limit.samples && samplesPerSec <= limit.samplesPerSec && bitrate.v.value <= limit.bitrate && size.v.width <= limit.maxHSize && size.v.height <= limit.maxVSize) { // This is the lowest level that meets the requirements, and if // we haven't seen the supplied level yet, that means we don't // need the update. if (needsUpdate) { ALOGD("Given level %x does not cover current configuration: " "adjusting to %x", me.v.level, limit.level); me.set().level = limit.level; } found = true; break; } if (me.v.level == limit.level) { // We break out of the loop when the lowest feasible level is // found. The fact that we're here means that our level doesn't // meet the requirement and needs to be updated. needsUpdate = true; } } if (!found) { // We set to the highest supported level. me.set().level = LEVEL_AV1_4_1; } return C2R::Ok(); } uint32_t C2SoftAomEnc::IntfImpl::getSyncFramePeriod() const { if (mSyncFramePeriod->value < 0 || mSyncFramePeriod->value == INT64_MAX) { return 0; } double period = mSyncFramePeriod->value / 1e6 * mFrameRate->value; return (uint32_t)c2_max(c2_min(period + 0.5, double(UINT32_MAX)), 1.); } C2R C2SoftAomEnc::IntfImpl::ColorAspectsSetter(bool mayBlock, C2P& me) { (void)mayBlock; if (me.v.range > C2Color::RANGE_OTHER) { me.set().range = C2Color::RANGE_OTHER; } if (me.v.primaries > C2Color::PRIMARIES_OTHER) { me.set().primaries = C2Color::PRIMARIES_OTHER; } if (me.v.transfer > C2Color::TRANSFER_OTHER) { me.set().transfer = C2Color::TRANSFER_OTHER; } if (me.v.matrix > C2Color::MATRIX_OTHER) { me.set().matrix = C2Color::MATRIX_OTHER; } return C2R::Ok(); } C2R C2SoftAomEnc::IntfImpl::CodedColorAspectsSetter( bool mayBlock, C2P& me, const C2P& coded) { (void)mayBlock; me.set().range = coded.v.range; me.set().primaries = coded.v.primaries; me.set().transfer = coded.v.transfer; me.set().matrix = coded.v.matrix; return C2R::Ok(); } C2R C2SoftAomEnc::IntfImpl::PictureQuantizationSetter( bool mayBlock, C2P& me) { (void)mayBlock; int32_t iMin = AOM_QP_DEFAULT_MIN, pMin = AOM_QP_DEFAULT_MIN; int32_t iMax = AOM_QP_DEFAULT_MAX, pMax = AOM_QP_DEFAULT_MAX; for (size_t i = 0; i < me.v.flexCount(); ++i) { const C2PictureQuantizationStruct &layer = me.v.m.values[i]; // layerMin is clamped to [AOM_QP_MIN, layerMax] to avoid error // cases where layer.min > layer.max int32_t layerMax = std::clamp(layer.max, AOM_QP_MIN, AOM_QP_MAX); int32_t layerMin = std::clamp(layer.min, AOM_QP_MIN, layerMax); if (layer.type_ == C2Config::picture_type_t(I_FRAME)) { iMax = layerMax; iMin = layerMin; ALOGV("iMin %d iMax %d", iMin, iMax); } else if (layer.type_ == C2Config::picture_type_t(P_FRAME)) { pMax = layerMax; pMin = layerMin; ALOGV("pMin %d pMax %d", pMin, pMax); } } ALOGV("PictureQuantizationSetter(entry): i %d-%d p %d-%d", iMin, iMax, pMin, pMax); // aom library takes same range for I/P picture type int32_t maxFrameQP = std::min(iMax, pMax); int32_t minFrameQP = std::max(iMin, pMin); if (minFrameQP > maxFrameQP) { minFrameQP = maxFrameQP; } // put them back into the structure for (size_t i = 0; i < me.v.flexCount(); ++i) { const C2PictureQuantizationStruct &layer = me.v.m.values[i]; if (layer.type_ == C2Config::picture_type_t(I_FRAME)) { me.set().m.values[i].max = maxFrameQP; me.set().m.values[i].min = minFrameQP; } else if (layer.type_ == C2Config::picture_type_t(P_FRAME)) { me.set().m.values[i].max = maxFrameQP; me.set().m.values[i].min = minFrameQP; } } ALOGV("PictureQuantizationSetter(exit): minFrameQP = %d maxFrameQP = %d", minFrameQP, maxFrameQP); return C2R::Ok(); } uint32_t C2SoftAomEnc::IntfImpl::getLevel_l() const { return mProfileLevel->level - LEVEL_AV1_2; } C2SoftAomEnc::C2SoftAomEnc(const char* name, c2_node_id_t id, const std::shared_ptr& intfImpl) : SimpleC2Component(std::make_shared>(name, id, intfImpl)), mIntf(intfImpl), mCodecContext(nullptr), mCodecConfiguration(nullptr), mCodecInterface(nullptr), mStrideAlign(2), mBitrateControlMode(AOM_VBR), mMinQuantizer(0), mMaxQuantizer(0), mLastTimestamp(INT64_MAX), mSignalledOutputEos(false), mSignalledError(false), mHeadersReceived(false), mIs10Bit(false) { ALOGV("Constructor"); } C2SoftAomEnc::~C2SoftAomEnc() { ALOGV("Destructor"); onRelease(); } c2_status_t C2SoftAomEnc::onInit() { return C2_OK; } c2_status_t C2SoftAomEnc::onStop() { IntfImpl::Lock lock = mIntf->lock(); std::shared_ptr requestSync = mIntf->getRequestSync_l(); lock.unlock(); if (requestSync != mRequestSync) { // we can handle IDR immediately if (requestSync->value) { // unset request C2StreamRequestSyncFrameTuning::output clearSync(0u, C2_FALSE); std::vector> failures; mIntf->config({ &clearSync }, C2_MAY_BLOCK, &failures); } mRequestSync = requestSync; } onRelease(); return C2_OK; } void C2SoftAomEnc::onReset() { (void)onStop(); } void C2SoftAomEnc::onRelease() { if (mCodecContext) { aom_codec_destroy(mCodecContext); delete mCodecContext; mCodecContext = nullptr; } if (mCodecConfiguration) { delete mCodecConfiguration; mCodecConfiguration = nullptr; } // this one is not allocated by us mCodecInterface = nullptr; mHeadersReceived = false; } c2_status_t C2SoftAomEnc::onFlush_sm() { return onStop(); } // c2Quality is in range of 0-100 (the more - the better), // for AOM quality we are using a range of 15-50 (the less - the better) static int MapC2QualityToAOMQuality (int c2Quality) { return 15 + 35 * (100 - c2Quality) / 100; } static int MapC2ComplexityToAOMSpeed (int c2Complexity) { int mapping[6] = {10, 9, 8, 7, 6, 6}; if (c2Complexity > 5 || c2Complexity < 0) { ALOGW("Wrong complexity setting. Falling back to speed 10"); return 10; } return mapping[c2Complexity]; } aom_codec_err_t C2SoftAomEnc::setupCodecParameters() { aom_codec_err_t codec_return = AOM_CODEC_OK; codec_return = aom_codec_control(mCodecContext, AV1E_SET_TARGET_SEQ_LEVEL_IDX, mAV1EncLevel); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AOME_SET_CPUUSED, MapC2ComplexityToAOMSpeed(mComplexity->value)); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ROW_MT, 1); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_CDEF, 1); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_TPL_MODEL, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_DELTAQ_MODE, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_ORDER_HINT, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_AQ_MODE, 3); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_COEFF_COST_UPD_FREQ, 3); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_MODE_COST_UPD_FREQ, 3); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_MV_COST_UPD_FREQ, 3); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_PALETTE, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_OBMC, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_NOISE_SENSITIVITY, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_WARPED_MOTION, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_GLOBAL_MOTION, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_REF_FRAME_MVS, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_CFL_INTRA, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_SMOOTH_INTRA, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_ANGLE_DELTA, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_FILTER_INTRA, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_INTRA_DEFAULT_TX_ONLY, 1); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_DISABLE_TRELLIS_QUANT, 1); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_DIST_WTD_COMP, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_DIFF_WTD_COMP, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_DUAL_FILTER, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_INTERINTRA_COMP, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_INTERINTRA_WEDGE, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_INTRA_EDGE_FILTER, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_INTRABC, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_MASKED_COMP, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_PAETH_INTRA, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_QM, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_RECT_PARTITIONS, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_RESTORATION, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_SMOOTH_INTERINTRA, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_TX64, 0); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_MAX_REFERENCE_FRAMES, 3); if (codec_return != AOM_CODEC_OK) goto BailOut; if (mBitrateControlMode == AOM_Q) { const int aomCQLevel = MapC2QualityToAOMQuality(mQuality->value); ALOGV("Set Q from %d to CQL %d", mQuality->value, aomCQLevel); codec_return = aom_codec_control(mCodecContext, AOME_SET_CQ_LEVEL, aomCQLevel); if (codec_return != AOM_CODEC_OK) goto BailOut; } ColorAspects sfAspects; if (!C2Mapper::map(mColorAspects->primaries, &sfAspects.mPrimaries)) { sfAspects.mPrimaries = android::ColorAspects::PrimariesUnspecified; } if (!C2Mapper::map(mColorAspects->range, &sfAspects.mRange)) { sfAspects.mRange = android::ColorAspects::RangeUnspecified; } if (!C2Mapper::map(mColorAspects->matrix, &sfAspects.mMatrixCoeffs)) { sfAspects.mMatrixCoeffs = android::ColorAspects::MatrixUnspecified; } if (!C2Mapper::map(mColorAspects->transfer, &sfAspects.mTransfer)) { sfAspects.mTransfer = android::ColorAspects::TransferUnspecified; } int32_t primaries, transfer, matrixCoeffs; bool range; ColorUtils::convertCodecColorAspectsToIsoAspects(sfAspects, &primaries, &transfer, &matrixCoeffs, &range); codec_return = aom_codec_control(mCodecContext, AV1E_SET_COLOR_RANGE, range); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_COLOR_PRIMARIES, primaries); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_TRANSFER_CHARACTERISTICS, transfer); if (codec_return != AOM_CODEC_OK) goto BailOut; codec_return = aom_codec_control(mCodecContext, AV1E_SET_MATRIX_COEFFICIENTS, matrixCoeffs); if (codec_return != AOM_CODEC_OK) goto BailOut; BailOut: return codec_return; } status_t C2SoftAomEnc::initEncoder() { aom_codec_err_t codec_return; status_t result = UNKNOWN_ERROR; { IntfImpl::Lock lock = mIntf->lock(); // Fetch config mSize = mIntf->getSize_l(); mBitrate = mIntf->getBitrate_l(); mBitrateMode = mIntf->getBitrateMode_l(); mFrameRate = mIntf->getFrameRate_l(); mIntraRefresh = mIntf->getIntraRefresh_l(); mRequestSync = mIntf->getRequestSync_l(); mColorAspects = mIntf->getCodedColorAspects_l(); mQuality = mIntf->getQuality_l(); mComplexity = mIntf->getComplexity_l(); mAV1EncLevel = mIntf->getLevel_l(); mQpBounds = mIntf->getPictureQuantization_l(); } switch (mBitrateMode->value) { case C2Config::BITRATE_CONST: mBitrateControlMode = AOM_CBR; break; case C2Config::BITRATE_IGNORE: mBitrateControlMode = AOM_Q; break; case C2Config::BITRATE_VARIABLE: [[fallthrough]]; default: mBitrateControlMode = AOM_VBR; break; } if (mQpBounds->flexCount() > 0) { // read min max qp for sequence for (size_t i = 0; i < mQpBounds->flexCount(); ++i) { const C2PictureQuantizationStruct &layer = mQpBounds->m.values[i]; if (layer.type_ == C2Config::picture_type_t(I_FRAME)) { mMaxQuantizer = layer.max; mMinQuantizer = layer.min; break; } } } mCodecInterface = aom_codec_av1_cx(); if (!mCodecInterface) goto CleanUp; ALOGD("AOM: initEncoder. BRMode: %u. KF: %u. QP: %u - %u, 10Bit: %d, comlexity %d", (uint32_t)mBitrateControlMode, mIntf->getSyncFramePeriod(), mMinQuantizer, mMaxQuantizer, mIs10Bit, mComplexity->value); mCodecConfiguration = new aom_codec_enc_cfg_t; if (!mCodecConfiguration) goto CleanUp; codec_return = aom_codec_enc_config_default(mCodecInterface, mCodecConfiguration, AOM_USAGE_REALTIME); // RT mode if (codec_return != AOM_CODEC_OK) { ALOGE("Error populating default configuration for aom encoder."); goto CleanUp; } mCodecConfiguration->g_w = mSize->width; mCodecConfiguration->g_h = mSize->height; mCodecConfiguration->g_bit_depth = mIs10Bit ? AOM_BITS_10 : AOM_BITS_8; mCodecConfiguration->g_input_bit_depth = mIs10Bit ? 10 : 8; mCodecConfiguration->g_threads = 0; mCodecConfiguration->g_error_resilient = 0; // timebase unit is microsecond // g_timebase is in seconds (i.e. 1/1000000 seconds) mCodecConfiguration->g_timebase.num = 1; mCodecConfiguration->g_timebase.den = 1000000; // rc_target_bitrate is in kbps, mBitrate in bps mCodecConfiguration->rc_target_bitrate = (mBitrate->value + 500) / 1000; mCodecConfiguration->rc_end_usage = mBitrateControlMode; // Disable frame drop - not allowed in MediaCodec now. mCodecConfiguration->rc_dropframe_thresh = 0; // Disable lagged encoding. mCodecConfiguration->g_lag_in_frames = 0; // Disable spatial resizing. mCodecConfiguration->rc_resize_mode = 0; // Single-pass mode. mCodecConfiguration->g_pass = AOM_RC_ONE_PASS; // Maximum key frame interval - for CBR boost to 3000 mCodecConfiguration->kf_max_dist = 3000; // Encoder determines optimal key frame placement automatically. mCodecConfiguration->kf_mode = AOM_KF_AUTO; // The amount of data that may be buffered by the decoding // application in ms. mCodecConfiguration->rc_buf_sz = 1000; if (mBitrateControlMode == AOM_CBR) { // Initial value of the buffer level in ms. mCodecConfiguration->rc_buf_initial_sz = 500; // Amount of data that the encoder should try to maintain in ms. mCodecConfiguration->rc_buf_optimal_sz = 600; // Maximum amount of bits that can be subtracted from the target // bitrate - expressed as percentage of the target bitrate. mCodecConfiguration->rc_undershoot_pct = 100; // Maximum amount of bits that can be added to the target // bitrate - expressed as percentage of the target bitrate. mCodecConfiguration->rc_overshoot_pct = 10; } else { // Maximum amount of bits that can be subtracted from the target // bitrate - expressed as percentage of the target bitrate. mCodecConfiguration->rc_undershoot_pct = 100; // Maximum