/* ------------------------------------------------------------------ * Copyright (C) 1998-2009 PacketVideo * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. * See the License for the specific language governing permissions * and limitations under the License. * ------------------------------------------------------------------- */ /**************************************************************************************** Portions of this file are derived from the following 3GPP standard: 3GPP TS 26.073 ANSI-C code for the Adaptive Multi-Rate (AMR) speech codec Available from http://www.3gpp.org (C) 2004, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC) Permission to distribute, modify and use this file under the standard license terms listed above has been obtained from the copyright holder. ****************************************************************************************/ /* ------------------------------------------------------------------------------ Pathname: ./audio/gsm-amr/c/src/levinson.c Funtions: Levinson_init Levinson_reset Levinson_exit Levinson ------------------------------------------------------------------------------ MODULE DESCRIPTION This file contains the function the implements the Levinson-Durbin algorithm using double-precision arithmetic. This file also includes functions to initialize, allocate, and deallocate memory used by the Levinson function. ------------------------------------------------------------------------------ */ /*---------------------------------------------------------------------------- ; INCLUDES ----------------------------------------------------------------------------*/ #include #include #include "levinson.h" #include "basicop_malloc.h" #include "basic_op.h" #include "div_32.h" #include "cnst.h" /*---------------------------------------------------------------------------- ; MACROS ; Define module specific macros here ----------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------- ; DEFINES ; Include all pre-processor statements here. Include conditional ; compile variables also. ----------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------- ; LOCAL FUNCTION DEFINITIONS ; Function Prototype declaration ----------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------- ; LOCAL VARIABLE DEFINITIONS ; Variable declaration - defined here and used outside this module ----------------------------------------------------------------------------*/ /* ------------------------------------------------------------------------------ FUNCTION NAME: Levinson_init ------------------------------------------------------------------------------ INPUT AND OUTPUT DEFINITIONS Inputs: state = pointer to an array of pointers to structures of type LevinsonState Outputs: pointer pointed to by state points to the newly allocated memory to be used by Levinson function Returns: return_value = 0, if initialization was successful; -1, otherwise (int) Global Variables Used: None Local Variables Needed: None ------------------------------------------------------------------------------ FUNCTION DESCRIPTION This function allocates and initializes the state memory used by the Levinson function. ------------------------------------------------------------------------------ REQUIREMENTS None ------------------------------------------------------------------------------ REFERENCES levinson.c, UMTS GSM AMR speech codec, R99 - Version 3.2.0, March 2, 2001 ------------------------------------------------------------------------------ PSEUDO-CODE int Levinson_init (LevinsonState **state) { LevinsonState* s; if (state == (LevinsonState **) NULL){ //fprint(stderr, "Levinson_init: invalid parameter\n"); return -1; } *state = NULL; // allocate memory if ((s= (LevinsonState *) malloc(sizeof(LevinsonState))) == NULL){ //fprint(stderr, "Levinson_init: can not malloc state structure\n"); return -1; } Levinson_reset(s); *state = s; return 0; } ------------------------------------------------------------------------------ RESOURCES USED [optional] When the code is written for a specific target processor the the resources used should be documented below. HEAP MEMORY USED: x bytes STACK MEMORY USED: x bytes CLOCK CYCLES: (cycle count equation for this function) + (variable used to represent cycle count for each subroutine called) where: (cycle count variable) = cycle count for [subroutine name] ------------------------------------------------------------------------------ CAUTION [optional] [State any special notes, constraints or cautions for users of this function] ------------------------------------------------------------------------------ */ Word16 Levinson_init(LevinsonState **state) { LevinsonState* s; if (state == (LevinsonState **) NULL) { /* fprint(stderr, "Levinson_init: invalid parameter\n"); */ return(-1); } *state = NULL; /* allocate memory */ if ((s = (LevinsonState *) malloc(sizeof(LevinsonState))) == NULL) { /* fprint(stderr, "Levinson_init: can not malloc state structure\n"); */ return(-1); } Levinson_reset(s); *state = s; return(0); } /****************************************************************************/ /* ------------------------------------------------------------------------------ FUNCTION NAME: Levinson_reset ------------------------------------------------------------------------------ INPUT AND OUTPUT DEFINITIONS Inputs: state = pointer to structures of type LevinsonState Outputs: old_A field of structure pointed to by state is initialized to 4096 (first location) and the rest to zeros Returns: return_value = 0, if reset was successful; -1, otherwise (int) Global Variables Used: None Local Variables Needed: None ------------------------------------------------------------------------------ FUNCTION DESCRIPTION This function initializes the state memory used by the Levinson function to zero. ------------------------------------------------------------------------------ REQUIREMENTS None ------------------------------------------------------------------------------ REFERENCES levinson.c, UMTS GSM AMR speech codec, R99 - Version 3.2.0, March 2, 2001 ------------------------------------------------------------------------------ PSEUDO-CODE int Levinson_reset (LevinsonState *state) { Word16 i; if (state == (LevinsonState *) NULL){ fprint(stderr, "Levinson_reset: invalid parameter\n"); return -1; } state->old_A[0] = 4096; for(i = 1; i < M + 1; i++) state->old_A[i] = 0; return 0; } ------------------------------------------------------------------------------ RESOURCES USED [optional] When the code is written for a specific target processor the the resources used should be documented below. HEAP MEMORY USED: x bytes STACK MEMORY USED: x bytes CLOCK CYCLES: (cycle count equation for this function) + (variable used to represent cycle count for each subroutine called) where: (cycle count variable) = cycle count for [subroutine name] ------------------------------------------------------------------------------ CAUTION [optional] [State any special notes, constraints or cautions for users of this function] ------------------------------------------------------------------------------ */ Word16 Levinson_reset(LevinsonState *state) { Word16 i; if (state == (LevinsonState *) NULL) { /* fprint(stderr, "Levinson_reset: invalid parameter\n"); */ return(-1); } state->old_A[0] = 4096; for (i = 1; i < M + 1; i++) { state->old_A[i] = 0; } return(0); } /****************************************************************************/ /* ------------------------------------------------------------------------------ FUNCTION NAME: Levinson_exit ------------------------------------------------------------------------------ INPUT AND OUTPUT DEFINITIONS Inputs: state = pointer to an array of pointers to structures