/* * Copyright 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Test FlowGraph * * This file also tests a few different conversion techniques because * sometimes that have caused compiler bugs. */ #include #include #include #include "client/AAudioFlowGraph.h" #include "flowgraph/ClipToRange.h" #include "flowgraph/Limiter.h" #include "flowgraph/MonoBlend.h" #include "flowgraph/MonoToMultiConverter.h" #include "flowgraph/RampLinear.h" #include "flowgraph/SinkFloat.h" #include "flowgraph/SinkI16.h" #include "flowgraph/SinkI24.h" #include "flowgraph/SinkI32.h" #include "flowgraph/SinkI8_24.h" #include "flowgraph/SourceFloat.h" #include "flowgraph/SourceI16.h" #include "flowgraph/SourceI24.h" #include "flowgraph/SourceI8_24.h" #include "flowgraph/resampler/IntegerRatio.h" using namespace FLOWGRAPH_OUTER_NAMESPACE::flowgraph; using namespace RESAMPLER_OUTER_NAMESPACE::resampler; using TestFlowgraphResamplerParams = std::tuple; enum { PARAM_SOURCE_SAMPLE_RATE = 0, PARAM_SINK_SAMPLE_RATE, PARAM_RESAMPLER_QUALITY }; constexpr int kInt24Min = 0xff800000; constexpr int kInt24Max = 0x007fffff; constexpr int kBytesPerI24Packed = 3; constexpr int kNumSamples = 8; constexpr std::array kInputFloat = { 1.0f, 0.5f, -0.25f, -1.0f, 0.0f, 53.9f, -87.2f, -1.02f}; // Corresponding PCM values as integers. constexpr std::array kExpectedI16 = { INT16_MAX, 1 << 14, INT16_MIN / 4, INT16_MIN, 0, INT16_MAX, INT16_MIN, INT16_MIN}; constexpr std::array kExpectedI32 = { INT32_MAX, 1 << 30, INT32_MIN / 4, INT32_MIN, 0, INT32_MAX, INT32_MIN, INT32_MIN}; constexpr std::array kExpectedI8_24 = { kInt24Max, 1 << 22, kInt24Min / 4, kInt24Min, 0, kInt24Max, kInt24Min, kInt24Min}; // =================================== FLOAT to I16 ============== // Simple test that tries to reproduce a Clang compiler bug. __attribute__((noinline)) void local_convert_float_to_int16(const float *input, int16_t *output, int count) { for (int i = 0; i < count; i++) { int32_t n = (int32_t) (*input++ * 32768.0f); *output++ = std::min(INT16_MAX, std::max(INT16_MIN, n)); // clip } } TEST(test_flowgraph, local_convert_float_int16) { std::array output; // Do it inline, which will probably work even with the buggy compiler. // This validates the expected data. const float *in = kInputFloat.data(); int16_t *out = output.data(); output.fill(777); for (int i = 0; i < kNumSamples; i++) { int32_t n = (int32_t) (*in++ * 32768.0f); *out++ = std::min(INT16_MAX, std::max(INT16_MIN, n)); // clip } for (int i = 0; i < kNumSamples; i++) { EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i; } // Convert audio signal using the function. output.fill(777); local_convert_float_to_int16(kInputFloat.data(), output.data(), kNumSamples); for (int i = 0; i < kNumSamples; i++) { EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i; } } TEST(test_flowgraph, module_sinki16) { static constexpr int kNumSamples = 8; std::array output; // larger than input SourceFloat sourceFloat{1}; SinkI16 sinkI16{1}; sourceFloat.setData(kInputFloat.data(), kNumSamples); sourceFloat.output.connect(&sinkI16.input); output.fill(777); int32_t numRead = sinkI16.read(output.data(), output.size()); ASSERT_EQ(kNumSamples, numRead); for (int i = 0; i < numRead; i++) { EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i; } } // =================================== FLOAT to I32 ============== // Simple test that tries to reproduce a Clang compiler bug. __attribute__((noinline)) static int32_t clamp32FromFloat(float f) { static const float scale = (float)(1UL << 31); static const float limpos = 1.; static const float limneg = -1.; if (f <= limneg) { return INT32_MIN; } else if (f >= limpos) { return INT32_MAX; } f *= scale; /* integer conversion is through truncation (though int to float is not). * ensure that we round to nearest, ties away from 0. */ return f > 0 ? f + 0.5 : f - 0.5; } void local_convert_float_to_int32(const float *input, int32_t *output, int count) { for (int i = 0; i < count; i++) { *output++ = clamp32FromFloat(*input++); } } TEST(test_flowgraph, simple_convert_float_int32) { std::array output; // Do it inline, which will probably work even with a buggy compiler. // This validates the expected data. const float *in = kInputFloat.data(); output.fill(777); int32_t *out = output.data(); for (int i = 0; i < kNumSamples; i++) { int64_t n = (int64_t) (*in++ * 2147483648.0f); *out++ = (int32_t)std::min((int64_t)INT32_MAX, std::max((int64_t)INT32_MIN, n)); // clip } for (int i = 0; i < kNumSamples; i++) { EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i; } } TEST(test_flowgraph, local_convert_float_int32) { std::array output; // Convert audio signal using the function. output.fill(777); local_convert_float_to_int32(kInputFloat.data(), output.data(), kNumSamples); for (int i = 0; i < kNumSamples; i++) { EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i; } } TEST(test_flowgraph, module_sinki32) { std::array output; // larger than input SourceFloat sourceFloat{1}; SinkI32 sinkI32{1}; sourceFloat.setData(kInputFloat.data(), kNumSamples); sourceFloat.output.connect(&sinkI32.input); output.fill(777); int32_t numRead = sinkI32.read(output.data(), output.size()); ASSERT_EQ(kNumSamples, numRead); for (int i = 0; i < numRead; i++) { EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i; } } TEST(test_flowgraph, module_mono_to_stereo) { static const float input[] = {1.0f, 2.0f, 3.0f}; float output[100] = {}; SourceFloat sourceFloat{1}; MonoToMultiConverter monoToStereo{2}; SinkFloat sinkFloat{2}; sourceFloat.setData(input, 3); sourceFloat.output.connect(&monoToStereo.input); monoToStereo.output.connect(&sinkFloat.input); int32_t numRead = sinkFloat.read(output, 8); ASSERT_EQ(3, numRead); EXPECT_EQ(input[0], output[0]); EXPECT_EQ(input[0], output[1]); EXPECT_EQ(input[1], output[2]); EXPECT_EQ(input[1], output[3]); EXPECT_EQ(input[2], output[4]); EXPECT_EQ(input[2], output[5]); } TEST(test_flowgraph, module_ramp_linear) { constexpr int singleNumOutput = 1; constexpr int rampSize = 5; constexpr int numOutput = 100; constexpr float value = 1.0f; constexpr float initialTarget = 10.0f; constexpr float finalTarget = 100.0f; constexpr float tolerance = 0.0001f; // arbitrary float output[numOutput] = {}; RampLinear rampLinear{1}; SinkFloat sinkFloat{1}; rampLinear.input.setValue(value); rampLinear.setLengthInFrames(rampSize); rampLinear.output.connect(&sinkFloat.input); // Check that the values go to the initial target instantly. rampLinear.setTarget(initialTarget); int32_t singleNumRead = sinkFloat.read(output, singleNumOutput); ASSERT_EQ(singleNumRead, singleNumOutput); EXPECT_NEAR(value * initialTarget, output[0], tolerance); // Now set target and check that the linear ramp works as expected. rampLinear.setTarget(finalTarget); int32_t numRead = sinkFloat.read(output, numOutput); const float incrementSize = (finalTarget - initialTarget) / rampSize; ASSERT_EQ(numOutput, numRead); int i = 0; for (; i < rampSize; i++) { float expected = value * (initialTarget + i * incrementSize); EXPECT_NEAR(expected, output[i], tolerance); } for (; i < numOutput; i++) { float expected = value * finalTarget; EXPECT_NEAR(expected, output[i], tolerance); } } // It is easiest to represent packed 24-bit data as a byte array. // This test will read from input, convert to float, then write // back to output as bytes. TEST(test_flowgraph, module_packed_24) { static const uint8_t input[] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x5A}; uint8_t output[99] = {}; SourceI24 sourceI24{1}; SinkI24 sinkI24{1}; int numInputFrames = sizeof(input) / kBytesPerI24Packed; sourceI24.setData(input, numInputFrames); sourceI24.output.connect(&sinkI24.input); int32_t numRead = sinkI24.read(output, sizeof(output) / kBytesPerI24Packed); ASSERT_EQ(numInputFrames, numRead); for (size_t i = 0; i < sizeof(input); i++) { EXPECT_EQ(input[i], output[i]); } } TEST(test_flowgraph, module_clip_to_range) { constexpr float myMin = -2.0f; constexpr float myMax = 1.5f; static const float input[] = {-9.7, 0.5f, -0.25, 1.0f, 12.3}; static const float expected[] = {myMin, 0.5f, -0.25, 1.0f, myMax}; float output[100]; SourceFloat sourceFloat{1}; ClipToRange clipper{1}; SinkFloat sinkFloat{1}; int numInputFrames = sizeof(input) / sizeof(input[0]); sourceFloat.setData(input, numInputFrames); clipper.setMinimum(myMin); clipper.setMaximum(myMax); sourceFloat.output.connect(&clipper.input); clipper.output.connect(&sinkFloat.input); int numOutputFrames = sizeof(output) / sizeof(output[0]); int32_t numRead = sinkFloat.read(output, numOutputFrames); ASSERT_EQ(numInputFrames, numRead); constexpr float tolerance = 0.000001f; // arbitrary for (int i = 0; i < numRead; i++) { EXPECT_NEAR(expected[i], output[i], tolerance); } } TEST(test_flowgraph, module_mono_blend) { // Two channel to two channel with 3 inputs and outputs. constexpr int numChannels = 2; constexpr int numFrames = 3; static const float input[] = {-0.7, 0.5, -0.25, 1.25, 1000, 2000}; static const float expected[] = {-0.1, -0.1, 0.5, 0.5, 1500, 1500}; float output[100]; SourceFloat sourceFloat{numChannels}; MonoBlend monoBlend{numChannels}; SinkFloat sinkFloat{numChannels}; sourceFloat.setData(input, numFrames); sourceFloat.output.connect(&monoBlend.input); monoBlend.output.connect(&sinkFloat.input); int32_t numRead = sinkFloat.read(output, numFrames); ASSERT_EQ(numRead, numFrames); constexpr float tolerance = 0.000001f; // arbitrary for (int i = 0; i < numRead; i++) { EXPECT_NEAR(expected[i], output[i], tolerance); } } TEST(test_flowgraph, module_limiter) { constexpr int kNumSamples = 101; constexpr float kLastSample = 3.0f; constexpr float kFirstSample = -kLastSample; constexpr float kDeltaBetweenSamples = (kLastSample - kFirstSample) / (kNumSamples - 1); constexpr float kTolerance = 0.00001f; float input[kNumSamples]; float output[kNumSamples]; SourceFloat sourceFloat{1}; Limiter limiter{1}; SinkFloat sinkFloat{1}; for (int i = 0; i < kNumSamples; i++) { input[i] = kFirstSample + i * kDeltaBetweenSamples; } const int numInputFrames = std::size(input); sourceFloat.setData(input, numInputFrames); sourceFloat.output.connect(&limiter.input); limiter.output.connect(&sinkFloat.input); const int numOutputFrames = std::size(output); int32_t numRead = sinkFloat.read(output, numOutputFrames); ASSERT_EQ(numInputFrames, numRead); for (int i = 0; i < numRead; i++) { // limiter must be symmetric wrt 0. EXPECT_NEAR(output[i], -output[kNumSamples - i - 1], kTolerance); if (i > 0) { EXPECT_GE(output[i], output[i - 