/* * Copyright (C) 2021 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #define LOG_TAG "SensorPoseProvider" #include #include #include #include #include #include #include #include #include #include #include #include #include "media/QuaternionUtil.h" namespace android { namespace media { namespace { using android::base::StringAppendF; // Identifier to use for our event queue on the loop. // The number 19 is arbitrary, only useful if using multiple objects on the same looper. // Note: Instead of a fixed number, the SensorEventQueue's fd could be used instead. constexpr int kIdent = 19; static inline Looper* ALooper_to_Looper(ALooper* alooper) { return reinterpret_cast(alooper); } static inline ALooper* Looper_to_ALooper(Looper* looper) { return reinterpret_cast(looper); } /** * RAII-wrapper around SensorEventQueue, which unregisters it on destruction. */ class EventQueueGuard { public: EventQueueGuard(const sp& queue, Looper* looper) : mQueue(queue) { mQueue->looper = Looper_to_ALooper(looper); mQueue->requestAdditionalInfo = false; looper->addFd(mQueue->getFd(), kIdent, ALOOPER_EVENT_INPUT, nullptr /* callback */, nullptr /* data */); } ~EventQueueGuard() { if (mQueue) { ALooper_to_Looper(mQueue->looper)->removeFd(mQueue->getFd()); } } EventQueueGuard(const EventQueueGuard&) = delete; EventQueueGuard& operator=(const EventQueueGuard&) = delete; [[nodiscard]] SensorEventQueue* get() const { return mQueue.get(); } private: const sp mQueue; }; /** * RAII-wrapper around an enabled sensor, which disables it upon destruction. */ class SensorEnableGuard { public: SensorEnableGuard(const sp& queue, int32_t sensor) : mQueue(queue), mSensor(sensor) {} ~SensorEnableGuard() { if (mSensor != SensorPoseProvider::INVALID_HANDLE) { int ret = mQueue->disableSensor(mSensor); if (ret) { ALOGE("Failed to disable sensor: %s", strerror(ret)); } } } // Enable move and delete default copy-ctor/copy-assignment. SensorEnableGuard(SensorEnableGuard&& other) : mQueue(other.mQueue), mSensor(other.mSensor) { other.mSensor = SensorPoseProvider::INVALID_HANDLE; } private: sp const mQueue; int32_t mSensor; }; /** * Streams the required events to a PoseListener, based on events originating from the Sensor stack. */ class SensorPoseProviderImpl : public SensorPoseProvider { public: static std::unique_ptr create(const char* packageName, Listener* listener) { std::unique_ptr result( new SensorPoseProviderImpl(packageName, listener)); return result->waitInitFinished() ? std::move(result) : nullptr; } ~SensorPoseProviderImpl() override { // Disable all active sensors. mEnabledSensors.clear(); mQuit = true; mLooper->wake(); mThread.join(); } bool startSensor(int32_t sensor, std::chrono::microseconds samplingPeriod) override { // Figure out the sensor's data format. DataFormat format = getSensorFormat(sensor); if (format == DataFormat::kUnknown) { ALOGE("%s: Unknown format for sensor %" PRId32, __func__, sensor); return false; } { std::lock_guard lock(mMutex); mEnabledSensorsExtra.emplace( sensor, SensorExtra{.format = format, .samplingPeriod = static_cast(samplingPeriod.count())}); } // Enable the sensor. if (mQueue->enableSensor(sensor, samplingPeriod.count(), 0, 0)) { ALOGE("%s: Failed to enable sensor %" PRId32, __func__, sensor); std::lock_guard lock(mMutex); mEnabledSensorsExtra.erase(sensor); return false; } mEnabledSensors.emplace(sensor, SensorEnableGuard(mQueue, sensor)); ALOGD("%s: Sensor %" PRId32 " started", __func__, sensor); return true; } void stopSensor(int handle) override { ALOGD("%s: Sensor %" PRId32 " stopped", __func__, handle); mEnabledSensors.erase(handle); std::lock_guard lock(mMutex); mEnabledSensorsExtra.erase(handle); } std::string toString(unsigned level) override { std::string prefixSpace(level, ' '); std::string ss = prefixSpace + "SensorPoseProvider:\n"; bool needUnlock = false; prefixSpace += " "; auto now = std::chrono::steady_clock::now(); if (!mMutex.try_lock_until(now + media::kSpatializerDumpSysTimeOutInSecond)) { ss.append(prefixSpace).append("try_lock failed, dumpsys below maybe INACCURATE!