of type LevinsonState Outputs: pointer pointed to by state is set to the NULL address Returns: None Global Variables Used: None Local Variables Needed: None ------------------------------------------------------------------------------ FUNCTION DESCRIPTION This function deallocates the state memory used by the Levinson function. ------------------------------------------------------------------------------ REQUIREMENTS None ------------------------------------------------------------------------------ REFERENCES levinson.c, UMTS GSM AMR speech codec, R99 - Version 3.2.0, March 2, 2001 ------------------------------------------------------------------------------ PSEUDO-CODE void Levinson_exit (LevinsonState **state) { if (state == NULL || *state == NULL) return; // deallocate memory free(*state); *state = NULL; return; } ------------------------------------------------------------------------------ RESOURCES USED [optional] When the code is written for a specific target processor the the resources used should be documented below. HEAP MEMORY USED: x bytes STACK MEMORY USED: x bytes CLOCK CYCLES: (cycle count equation for this function) + (variable used to represent cycle count for each subroutine called) where: (cycle count variable) = cycle count for [subroutine name] ------------------------------------------------------------------------------ CAUTION [optional] [State any special notes, constraints or cautions for users of this function] ------------------------------------------------------------------------------ */ void Levinson_exit(LevinsonState **state) { if (state == NULL || *state == NULL) { return; } /* deallocate memory */ free(*state); *state = NULL; return; } /****************************************************************************/ /* ------------------------------------------------------------------------------ FUNCTION NAME: Levinson ------------------------------------------------------------------------------ INPUT AND OUTPUT DEFINITIONS Inputs: st = pointer to structures of type LevinsonState Rh = vector containing most significant byte of autocorrelation values (Word16) Rl = vector containing least significant byte of autocorrelation values (Word16) A = vector of LPC coefficients (10th order) (Word16) rc = vector containing first four reflection coefficients (Word16) pOverflow = pointer to overflow indicator (Flag) Outputs: A contains the newly calculated LPC coefficients rc contains the newly calculated reflection coefficients Returns: return_value = 0 (int) Global Variables Used: None Local Variables Needed: None ------------------------------------------------------------------------------ FUNCTION DESCRIPTION This function implements the Levinson-Durbin algorithm using double- precision arithmetic. This is used to compute the Linear Predictive (LP) filter parameters from the speech autocorrelation values. The algorithm implemented is as follows: A[0] = 1 K = -R[1]/R[0] A[1] = K Alpha = R[0] * (1-K**2] FOR i = 2 to M S = SUM ( R[j]*A[i-j] ,j=1,i-1 ) + R[i] K = -S / Alpha FOR j = 1 to i-1 An[j] = A[j] + K*A[i-j] where An[i] = new A[i] ENDFOR An[i]=K Alpha=Alpha * (1-K**2) END where: R[i] = autocorrelations A[i] = filter coefficients K = reflection coefficient Alpha = prediction gain ------------------------------------------------------------------------------ REQUIREMENTS None ------------------------------------------------------------------------------ REFERENCES levinson.c, UMTS GSM AMR speech codec, R99 - Version 3.2.0, March 2, 2001 ------------------------------------------------------------------------------ PSEUDO-CODE int Levinson ( LevinsonState *st, Word16 Rh[], // i : Rh[m+1] Vector of autocorrelations (msb) Word16 Rl[], // i : Rl[m+1] Vector of autocorrelations (lsb) Word16 A[], // o : A[m] LPC coefficients (m = 10) Word16 rc[] // o : rc[4] First 4 reflection coefficients ) { Word16 