amount of bits that can be added to the target // bitrate - expressed as percentage of the target bitrate. mCodecConfiguration->rc_overshoot_pct = 100; } if (mIntf->getSyncFramePeriod() >= 0) { mCodecConfiguration->kf_max_dist = mIntf->getSyncFramePeriod(); mCodecConfiguration->kf_min_dist = mIntf->getSyncFramePeriod(); mCodecConfiguration->kf_mode = AOM_KF_AUTO; } if (mMinQuantizer > 0) { mCodecConfiguration->rc_min_quantizer = mMinQuantizer; } if (mMaxQuantizer > 0) { mCodecConfiguration->rc_max_quantizer = mMaxQuantizer; } else { if (mBitrateControlMode == AOM_VBR) { // For VBR we are limiting MaxQP to 52 (down 11 steps) to maintain quality // 52 comes from experiments done on libaom standalone app mCodecConfiguration->rc_max_quantizer = 52; } } mCodecContext = new aom_codec_ctx_t; if (!mCodecContext) goto CleanUp; codec_return = aom_codec_enc_init(mCodecContext, mCodecInterface, mCodecConfiguration, mIs10Bit ? AOM_CODEC_USE_HIGHBITDEPTH : 0); if (codec_return != AOM_CODEC_OK) { ALOGE("Error initializing aom encoder"); goto CleanUp; } codec_return = setupCodecParameters(); if (codec_return != AOM_CODEC_OK) { ALOGE("Error setting up codec parameters"); goto CleanUp; } mHeadersReceived = false; { uint32_t width = mSize->width; uint32_t height = mSize->height; if (((uint64_t)width * height) > ((uint64_t)INT32_MAX / 3)) { ALOGE("b/25812794, Buffer size is too big, width=%u, height=%u.", width, height); } else { uint32_t stride = (width + mStrideAlign - 1) & ~(mStrideAlign - 1); uint32_t vstride = (height + mStrideAlign - 1) & ~(mStrideAlign - 1); mConversionBuffer = MemoryBlock::Allocate(stride * vstride * 3 / (mIs10Bit? 1 : 2)); if (!mConversionBuffer.size()) { ALOGE("Allocating conversion buffer failed."); } else { mNumInputFrames = -1; return OK; } } } CleanUp: onRelease(); return result; } void C2SoftAomEnc::process(const std::unique_ptr& work, const std::shared_ptr& pool) { // Initialize output work work->result = C2_OK; work->workletsProcessed = 1u; work->worklets.front()->output.flags = work->input.flags; if (mSignalledError || mSignalledOutputEos) { work->result = C2_BAD_VALUE; return; } std::shared_ptr rView; std::shared_ptr inputBuffer; if (!work->input.buffers.empty()) { inputBuffer = work->input.buffers[0]; rView = std::make_shared( inputBuffer->data().graphicBlocks().front().map().get()); if (rView->error() != C2_OK) { ALOGE("graphic view map err = %d", rView->error()); work->result = C2_CORRUPTED; return; } } else { ALOGV("Empty input Buffer"); uint32_t flags = 0; if (work->input.flags & C2FrameData::FLAG_END_OF_STREAM) { flags |= C2FrameData::FLAG_END_OF_STREAM; } work->worklets.front()->output.flags = (C2FrameData::flags_t)flags; work->worklets.front()->output.buffers.clear(); work->worklets.front()->output.ordinal = work->input.ordinal; work->workletsProcessed = 1u; return; } bool end_of_stream = ((work->input.flags & C2FrameData::FLAG_END_OF_STREAM) != 0); aom_image_t raw_frame; const C2PlanarLayout& layout = rView->layout(); if (!mHeadersReceived) { mIs10Bit = (layout.planes[layout.PLANE_Y].bitDepth == 10); // Re-Initialize encoder if (mCodecContext){ onRelease(); } } if (!mCodecContext && OK != initEncoder()) { ALOGE("Failed to initialize encoder"); mSignalledError = true; work->result = C2_CORRUPTED; return; } //(b/279387842) //workaround for incorrect crop size in view when using surface mode rView->setCrop_be(C2Rect(mSize->width, mSize->height)); if (!mHeadersReceived) { Av1Config av1_config; constexpr uint32_t header_length = 2048; uint8_t header[header_length]; size_t header_bytes; aom_fixed_buf_t* obu_sequence_header = aom_codec_get_global_headers(mCodecContext); int ret = 1; if (obu_sequence_header) { if (get_av1config_from_obu(reinterpret_cast(obu_sequence_header->buf), obu_sequence_header->sz, false, &av1_config) == 0) { ret = write_av1config(&av1_config, header_length, &header_bytes, header); } else { ALOGE("Can not get config"); } free(obu_sequence_header->buf); free(obu_sequence_header); } if (ret) { ALOGE("Can not write config"); mSignalledError = true; work->result = C2_NO_MEMORY; work->workletsProcessed = 1u; return; } mHeadersReceived = true; std::unique_ptr csd = C2StreamInitDataInfo::output::AllocUnique(header_bytes, 0u); if (!csd) { ALOGE("CSD allocation failed"); mSignalledError = true; work->result = C2_NO_MEMORY; work->workletsProcessed = 1u; return; } memcpy(csd->m.value, header, header_bytes); work->worklets.front()->output.configUpdate.push_back(std::move(csd)); ALOGV("CSD Produced of size %zu bytes", header_bytes); } const C2ConstGraphicBlock inBuffer = inputBuffer->data().graphicBlocks().front(); if (inBuffer.width() < mSize->width || inBuffer.height() < mSize->height) { ALOGE("unexpected Input buffer attributes %d(%d) x %d(%d)", inBuffer.width(), mSize->width, inBuffer.height(), mSize->height); mSignalledError = true; work->result = C2_BAD_VALUE; return; } uint32_t width = mSize->width; uint32_t height = mSize->height; if (width > 0x8000 || height > 0x8000) { ALOGE("Image too big: %u x %u", width, height); work->result = C2_BAD_VALUE; return; } uint32_t stride = (width + mStrideAlign - 1) & ~(mStrideAlign - 1); uint32_t vstride = (height + mStrideAlign - 1) & ~(mStrideAlign - 1); switch (layout.type) { case C2PlanarLayout::TYPE_RGB: case C2PlanarLayout::TYPE_RGBA: { std::shared_ptr colorAspects; { IntfImpl::Lock lock = mIntf->lock(); colorAspects = mIntf->getCodedColorAspects_l(); } ConvertRGBToPlanarYUV(mConversionBuffer.data(), stride, vstride, mConversionBuffer.size(), *rView.get(), colorAspects->matrix, colorAspects->range); aom_img_wrap(&raw_frame, AOM_IMG_FMT_I420, width, height, mStrideAlign, mConversionBuffer.data()); break; } case C2PlanarLayout::TYPE_YUV: { const bool isYUV420_10bit = IsYUV420_10bit(*rView); if (!IsYUV420(*rView) && !isYUV420_10bit) { ALOGE("input is not YUV420"); work->result = C2_BAD_VALUE; return; } if (!isYUV420_10bit) { if (IsI420(*rView)) { // I420 compatible - though with custom offset and stride aom_img_wrap(&raw_frame, AOM_IMG_FMT_I420, width, height, mStrideAlign, (uint8_t*)rView->data()[0]); raw_frame.planes[1] = (uint8_t*)rView->data()[1]; raw_frame.planes[2] = (uint8_t*)rView->data()[2]; raw_frame.stride[0] = layout.planes[layout.PLANE_Y].rowInc; raw_frame.stride[1] = layout.planes[layout.PLANE_U].rowInc; raw_frame.stride[2] = layout.planes[layout.PLANE_V].rowInc; } else { // TODO(kyslov): Add image wrap for NV12 // copy to I420 MediaImage2 img = CreateYUV420PlanarMediaImage2(width, height, stride, vstride); if (mConversionBuffer.size() >= stride * vstride * 3 / 2) { status_t err = ImageCopy(mConversionBuffer.data(), &img, *rView); if (err != OK) { ALOGE("Buffer conversion failed: %d", err); work->result = C2_BAD_VALUE; return; } aom_img_wrap(&raw_frame, AOM_IMG_FMT_I420, stride, vstride, mStrideAlign, mConversionBuffer.data()); aom_img_set_rect(&raw_frame, 