1]); // limiter must be monotonic } if (input[i] == 0.f) { EXPECT_EQ(0.f, output[i]); } else if (input[i] > 0.0f) { EXPECT_GE(output[i], 0.0f); EXPECT_LE(output[i], M_SQRT2); // limiter actually limits EXPECT_LE(output[i], input[i]); // a limiter, gain <= 1 } else { EXPECT_LE(output[i], 0.0f); EXPECT_GE(output[i], -M_SQRT2); // limiter actually limits EXPECT_GE(output[i], input[i]); // a limiter, gain <= 1 } if (-1.f <= input[i] && input[i] <= 1.f) { EXPECT_EQ(input[i], output[i]); } } } TEST(test_flowgraph, module_limiter_nan) { constexpr int kArbitraryOutputSize = 100; static const float input[] = {NAN, 0.5f, NAN, NAN, -10.0f, NAN}; static const float expected[] = {0.0f, 0.5f, 0.5f, 0.5f, -M_SQRT2, -M_SQRT2}; constexpr float tolerance = 0.00001f; float output[kArbitraryOutputSize]; SourceFloat sourceFloat{1}; Limiter limiter{1}; SinkFloat sinkFloat{1}; const int numInputFrames = std::size(input); sourceFloat.setData(input, numInputFrames); sourceFloat.output.connect(&limiter.input); limiter.output.connect(&sinkFloat.input); const int numOutputFrames = std::size(output); int32_t numRead = sinkFloat.read(output, numOutputFrames); ASSERT_EQ(numInputFrames, numRead); for (int i = 0; i < numRead; i++) { EXPECT_NEAR(expected[i], output[i], tolerance); } } TEST(test_flowgraph, module_sinki16_multiple_reads) { static constexpr int kNumSamples = 8; std::array output; // larger than input SourceFloat sourceFloat{1}; SinkI16 sinkI16{1}; sourceFloat.setData(kInputFloat.data(), kNumSamples); sourceFloat.output.connect(&sinkI16.input); output.fill(777); // Read the first half of the data int32_t numRead = sinkI16.read(output.data(), kNumSamples / 2); ASSERT_EQ(kNumSamples / 2, numRead); for (int i = 0; i < numRead; i++) { EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i; } // Read the rest of the data numRead = sinkI16.read(output.data(), output.size()); ASSERT_EQ(kNumSamples / 2, numRead); for (int i = 0; i < numRead; i++) { EXPECT_EQ(kExpectedI16.at(i + kNumSamples / 2), output.at(i)) << ", i = " << i; } } // =================================== FLOAT to Q8.23 ============== __attribute__((noinline)) static int32_t clamp24FromFloat(float f) { static const float scale = 1 << 23; return (int32_t) lroundf(fmaxf(fminf(f * scale, scale - 1.f), -scale)); } void local_convert_float_to_i8_24(const float *input, int32_t *output, int count) { for (int i = 0; i < count; i++) { *output++ = clamp24FromFloat(*input++); } } TEST(test_flowgraph, local_convert_float_to_i8_24) { std::array output; // Convert audio signal using the function. output.fill(777); local_convert_float_to_i8_24(kInputFloat.data(), output.data(), kNumSamples); for (int i = 0; i < kNumSamples; i++) { EXPECT_EQ(kExpectedI8_24.at(i), output.at(i)) << ", i = " << i; } } TEST(test_flowgraph, module_sinkI8_24) { std::array output; // larger than input SourceFloat sourceFloat{2}; SinkI8_24 sinkI8_24{2}; sourceFloat.setData(kInputFloat.data(), kNumSamples); sourceFloat.output.connect(&sinkI8_24.input); output.fill(777); int32_t numRead = sinkI8_24.read(output.data(), output.size()); ASSERT_EQ(kNumSamples, numRead); for (int i = 0; i < numRead; i++) { EXPECT_EQ(kExpectedI8_24.at(i), output.at(i)) << ", i = " << i; } } TEST(test_flowgraph, module_sourceI8_24) { static const int32_t input[] = {1 << 23, 1 << 22, -(1 << 21), -(1 << 23), 0, 1 << 25, -(1 << 25)}; static const float expected[] = {1.0f, 0.5f, -0.25f, -1.0f, 0.0f, 4.0f, -4.0f}; float output[100]; SourceI8_24 sourceI8_24{1}; SinkFloat sinkFloat{1}; int