i, j; Word16 hi, lo; Word16 Kh, Kl; // reflexion coefficient; hi and lo Word16 alp_h, alp_l, alp_exp; // Prediction gain; hi lo and exponent Word16 Ah[M + 1], Al[M + 1]; // LPC coef. in double prec. Word16 Anh[M + 1], Anl[M + 1];// LPC coef.for next iteration in double prec. Word32 t0, t1, t2; // temporary variable // K = A[1] = -R[1] / R[0] t1 = L_Comp (Rh[1], Rl[1]); t2 = L_abs (t1); // abs R[1] t0 = Div_32 (t2, Rh[0], Rl[0]); // R[1]/R[0] if (t1 > 0) t0 = L_negate (t0); // -R[1]/R[0] L_Extract (t0, &Kh, &Kl); // K in DPF rc[0] = pv_round (t0); t0 = L_shr (t0, 4); // A[1] in L_Extract (t0, &Ah[1], &Al[1]); // A[1] in DPF // Alpha = R[0] * (1-K**2) t0 = Mpy_32 (Kh, Kl, Kh, Kl); // K*K t0 = L_abs (t0); // Some case <0 !! t0 = L_sub ((Word32) 0x7fffffffL, t0); // 1 - K*K L_Extract (t0, &hi, &lo); // DPF format t0 = Mpy_32 (Rh[0], Rl[0], hi, lo); // Alpha in // Normalize Alpha alp_exp = norm_l (t0); t0 = L_shl (t0, alp_exp); L_Extract (t0, &alp_h, &alp_l); // DPF format *--------------------------------------* * ITERATIONS I=2 to M * *--------------------------------------* for (i = 2; i <= M; i++) { // t0 = SUM ( R[j]*A[i-j] ,j=1,i-1 ) + R[i] t0 = 0; for (j = 1; j < i; j++) { t0 = L_add (t0, Mpy_32 (Rh[j], Rl[j], Ah[i - j], Al[i - j])); } t0 = L_shl (t0, 4); t1 = L_Comp (Rh[i], Rl[i]); t0 = L_add (t0, t1); // add R[i] // K = -t0 / Alpha t1 = L_abs (t0); t2 = Div_32 (t1, alp_h, alp_l); // abs(t0)/Alpha if (t0 > 0) t2 = L_negate (t2); // K =-t0/Alpha t2 = L_shl (t2, alp_exp); // denormalize; compare to Alpha L_Extract (t2, &Kh, &Kl); // K in DPF if (sub (i, 5) < 0) { rc[i - 1] = pv_round (t2); } // Test for unstable filter. If unstable keep old A(z) if (sub (abs_s (Kh), 32750) > 0) { for (j = 0; j <= M; j++) { A[j] = st->old_A[j]; } for (j = 0; j < 4; j++) { rc[j] = 0; } return 0; } *------------------------------------------* * Compute new LPC coeff. -> An[i] * * An[j]= A[j] + K*A[i-j] , j=1 to i-1 * * An[i]= K * *------------------------------------------* for (j = 1; j < i; j++) { t0 = Mpy_32 (Kh, Kl, Ah[i - j], Al[i - j]); t0 = L_add(t0, L_Comp(Ah[j], Al[j])); L_Extract (t0, &Anh[j], &Anl[j]); } t2 = L_shr (t2, 4); L_Extract (t2, &Anh[i], &Anl[i]); // Alpha = Alpha * (1-K**2) t0 = Mpy_32 (Kh, Kl, Kh, Kl); // K*K t0 = L_abs (t0); // Some case <0 !! t0 = L_sub ((Word32) 0x7fffffffL, t0); // 1 - K*K L_Extract (t0, &hi, &lo); // DPF format t0 = Mpy_32 (alp_h, alp_l, hi, lo); // Normalize Alpha j = norm_l (t0); t0 = L_shl (t0, j); L_Extract (t0, &alp_h, &alp_l); // DPF format alp_exp = add (alp_exp, j); // Add normalization to alp_exp // A[j] = An[j] for (j = 1; j <= i; j++) { Ah[j] = Anh[j]; Al[j] = Anl[j]; } } A[0] = 4096; for (i = 1; i <= M; i++) { t0 = L_Comp (Ah[i], Al[i]); st->old_A[i] = A[i] = pv_round (L_shl (t0, 1)); } return 0; } ------------------------------------------------------------------------------ RESOURCES USED [optional] When the code is written for a specific target processor the the resources used should be documented below. HEAP MEMORY USED: x bytes STACK MEMORY USED: x bytes CLOCK CYCLES: (cycle count equation for this function) + (variable used to represent cycle count for each subroutine called) where: (cycle count variable) = cycle count for [subroutine name] ------------------------------------------------------------------------------ CAUTION [optional] [State any special notes, constraints or cautions for users of this function] ------------------------------------------------------------------------------ */ Word16 Levinson( LevinsonState *st, Word16 Rh[], /* i : Rh[m+1] Vector of autocorrelations (msb) */ Word16 Rl[], /* i : Rl[m+1] Vector of autocorrelations (lsb) */ Word16 A[], /* o : A[m] LPC coefficients (m = 10) */ Word16 rc[], /* o : rc[4] First 4 reflection coefficients */ Flag *pOverflow ) { Word16 i; Word16 j; Word16 hi; Word16 lo; Word16 Kh; /* reflexion coefficient; hi and lo */ Word16 