/* ** ** Copyright 2014, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "AudioFlinger::PatchPanel" //#define LOG_NDEBUG 0 #include "PatchPanel.h" #include "PatchCommandThread.h" #include #include #include #include #include #include #include // ---------------------------------------------------------------------------- // Note: the following macro is used for extremely verbose logging message. In // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to // 0; but one side effect of this is to turn all LOGV's as well. Some messages // are so verbose that we want to suppress them even when we have ALOG_ASSERT // turned on. Do not uncomment the #def below unless you really know what you // are doing and want to see all of the extremely verbose messages. //#define VERY_VERY_VERBOSE_LOGGING #ifdef VERY_VERY_VERBOSE_LOGGING #define ALOGVV ALOGV #else #define ALOGVV(a...) do { } while(0) #endif namespace android { /* static */ sp IAfPatchPanel::create(const sp& afPatchPanelCallback) { return sp::make(afPatchPanelCallback); } status_t SoftwarePatch::getLatencyMs_l(double* latencyMs) const { return mPatchPanel->getLatencyMs_l(mPatchHandle, latencyMs); } status_t PatchPanel::getLatencyMs_l( audio_patch_handle_t patchHandle, double* latencyMs) const { const auto& iter = mPatches.find(patchHandle); if (iter != mPatches.end()) { return iter->second.getLatencyMs(latencyMs); } else { return BAD_VALUE; } } void PatchPanel::closeThreadInternal_l(const sp& thread) const { if (const auto recordThread = thread->asIAfRecordThread(); recordThread) { mAfPatchPanelCallback->closeThreadInternal_l(recordThread); } else if (const auto playbackThread = thread->asIAfPlaybackThread(); playbackThread) { mAfPatchPanelCallback->closeThreadInternal_l(playbackThread); } else { LOG_ALWAYS_FATAL("%s: Endpoints only accept IAfPlayback and IAfRecord threads, " "invalid thread, id: %d type: %d", __func__, thread->id(), thread->type()); } } /* List connected audio ports and their attributes */ status_t PatchPanel::listAudioPorts_l(unsigned int* /* num_ports */, struct audio_port *ports __unused) { ALOGV(__func__); return NO_ERROR; } /* Get supported attributes for a given audio port */ status_t PatchPanel::getAudioPort_l(struct audio_port_v7* port) { if (port->type != AUDIO_PORT_TYPE_DEVICE) { // Only query the HAL when the port is a device. // TODO: implement getAudioPort for mix. return INVALID_OPERATION; } AudioHwDevice* hwDevice = findAudioHwDeviceByModule_l(port->ext.device.hw_module); if (hwDevice == nullptr) { ALOGW("%s cannot find hw module %d", __func__, port->ext.device.hw_module); return BAD_VALUE; } if (!hwDevice->supportsAudioPatches()) { return INVALID_OPERATION; } return hwDevice->getAudioPort(port); } /* Connect a patch between several source and sink ports */ status_t PatchPanel::createAudioPatch_l(const struct audio_patch* patch, audio_patch_handle_t *handle, bool endpointPatch) //unlocks AudioFlinger::mLock when calling IAfThreadBase::sendCreateAudioPatchConfigEvent //to avoid deadlocks if the thread loop needs to acquire AudioFlinger::mLock //before processing the create patch request. NO_THREAD_SAFETY_ANALYSIS { if (handle == NULL || patch == NULL) { return BAD_VALUE; } ALOGV("%s() num_sources %d num_sinks %d handle %d", __func__, patch->num_sources, patch->num_sinks, *handle); status_t status = NO_ERROR; audio_patch_handle_t halHandle = AUDIO_PATCH_HANDLE_NONE; if (!audio_patch_is_valid(patch) || (patch->num_sinks == 0 && patch->num_sources != 2)) { return BAD_VALUE; } // limit number of sources to 1 for now or 2 sources for special cross hw module