numSamples = std::size(input); sourceI8_24.setData(input, numSamples); sourceI8_24.output.connect(&sinkFloat.input); int32_t numRead = sinkFloat.read(output, numSamples); ASSERT_EQ(numSamples, numRead); for (int i = 0; i < numRead; i++) { EXPECT_EQ(expected[i], output[i]) << ", i = " << i; } } void checkSampleRateConversionVariedSizes(int32_t sourceSampleRate, int32_t sinkSampleRate, MultiChannelResampler::Quality resamplerQuality) { AAudioFlowGraph flowgraph; aaudio_result_t result = flowgraph.configure(AUDIO_FORMAT_PCM_FLOAT /* sourceFormat */, 1 /* sourceChannelCount */, sourceSampleRate, AUDIO_FORMAT_PCM_FLOAT /* sinkFormat */, 1 /* sinkChannelCount */, sinkSampleRate, false /* useMonoBlend */, false /* useVolumeRamps */, 0.0f /* audioBalance */, resamplerQuality); IntegerRatio ratio(sourceSampleRate, sinkSampleRate); ratio.reduce(); ASSERT_EQ(AAUDIO_OK, result); const int inputSize = ratio.getNumerator(); const int outputSize = ratio.getDenominator(); float input[inputSize]; float output[outputSize]; for (int i = 0; i < inputSize; i++) { input[i] = i * 1.0f / inputSize; } int inputUsed = 0; int outputRead = 0; int curInputSize = 1; // Process the data with larger and larger input buffer sizes. while (inputUsed < inputSize) { outputRead += flowgraph.process((void *) (input + inputUsed), curInputSize, (void *) (output + outputRead), outputSize - outputRead); inputUsed += curInputSize; curInputSize = std::min(curInputSize + 5, inputSize - inputUsed); } ASSERT_EQ(outputSize, outputRead); for (int i = 1; i < outputSize; i++) { // The first values of the flowgraph will be close to zero. // Besides those, the values should be strictly increasing. if (output[i - 1] > 0.01f) { EXPECT_GT(output[i], output[i - 1]); } } } TEST(test_flowgraph, flowgraph_varied_sizes_all) { const int rates[] = {8000, 11025, 22050, 32000, 44100, 48000, 64000, 88200, 96000}; const MultiChannelResampler::Quality qualities[] = { MultiChannelResampler::Quality::Fastest, MultiChannelResampler::Quality::Low, MultiChannelResampler::Quality::Medium, MultiChannelResampler::Quality::High, MultiChannelResampler::Quality::Best }; for (int srcRate : rates) { for (int destRate : rates) { for (auto quality : qualities) { if (srcRate != destRate) { checkSampleRateConversionVariedSizes(srcRate, destRate, quality); } } } } } void checkSampleRateConversionPullLater(int32_t sourceSampleRate, int32_t sinkSampleRate, MultiChannelResampler::Quality resamplerQuality) { AAudioFlowGraph flowgraph; aaudio_result_t result = flowgraph.configure(AUDIO_FORMAT_PCM_FLOAT /* sourceFormat */, 1 /* sourceChannelCount */, sourceSampleRate, AUDIO_FORMAT_PCM_FLOAT /* sinkFormat */, 1 /* sinkChannelCount */, sinkSampleRate, false /* useMonoBlend */, false /* useVolumeRamps */, 0.0f /* audioBalance */, resamplerQuality); IntegerRatio ratio(sourceSampleRate, sinkSampleRate); ratio.reduce(); ASSERT_EQ(AAUDIO_OK, result); const int inputSize = ratio.getNumerator(); const int outputSize = ratio.getDenominator(); float input[inputSize]; float output[outputSize]; for (int i = 0; i < inputSize; i++) { input[i] = i * 1.0f / inputSize; } // Read half the data with process. int outputRead = flowgraph.process((void *) input, inputSize, (void *) output, outputSize / 2); ASSERT_EQ(outputSize / 2, outputRead); // Now read the other half of the data with pull. outputRead += flowgraph.pull( (void *) (output + outputRead), outputSize - outputRead); ASSERT_EQ(outputSize, outputRead); for (int i = 1; i < outputSize; i++) { // The first values of the flowgraph will be close to zero. // Besides those, the values should be strictly increasing. if (output[i - 1] > 0.01f) { EXPECT_GT(output[i], output[i - 1]); } } } // TODO: b/289508408 - Remove non-parameterized tests if they get noisy. TEST(test_flowgraph, flowgraph_pull_later_all) { const int rates[] = {8000, 11025, 22050, 32000, 44100, 48000, 64000, 88200, 96000}; const MultiChannelResampler::Quality qualities[] = { MultiChannelResampler::Quality::Fastest, MultiChannelResampler::Quality::Low, MultiChannelResampler::Quality::Medium, MultiChannelResampler::Quality::High, MultiChannelResampler::Quality::Best }; for (int srcRate : rates) { for (int destRate : rates) { for (auto quality : qualities) { if (srcRate != destRate) { checkSampleRateConversionPullLater(srcRate, destRate, quality); } } } } } class TestFlowgraphSampleRateConversion : public ::testing::Test, public ::testing::WithParamInterface { }; const char* resamplerQualityToString(MultiChannelResampler::Quality quality) { switch (quality) { case MultiChannelResampler::Quality::Fastest: return "FASTEST"; case MultiChannelResampler::Quality::Low: return "LOW"; case MultiChannelResampler::Quality::Medium: return "MEDIUM"; case MultiChannelResampler::Quality::High: return "HIGH"; case MultiChannelResampler::Quality::Best: return "BEST"; } return "UNKNOWN"; } static std::string getTestName( const ::testing::TestParamInfo& info) { return std::string() + std::to_string(std::get(info.param)) + "__" + std::to_string(std::get(info.param)) + "__" + resamplerQualityToString(std::get(info.param)); } TEST_P(TestFlowgraphSampleRateConversion, test_flowgraph_pull_later) { checkSampleRateConversionPullLater(std::get(GetParam()), std::get(GetParam()), std::get(GetParam())); } TEST_P(TestFlowgraphSampleRateConversion, test_flowgraph_varied_sizes) { checkSampleRateConversionVariedSizes(std::get(GetParam()), std::get(GetParam()), std::get(GetParam())); } INSTANTIATE_TEST_SUITE_P( test_flowgraph, TestFlowgraphSampleRateConversion, ::testing::Values( TestFlowgraphResamplerParams({8000, 11025, MultiChannelResampler::Quality::Best}), TestFlowgraphResamplerParams({8000, 48000, MultiChannelResampler::Quality::Best}), TestFlowgraphResamplerParams({8000, 44100, MultiChannelResampler::Quality::Best}), TestFlowgraphResamplerParams({11025, 24000, MultiChannelResampler::Quality::Best}), TestFlowgraphResamplerParams({11025, 48000, MultiChannelResampler::Quality::Fastest}), TestFlowgraphResamplerParams({11025, 48000, MultiChannelResampler::Quality::Low}), TestFlowgraphResamplerParams({11025, 48000, MultiChannelResampler::Quality::Medium}), TestFlowgraphResamplerParams({11025, 48000, MultiChannelResampler::Quality::High}), TestFlowgraphResamplerParams({11025, 48000, MultiChannelResampler::Quality::Best}), TestFlowgraphResamplerParams({11025, 44100, MultiChannelResampler::Quality::Best}), TestFlowgraphResamplerParams({11025, 88200, MultiChannelResampler::Quality::Best}), TestFlowgraphResamplerParams({16000, 48000, MultiChannelResampler::Quality::Best}), TestFlowgraphResamplerParams({44100, 48000, MultiChannelResampler::Quality::Low}), TestFlowgraphResamplerParams({44100, 48000, MultiChannelResampler::Quality::Best}), TestFlowgraphResamplerParams({48000, 11025, MultiChannelResampler::Quality::Best}), TestFlowgraphResamplerParams({48000, 44100, MultiChannelResampler::Quality::Best}), TestFlowgraphResamplerParams({44100, 11025, MultiChannelResampler::Quality::Best})), &getTestName );