Kl; Word16 alp_h; /* Prediction gain; hi lo and exponent*/ Word16 alp_l; Word16 alp_exp; Word16 Ah[M + 1]; /* LPC coef. in double prec. */ Word16 Al[M + 1]; Word16 Anh[M + 1]; /* LPC coef.for next iteration in */ Word16 Anl[M + 1]; /* double prec. */ Word32 t0; /* temporary variable */ Word32 t1; /* temporary variable */ Word32 t2; /* temporary variable */ Word16 *p_Rh; Word16 *p_Rl; Word16 *p_Ah; Word16 *p_Al; Word16 *p_Anh; Word16 *p_Anl; Word16 *p_A; /* K = A[1] = -R[1] / R[0] */ t1 = ((Word32) * (Rh + 1)) << 16; t1 += *(Rl + 1) << 1; t2 = L_abs(t1); /* abs R[1] - required by Div_32 */ t0 = Div_32(t2, *Rh, *Rl, pOverflow); /* R[1]/R[0] */ if (t1 > 0) { t0 = L_negate(t0); /* -R[1]/R[0] */ } /* K in DPF */ Kh = (Word16)(t0 >> 16); Kl = (Word16)((t0 >> 1) - ((Word32)(Kh) << 15)); *rc = pv_round(t0, pOverflow); t0 = t0 >> 4; /* A[1] in DPF */ *(Ah + 1) = (Word16)(t0 >> 16); *(Al + 1) = (Word16)((t0 >> 1) - ((Word32)(*(Ah + 1)) << 15)); /* Alpha = R[0] * (1-K**2) */ t0 = Mpy_32(Kh, Kl, Kh, Kl, pOverflow); /* K*K */ t0 = L_abs(t0); /* Some case <0 !! */ t0 = 0x7fffffffL - t0; /* 1 - K*K */ /* DPF format */ hi = (Word16)(t0 >> 16); lo = (Word16)((t0 >> 1) - ((Word32)(hi) << 15)); t0 = Mpy_32(*Rh, *Rl, hi, lo, pOverflow); /* Alpha in */ /* Normalize Alpha */ alp_exp = norm_l(t0); t0 = t0 << alp_exp; /* DPF format */ alp_h = (Word16)(t0 >> 16); alp_l = (Word16)((t0 >> 1) - ((Word32)(alp_h) << 15)); /*--------------------------------------* * ITERATIONS I=2 to M * *--------------------------------------*/ for (i = 2; i <= M; i++) { /* t0 = SUM ( R[j]*A[i-j] ,j=1,i-1 ) + R[i] */ t0 = 0; p_Rh = &Rh[1]; p_Rl = &Rl[1]; p_Ah = &Ah[i-1]; p_Al = &Al[i-1]; for (j = 1; j < i; j++) { t0 += (((Word32) * (p_Rh)* *(p_Al--)) >> 15); t0 += (((Word32) * (p_Rl++)* *(p_Ah)) >> 15); t0 += ((Word32) * (p_Rh++)* *(p_Ah--)); } t0 = t0 << 5; t1 = ((Word32) * (Rh + i) << 16) + ((Word32)(*(Rl + i)) << 1); t0 += t1; /* K = -t0 / Alpha */ t1 = L_abs(t0); t2 = Div_32(t1, alp_h, alp_l, pOverflow); /* abs(t0)/Alpha */ if (t0 > 0) { t2 = L_negate(t2); /* K =-t0/Alpha */ } t2 = L_shl(t2, alp_exp, pOverflow); /* denormalize; compare to Alpha */ Kh = (Word16)(t2 >> 16); Kl = (Word16)((t2 >> 1) - ((Word32)(Kh) << 15)); if (i < 5) { *(rc + i - 1) = (Word16)((t2 + 0x00008000L) >> 16); } /* Test for unstable filter. If unstable keep old A(z) */ if ((abs_s(Kh)) > 32750) { memcpy(A, &(st->old_A[0]), sizeof(Word16)*(M + 1)); memset(rc, 0, sizeof(Word16)*4); return(0); } /*------------------------------------------* * Compute new LPC coeff. -> An[i] * * An[j]= A[j] + K*A[i-j] , j=1 to i-1 * * An[i]= K * *------------------------------------------*/ p_Ah = &Ah[i-1]; p_Al = &Al[i-1]; p_Anh = &Anh[1]; p_Anl = &Anl[1]; for (j = 1; j < i; j++) { t0 = (((Word32)Kh* *(p_Al--)) >> 15); t0 += (((Word32)Kl* *(p_Ah)) >> 15); t0 += ((Word32)Kh* *(p_Ah--)); t0 += (Ah[j] << 15) + Al[j]; *(p_Anh) = (Word16)(t0 >> 15); *(p_Anl++) = (Word16)(t0 - ((Word32)(*(p_Anh++)) << 15)); } *(p_Anh) = (Word16)(t2 >> 20); *(p_Anl) = (Word16)((t2 >> 5) - ((Word32)(*(Anh + i)) << 15)); /* Alpha = Alpha * (1-K**2) */ t0 = Mpy_32(Kh, Kl, Kh, Kl, pOverflow); /* K*K */ t0 = L_abs(t0); /* Some case <0 !! */ t0 = 0x7fffffffL - t0; /* 1 - K*K */ hi = (Word16)(t0 >> 16); lo = (Word16)((t0 >> 1) - ((Word32)(hi) << 15)); t0 = (((Word32)alp_h * lo) >> 15); t0 += (((Word32)alp_l * hi) >> 15); t0 += ((Word32)alp_h * hi); t0 <<= 1; /* Normalize Alpha */ j = norm_l(t0); t0 <<= j; alp_h = (Word16)(t0 >> 16); alp_l = (Word16)((t0 >> 1) - ((Word32)(alp_h) << 15)); alp_exp += j; /* Add normalization to alp_exp */ /* A[j] = An[j] */ memcpy(&Ah[1], &Anh[1], sizeof(Word16)*i); memcpy(&Al[1], &Anl[1], sizeof(Word16)*i); } p_A = &A[0]; *(p_A++) = 4096; p_Ah = &Ah[1]; p_Al = &Al[1]; for (i = 1; i <= M; i++) { t0 = ((Word32) * (p_Ah++) << 15) + *(p_Al++); st->old_A[i] = *(p_A++) = (Word16)((t0 + 0x00002000) >> 14); } return(0); }