0, 0, width, height, 0); } else { ALOGE("Conversion buffer is too small: %u x %u for %zu", stride, vstride, mConversionBuffer.size()); work->result = C2_BAD_VALUE; return; } } } else { // 10 bits if (IsP010(*rView)) { if (mConversionBuffer.size() >= stride * vstride * 3) { uint16_t *dstY, *dstU, *dstV; dstY = (uint16_t*)mConversionBuffer.data(); dstU = dstY + stride * vstride; dstV = dstU + (stride * vstride) / 4; convertP010ToYUV420Planar16(dstY, dstU, dstV, (uint16_t*)(rView->data()[0]), (uint16_t*)(rView->data()[1]), layout.planes[layout.PLANE_Y].rowInc / 2, layout.planes[layout.PLANE_U].rowInc / 2, stride, stride / 2, stride / 2, stride, vstride); aom_img_wrap(&raw_frame, AOM_IMG_FMT_I42016, stride, vstride, mStrideAlign, mConversionBuffer.data()); aom_img_set_rect(&raw_frame, 0, 0, width, height, 0); } else { ALOGE("Conversion buffer is too small: %u x %u for %zu", stride, vstride, mConversionBuffer.size()); work->result = C2_BAD_VALUE; return; } } else { ALOGE("Image format conversion is not supported."); work->result = C2_BAD_VALUE; return; } } break; } case C2PlanarLayout::TYPE_YUVA: { if (mConversionBuffer.size() >= stride * vstride * 3) { uint16_t *dstY, *dstU, *dstV; dstY = (uint16_t*)mConversionBuffer.data(); dstU = dstY + stride * vstride; dstV = dstU + (stride * vstride) / 4; convertRGBA1010102ToYUV420Planar16(dstY, dstU, dstV, (uint32_t*)(rView->data()[0]), layout.planes[layout.PLANE_Y].rowInc / 4, stride, vstride, mColorAspects->matrix, mColorAspects->range); aom_img_wrap(&raw_frame, AOM_IMG_FMT_I42016, stride, vstride, mStrideAlign, mConversionBuffer.data()); aom_img_set_rect(&raw_frame, 0, 0, width, height, 0); } else { ALOGE("Conversion buffer is too small: %u x %u for %zu", stride, vstride, mConversionBuffer.size()); work->result = C2_BAD_VALUE; return; } break; } default: ALOGE("Unrecognized plane type: %d", layout.type); work->result = C2_BAD_VALUE; return; } aom_enc_frame_flags_t flags = 0; // handle dynamic config parameters { IntfImpl::Lock lock = mIntf->lock(); std::shared_ptr intraRefresh = mIntf->getIntraRefresh_l(); std::shared_ptr bitrate = mIntf->getBitrate_l(); std::shared_ptr requestSync = mIntf->getRequestSync_l(); lock.unlock(); if (intraRefresh != mIntraRefresh) { mIntraRefresh = intraRefresh; ALOGV("Got mIntraRefresh request"); } if (requestSync != mRequestSync) { // we can handle IDR immediately if (requestSync->value) { // unset request C2StreamRequestSyncFrameTuning::output clearSync(0u, C2_FALSE); std::vector> failures; mIntf->config({&clearSync}, C2_MAY_BLOCK, &failures); ALOGV("Got sync request"); flags |= AOM_EFLAG_FORCE_KF; } mRequestSync = requestSync; } if (bitrate != mBitrate) { mBitrate = bitrate; mCodecConfiguration->rc_target_bitrate = (mBitrate->value + 500) / 1000; aom_codec_err_t res = aom_codec_enc_config_set(mCodecContext, mCodecConfiguration); if (res != AOM_CODEC_OK) { ALOGE("aom encoder failed to update bitrate: %s", aom_codec_err_to_string(res)); mSignalledError = true; work->result = C2_CORRUPTED; return; } } } uint64_t input_timestamp = work->input.ordinal.timestamp.peekull(); uint32_t frame_duration; if (input_timestamp > mLastTimestamp) { frame_duration = (uint32_t)(input_timestamp - mLastTimestamp); } else { // Use default of 30 fps in case of 0 frame rate. float frame_rate = mFrameRate->value; if (frame_rate < 0.001) { frame_rate = 30.0; } frame_duration = (uint32_t)(1000000 / frame_rate + 0.5); } mLastTimestamp = input_timestamp; aom_codec_err_t codec_return = aom_codec_encode(mCodecContext, &raw_frame, input_timestamp, frame_duration, flags); if (codec_return != AOM_CODEC_OK) { ALOGE("aom encoder failed to encode frame"); mSignalledError = true; work->result = C2_CORRUPTED; return; } bool populated = false; aom_codec_iter_t encoded_packet_iterator = nullptr; const aom_codec_cx_pkt_t* encoded_packet; while ((encoded_packet = aom_codec_get_cx_data(mCodecContext, &encoded_packet_iterator))) { if (encoded_packet->kind == AOM_CODEC_CX_FRAME_PKT) { std::shared_ptr block; C2MemoryUsage usage = {C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE}; c2_status_t err = pool->fetchLinearBlock(encoded_packet->data.frame.sz, usage, &block); if (err != C2_OK) { ALOGE("fetchLinearBlock for Output failed with status %d", err); work->result = C2_NO_MEMORY; return; } C2WriteView wView = block->map().get(); if (wView.error()) { ALOGE("write view map failed %d", wView.error()); work->result = C2_CORRUPTED; return; } memcpy(wView.data(), encoded_packet->data.frame.buf, encoded_packet->data.frame.sz); ++mNumInputFrames; ALOGD("bytes generated %zu", encoded_packet->data.frame.sz); uint32_t flags = 0; if (end_of_stream) { flags |= C2FrameData::FLAG_END_OF_STREAM; } work->worklets.front()->output.flags = (C2FrameData::flags_t)flags; work->worklets.front()->output.buffers.clear(); std::shared_ptr buffer = createLinearBuffer(block, 0, encoded_packet->data.frame.sz); if (encoded_packet->data.frame.flags & AOM_FRAME_IS_KEY) { buffer->setInfo(std::make_shared( 0u /* stream id */, C2Config::SYNC_FRAME)); } work->worklets.front()->output.buffers.push_back(buffer); work->worklets.front()->output.ordinal = work->input.ordinal; work->worklets.front()->output.ordinal.timestamp = encoded_packet->data.frame.pts; work->workletsProcessed = 1u; populated = true; if (end_of_stream) { mSignalledOutputEos = true; ALOGV("signalled End Of Stream"); } } } if (!populated) { work->workletsProcessed = 0u; } } c2_status_t C2SoftAomEnc::drain(uint32_t drainMode, const std::shared_ptr& pool) { (void)pool; if (drainMode == NO_DRAIN) { ALOGW("drain with NO_DRAIN: no-op"); return C2_OK; } if (drainMode == DRAIN_CHAIN) { ALOGW("DRAIN_CHAIN not supported"); return C2_OMITTED; } return C2_OK; } class C2SoftAomEncFactory : public C2ComponentFactory { public: C2SoftAomEncFactory() : mHelper(std::static_pointer_cast( GetCodec2PlatformComponentStore()->getParamReflector())) {} virtual c2_status_t createComponent(c2_node_id_t id, std::shared_ptr* const component, std::function deleter) override { *component = std::shared_ptr( new C2SoftAomEnc(COMPONENT_NAME, id, std::make_shared(mHelper)), deleter); return C2_OK; } virtual c2_status_t createInterface( c2_node_id_t id, std::shared_ptr* const interface, std::function deleter) override { *interface = std::shared_ptr( new SimpleInterface( COMPONENT_NAME, id, std::make_shared(mHelper)), deleter); return C2_OK; } virtual ~C2SoftAomEncFactory() override = default; private: std::shared_ptr mHelper; }; } // namespace android __attribute__((cfi_canonical_jump_table)) extern "C" ::C2ComponentFactory* CreateCodec2Factory() { ALOGV("in %s", __func__); return new ::android::C2SoftAomEncFactory(); } __attribute__((cfi_canonical_jump_table)) extern "C" void DestroyCodec2Factory( ::C2ComponentFactory* factory) { ALOGV("in %s", __func__); delete factory; }