\n"); } else { needUnlock = true; } // Enabled sensor information StringAppendF(&ss, "%sSensors total number %zu:\n", prefixSpace.c_str(), mEnabledSensorsExtra.size()); for (auto sensor : mEnabledSensorsExtra) { StringAppendF(&ss, "%s[Handle: 0x%08x, Format %s Period (set %d max %0.4f min %0.4f) ms", prefixSpace.c_str(), sensor.first, toString(sensor.second.format).c_str(), sensor.second.samplingPeriod, media::nsToFloatMs(sensor.second.maxPeriod), media::nsToFloatMs(sensor.second.minPeriod)); if (sensor.second.discontinuityCount.has_value()) { StringAppendF(&ss, ", DiscontinuityCount: %d", sensor.second.discontinuityCount.value()); } ss += "]\n"; } if (needUnlock) { mMutex.unlock(); } return ss; } private: enum DataFormat { kUnknown, kQuaternion, kRotationVectorsAndDiscontinuityCount, }; struct PoseEvent { Pose3f pose; std::optional twist; bool isNewReference; }; struct SensorExtra { DataFormat format = DataFormat::kUnknown; int32_t samplingPeriod = 0; int64_t latestTimestamp = 0; int64_t maxPeriod = 0; int64_t minPeriod = std::numeric_limits::max(); std::optional discontinuityCount; }; bool mQuit = false; sp mLooper; Listener* const mListener; SensorManager* const mSensorManager; std::timed_mutex mMutex; sp mQueue; std::map mEnabledSensors; std::map mEnabledSensorsExtra GUARDED_BY(mMutex); // We must do some of the initialization operations on the worker thread, because the API relies // on the thread-local looper. In addition, as a matter of convenience, we store some of the // state on the stack. // For that reason, we use a two-step initialization approach, where the ctor mostly just starts // the worker thread and that thread would notify, via the promise below whenever initialization // is finished, and whether it was successful. std::promise mInitPromise; std::thread mThread; SensorPoseProviderImpl(const char* packageName, Listener* listener) : mListener(listener), mSensorManager(&SensorManager::getInstanceForPackage(String16(packageName))) { mThread = std::thread([this] { threadFunc(); }); } void initFinished(bool success) { mInitPromise.set_value(success); } bool waitInitFinished() { return mInitPromise.get_future().get(); } void threadFunc() { // Name our std::thread to help identification. As is, canCallJava == false. androidSetThreadName("SensorPoseProvider-looper"); // Run at the highest non-realtime priority. androidSetThreadPriority(gettid(), PRIORITY_URGENT_AUDIO); // The looper is started on the created std::thread. mLooper = Looper::prepare(ALOOPER_PREPARE_ALLOW_NON_CALLBACKS); // Create event queue. mQueue = mSensorManager->createEventQueue(); if (mQueue == nullptr) { ALOGE("Failed to create a sensor event queue"); initFinished(false); return; } EventQueueGuard eventQueueGuard(mQueue, mLooper.get()); initFinished(true); while (!mQuit) { const int ret = mLooper->pollOnce(-1 /* no timeout */, nullptr /* outFd */, nullptr /* outEvents */, nullptr /* outData */); switch (ret) { case ALOOPER_POLL_WAKE: // Continue to see if mQuit flag is set. // This can be spurious (due to bugreport being taken). continue; case kIdent: // Possible events on our queue. break; default: // Besides WAKE and kIdent, there should be no timeouts, callbacks, // ALOOPER_POLL_ERROR, or other events. // Exit now to avoid high frequency log spam on error, // e.g. if the fd becomes invalid (b/31093485). ALOGE("%s: Unexpected status out of Looper::pollOnce: %d", __func__, ret); mQuit = true; continue; } // Process an event. ASensorEvent event; ssize_t actual = mQueue->read(&event, 1); if (actual > 0) { mQueue->sendAck(&event, actual); } ssize_t size = mQueue->filterEvents(&event, actual); if (size < 0 || size > 1) { ALOGE("%s: Unexpected return value from SensorEventQueue::filterEvents: %zd", __func__, size); break; } if (size == 0) { // No events. continue; } handleEvent(event); } ALOGD("%s: Exiting sensor event loop", __func__); } void handleEvent(const ASensorEvent& event) { PoseEvent value; { std::lock_guard lock(mMutex); auto iter = mEnabledSensorsExtra.find(event.sensor); if (iter == mEnabledSensorsExtra.end()) { // This can happen if we have any pending events shortly after stopping. return; } value = parseEvent(event, iter->second.format, &iter->second.discontinuityCount); updateEventTimestamp(event, iter->second); } mListener->onPose(event.timestamp, event.sensor, value.pose, value.twist, value.isNewReference); } DataFormat getSensorFormat(int32_t handle) { std::optional sensor = getSensorByHandle(handle); if (!sensor) { ALOGE("Sensor not found: %d", handle); return DataFormat::kUnknown; } if (sensor->getType() == ASENSOR_TYPE_ROTATION_VECTOR || sensor->getType() == ASENSOR_TYPE_GAME_ROTATION_VECTOR) { return DataFormat::kQuaternion; } if (sensor->getType() == ASENSOR_TYPE_HEAD_TRACKER) { return DataFormat::kRotationVectorsAndDiscontinuityCount; } return DataFormat::kUnknown; } std::optional getSensorByHandle(int32_t handle) override { const Sensor* const* list; ssize_t size; // Search static sensor list. size = mSensorManager->getSensorList(&list); if (size < 0) { ALOGE("getSensorList failed with error code %zd", size); return std::nullopt; } for (size_t i = 0; i < size; ++i) { if (list[i]->getHandle() == handle) { return *list[i]; } } // Search dynamic sensor list. Vector dynList; size = mSensorManager->getDynamicSensorList(dynList); if (size < 0) { ALOGE("getDynamicSensorList failed with error code %zd", size); return std::nullopt; } for (size_t i = 0; i < size; ++i) { if (dynList[i].getHandle() == handle) { return dynList[i]; } } return std::nullopt; } void updateEventTimestamp(const ASensorEvent& event, SensorExtra& extra) { if (extra.latestTimestamp != 0) { int64_t gap = event.timestamp - extra.latestTimestamp; extra.maxPeriod = std::max(gap, extra.maxPeriod); extra.minPeriod = std::min(gap, extra.minPeriod); } extra.latestTimestamp = event.timestamp; } static PoseEvent parseEvent(const ASensorEvent& event, DataFormat format, std::optional* discontinutyCount) { switch (format) { case DataFormat::kQuaternion: { Eigen::Quaternionf quat(event.data[3], event.data[0], event.data[1], event.data[2]); // Adapt to different frame convention. quat *= rotateX(-M_PI_2); return PoseEvent{Pose3f(quat), std::optional(), false}; } case DataFormat::kRotationVectorsAndDiscontinuityCount: { Eigen::Vector3f rotation = {event.head_tracker.rx, event.head_tracker.ry, event.head_tracker.rz}; Eigen::Vector3f twist = {event.head_tracker.vx, event.head_tracker.vy, event.head_tracker.vz}; Eigen::Quaternionf quat = rotationVectorToQuaternion(rotation); bool isNewReference = !discontinutyCount->has_value() || discontinutyCount->value() != event.head_tracker.discontinuity_count; *discontinutyCount = event.head_tracker.discontinuity_count; return PoseEvent{Pose3f(quat), Twist3f(Eigen::Vector3f::Zero(), twist), isNewReference}; } default: LOG_ALWAYS_FATAL("Unexpected sensor type: %d", static_cast(format)); } } const static std::string toString(DataFormat format) { switch (format) { case DataFormat::kUnknown: return "kUnknown"; case DataFormat::kQuaternion: return "kQuaternion"; case DataFormat::kRotationVectorsAndDiscontinuityCount: return "kRotationVectorsAndDiscontinuityCount"; default: return "NotImplemented"; } } }; } // namespace std::unique_ptr SensorPoseProvider::create(const char* packageName, Listener* listener) { return SensorPoseProviderImpl::create(packageName, listener); } } // namespace media } // namespace android