case. // only the audio policy manager can request a patch creation with 2 sources. if (patch->num_sources > 2) { return INVALID_OPERATION; } bool reuseExistingHalPatch = false; audio_patch_handle_t oldhandle = AUDIO_PATCH_HANDLE_NONE; if (*handle != AUDIO_PATCH_HANDLE_NONE) { auto iter = mPatches.find(*handle); if (iter != mPatches.end()) { ALOGV("%s() removing patch handle %d", __func__, *handle); Patch &removedPatch = iter->second; // free resources owned by the removed patch if applicable // 1) if a software patch is present, release the playback and capture threads and // tracks created. This will also release the corresponding audio HAL patches if (removedPatch.isSoftware()) { removedPatch.clearConnections_l(this); } // 2) if the new patch and old patch source or sink are devices from different // hw modules, clear the audio HAL patches now because they will not be updated // by call to create_audio_patch() below which will happen on a different HW module if (removedPatch.mHalHandle != AUDIO_PATCH_HANDLE_NONE) { audio_module_handle_t hwModule = AUDIO_MODULE_HANDLE_NONE; const struct audio_patch &oldPatch = removedPatch.mAudioPatch; oldhandle = *handle; if (oldPatch.sources[0].type == AUDIO_PORT_TYPE_DEVICE && (patch->sources[0].type != AUDIO_PORT_TYPE_DEVICE || oldPatch.sources[0].ext.device.hw_module != patch->sources[0].ext.device.hw_module)) { hwModule = oldPatch.sources[0].ext.device.hw_module; } else if (patch->num_sinks == 0 || (oldPatch.sinks[0].type == AUDIO_PORT_TYPE_DEVICE && (patch->sinks[0].type != AUDIO_PORT_TYPE_DEVICE || oldPatch.sinks[0].ext.device.hw_module != patch->sinks[0].ext.device.hw_module))) { // Note on (patch->num_sinks == 0): this situation should not happen as // these special patches are only created by the policy manager but just // in case, systematically clear the HAL patch. // Note that removedPatch.mAudioPatch.num_sinks cannot be 0 here because // removedPatch.mHalHandle would be AUDIO_PATCH_HANDLE_NONE in this case. hwModule = oldPatch.sinks[0].ext.device.hw_module; } sp hwDevice = findHwDeviceByModule_l(hwModule); if (hwDevice != 0) { hwDevice->releaseAudioPatch(removedPatch.mHalHandle); } halHandle = removedPatch.mHalHandle; // Prevent to remove/add device effect when mix / device did not change, and // hal patch has not been released // Note that no patch leak at hal layer as halHandle is reused. reuseExistingHalPatch = (hwDevice == 0) && patchesHaveSameRoute(*patch, oldPatch); } erasePatch(*handle, reuseExistingHalPatch); } } Patch newPatch{*patch, endpointPatch}; audio_module_handle_t insertedModule = AUDIO_MODULE_HANDLE_NONE; switch (patch->sources[0].type) { case AUDIO_PORT_TYPE_DEVICE: { audio_module_handle_t srcModule = patch->sources[0].ext.device.hw_module; AudioHwDevice *audioHwDevice = findAudioHwDeviceByModule_l(srcModule); if (!audioHwDevice) { status = BAD_VALUE; goto exit; } for (unsigned int i = 0; i < patch->num_sinks; i++) { // support only one sink if connection to a mix or across HW modules if ((patch->sinks[i].type == AUDIO_PORT_TYPE_MIX || (patch->sinks[i].type == AUDIO_PORT_TYPE_DEVICE && patch->sinks[i].ext.device.hw_module != srcModule)) && patch->num_sinks > 1) { ALOGW("%s() multiple sinks for mix or across modules not supported", __func__); status = INVALID_OPERATION; goto exit; } // reject connection to different sink types if (patch->sinks[i].type != patch->sinks[0].type) { ALOGW("%s() different sink types in same patch not supported", __func__); status = BAD_VALUE; goto exit; } } // manage patches requiring a software bridge // - special patch request with 2 sources (reuse one existing output mix) OR // - Device to device AND // - source HW module != destination HW module OR // - audio HAL does not support audio patches creation if ((patch->num_sources == 2) || ((patch->sinks[0].type == AUDIO_PORT_TYPE_DEVICE) && ((patch->sinks[0].ext.device.hw_module != srcModule) || !audioHwDevice->supportsAudioPatches()))) { audio_devices_t outputDevice = patch->sinks[0].ext.device.type; String8 outputDeviceAddress = String8(patch->sinks[0].ext.device.address); if (patch->num_sources == 2) { if (patch->sources[1].type != AUDIO_PORT_TYPE_MIX || (patch->num_sinks != 0 && patch->sinks[0].ext.device.hw_module != patch->sources[1].ext.mix.hw_module)) { ALOGW("%s() invalid source combination", __func__); status = INVALID_OPERATION; goto exit; } const sp thread = mAfPatchPanelCallback->checkPlaybackThread_l( patch->sources[1].ext.mix.handle); if (thread == 0) { ALOGW("%s() cannot get playback thread", __func__); status = INVALID_OPERATION; goto exit; } // existing playback thread is reused, so it is not closed when patch is cleared newPatch.mPlayback.setThread( thread->asIAfPlaybackThread().get(), false /*closeThread*/); } else { audio_config_t config = AUDIO_CONFIG_INITIALIZER; audio_config_base_t mixerConfig = AUDIO_CONFIG_BASE_INITIALIZER; audio_io_handle_t output = AUDIO_IO_HANDLE_NONE; audio_output_flags_t flags = AUDIO_OUTPUT_FLAG_NONE; if (patch->sinks[0].config_mask & AUDIO_PORT_CONFIG_SAMPLE_RATE) { config.sample_rate = patch->sinks[0].sample_rate; } if (patch->sinks[0].config_mask & AUDIO_PORT_CONFIG_CHANNEL_MASK) { config.channel_mask = patch->sinks[0].channel_mask; } if (patch->sinks[0].config_mask & AUDIO_PORT_CONFIG_FORMAT) { config.format = patch->sinks[0].format; } if (patch->sinks[0].config_mask & AUDIO_PORT_CONFIG_FLAGS) { flags = patch->sinks[0].flags.output; } const sp thread = mAfPatchPanelCallback->openOutput_l( patch->sinks[0].ext.device.hw_module, &output, &config, &mixerConfig, outputDevice, outputDeviceAddress, flags); ALOGV("mAfPatchPanelCallback->openOutput_l() returned %p", thread.get()); if (thread == 0) { status = NO_MEMORY; goto exit; } newPatch.mPlayback.setThread(thread->asIAfPlaybackThread().get()); } audio_devices_t device = patch->sources[0].ext.device.type; String8 address = String8(patch->sources[0].ext.device.address); audio_config_t config = AUDIO_CONFIG_INITIALIZER; // open input stream with source device audio properties if provided or // default to peer output stream properties otherwise. if (patch->sources[0].config_mask & AUDIO_PORT_CONFIG_SAMPLE_RATE) { config.sample_rate = patch->sources[0].sample_rate; } else { config.sample_rate = newPatch.mPlayback.thread()->sampleRate(); } if (patch->sources[0].config_mask & AUDIO_PORT_CONFIG_CHANNEL_MASK) { config.channel_mask = patch->sources[0].channel_mask; } else { config.channel_mask = audio_channel_in_mask_from_count( newPatch.mPlayback.thread()->channelCount()); } if (patch->sources[0].config_mask & AUDIO_PORT_CONFIG_FORMAT) { config.format = patch->sources[0].format; } else { config.format = newPatch.mPlayback.thread()->format(); } audio_input_flags_t flags = patch->sources[0].config_mask & AUDIO_PORT_CONFIG_FLAGS ? patch->sources[0].flags.input : AUDIO_INPUT_FLAG_NONE; audio_io_handle_t input = AUDIO_IO_HANDLE_NONE; audio_source_t source = AUDIO_SOURCE_MIC; // For telephony patches, propagate voice communication use case to record side if (patch->num_sources == 2 && patch->sources[1].ext.mix.usecase.stream == AUDIO_STREAM_VOICE_CALL) { source = AUDIO_SOURCE_VOICE_COMMUNICATION; } const sp thread = mAfPatchPanelCallback->openInput_l(srcModule, &input, &config, device, address, source, flags, outputDevice, outputDeviceAddress); ALOGV("mAfPatchPanelCallback->openInput_l() returned %p inChannelMask %08x", thread.get(), config.channel_mask); if (thread == 0) { status = NO_MEMORY; goto exit; } newPatch.mRecord.setThread(thread->asIAfRecordThread().get()); status = newPatch.createConnections_l(this); if (status != NO_ERROR) { goto exit; } if (audioHwDevice->isInsert()) { insertedModule = audioHwDevice->handle(); } } else { if (patch->sinks[0].type == AUDIO_PORT_TYPE_MIX) { sp thread = mAfPatchPanelCallback->checkRecordThread_l( patch->sinks[0].ext.mix.handle); if (thread == 0) { thread = mAfPatchPanelCallback->checkMmapThread_l( patch->sinks[0].ext.mix.handle); if (thread == 0) { ALOGW("%s() bad capture I/O handle %d", __func__, patch->sinks[0].ext.mix.handle); status = BAD_VALUE; goto exit; } } mAfPatchPanelCallback->mutex().unlock(); status = thread->sendCreateAudioPatchConfigEvent(patch, &halHandle); mAfPatchPanelCallback->mutex().lock(); if (status == NO_ERROR) { newPatch.setThread(thread); } // remove stale audio patch with same input as sink if any for (auto& iter : mPatches) { if (iter.second.mAudioPatch.sinks[0].ext.mix.handle == thread->id()) { erasePatch(iter.first); break; } } } else { sp hwDevice = audioHwDevice->hwDevice(); status = hwDevice->createAudioPatch(patch->num_sources, patch->sources, patch->num_sinks, patch->sinks, &halHandle); if (status == INVALID_OPERATION) goto exit; } } } break; case AUDIO_PORT_TYPE_MIX: { audio_module_handle_t srcModule = patch->sources[0].ext.mix.hw_module; ssize_t index = mAfPatchPanelCallback->getAudioHwDevs_l().indexOfKey(srcModule); if (index < 0) { ALOGW("%s() bad src hw module %d", __func__, srcModule); status = BAD_VALUE; goto exit; } // limit to connections between devices and output streams DeviceDescriptorBaseVector devices; for (unsigned int i = 0; i < patch->num_sinks; i++) { if (patch->sinks[i].type != AUDIO_PORT_TYPE_DEVICE) { ALOGW("%s() invalid sink type %d for mix source", __func__, patch->sinks[i].type); status = BAD_VALUE; goto exit; } // limit to connections between sinks and sources on same HW module if (patch->sinks[i].ext.device.hw_module != srcModule) { status = BAD_VALUE; goto exit; } sp device = new DeviceDescriptorBase( patch->sinks[i].ext.device.type); device->setAddress(patch->sinks[i].ext.device.address); device->applyAudioPortConfig(&patch->sinks[i]); devices.push_back(device); } sp thread = mAfPatchPanelCallback->checkPlaybackThread_l( patch->sources[0].ext.mix.handle); if (thread == 0) { thread = mAfPatchPanelCallback->checkMmapThread_l( patch->sources[0].ext.mix.handle); if (thread == 0) { ALOGW("%s() bad playback I/O handle %d", __func__, patch->sources[0].ext.mix.handle); status = BAD_VALUE; goto exit; } } if (thread == mAfPatchPanelCallback->primaryPlaybackThread_l()) { mAfPatchPanelCallback->updateOutDevicesForRecordThreads_l(devices); } // For endpoint patches, we do not need to re-evaluate the device effect state // if the same HAL patch is reused (see calls to mAfPatchPanelCallback below) if (endpointPatch) { for (auto& p : mPatches) { // end point patches are skipped so we do not compare against this patch if (!p.second.mIsEndpointPatch && patchesHaveSameRoute( newPatch.mAudioPatch, p.second.mAudioPatch)) { ALOGV("%s() Sw Bridge endpoint reusing halHandle=%d", __func__, p.second.mHalHandle); halHandle = p.second.mHalHandle; reuseExistingHalPatch = true; break; } } } mAfPatchPanelCallback->mutex().unlock(); status = thread->sendCreateAudioPatchConfigEvent(patch, &halHandle); mAfPatchPanelCallback->mutex().lock(); if (status == NO_ERROR) { newPatch.setThread(thread); } // remove stale audio patch with same output as source if any // Prevent to remove endpoint patches (involved in a SwBridge) // Prevent to remove AudioPatch used to route an output involved in an endpoint. if (!endpointPatch) { for (auto& iter : mPatches) { if (iter.second.mAudioPatch.sources[0].ext.mix.handle == thread->id() && !iter.second.mIsEndpointPatch) { erasePatch(iter.first); break; } } } } break; default: status = BAD_VALUE; goto exit; } exit: ALOGV("%s() status %d", __func__, status); if (status == NO_ERROR) { *handle = static_cast( mAfPatchPanelCallback->nextUniqueId(AUDIO_UNIQUE_ID_USE_PATCH)); newPatch.mHalHandle = halHandle; // Skip device effect: // -for sw bridge as effect are likely held by endpoint patches // -for endpoint reusing a HalPatch handle if (!(newPatch.isSoftware() || (endpointPatch && reuseExistingHalPatch))) { if (reuseExistingHalPatch) { mAfPatchPanelCallback->getPatchCommandThread()->updateAudioPatch( oldhandle, *handle, newPatch); } else { mAfPatchPanelCallback->getPatchCommandThread()->createAudioPatch( *handle, newPatch); } } if (insertedModule != AUDIO_MODULE_HANDLE_NONE) { addSoftwarePatchToInsertedModules_l(insertedModule, *handle, &newPatch.mAudioPatch); } mPatches.insert(std::make_pair(*handle, std::move(newPatch))); } else { newPatch.clearConnections_l(this); } return status; } status_t PatchPanel::getAudioMixPort_l(const audio_port_v7 *devicePort, audio_port_v7 *mixPort) { if (devicePort->type != AUDIO_PORT_TYPE_DEVICE) { ALOGE("%s the type of given device port is not DEVICE", __func__); return INVALID_OPERATION; } if (mixPort->type != AUDIO_PORT_TYPE_MIX) { ALOGE("%s the type of given mix port is not MIX", __func__); return INVALID_OPERATION; } AudioHwDevice* hwDevice = findAudioHwDeviceByModule_l(devicePort->ext.device.hw_module); if (hwDevice == nullptr) { ALOGW("%s cannot find hw module %d", __func__, devicePort->ext.device.hw_module); return BAD_VALUE; } return hwDevice->getAudioMixPort(devicePort, mixPort); } PatchPanel::Patch::~Patch() { ALOGE_IF(isSoftware(), "Software patch connections leaked %d %d", mRecord.handle(), mPlayback.handle()); } status_t PatchPanel::Patch::createConnections_l(const sp& panel) { // create patch from source device to record thread input status_t status = panel->createAudioPatch_l( PatchBuilder().addSource(mAudioPatch.sources[0]). addSink(mRecord.thread(), { .source = AUDIO_SOURCE_MIC }).patch(), mRecord.handlePtr(), true /*endpointPatch*/); if (status != NO_ERROR) { *mRecord.handlePtr() = AUDIO_PATCH_HANDLE_NONE; return status; } // create patch from playback thread output to sink device if (mAudioPatch.num_sinks != 0) { status = panel->createAudioPatch_l( PatchBuilder().addSource(mPlayback.thread()).addSink(mAudioPatch.sinks[0]).patch(), mPlayback.handlePtr(), true /*endpointPatch*/); if (status != NO_ERROR) { *mPlayback.handlePtr() = AUDIO_PATCH_HANDLE_NONE; return status; } } else { *mPlayback.handlePtr() = AUDIO_PATCH_HANDLE_NONE; } // create a special record track to capture from record thread uint32_t channelCount = mPlayback.thread()->channelCount(); audio_channel_mask_t inChannelMask = audio_channel_in_mask_from_count(channelCount); audio_channel_mask_t outChannelMask = mPlayback.thread()->channelMask(); uint32_t sampleRate = mPlayback.thread()->sampleRate(); audio_format_t format = mPlayback.thread()->format(); audio_format_t inputFormat = mRecord.thread()->format(); if (!audio_is_linear_pcm(inputFormat)) { // The playbackThread format will say PCM for IEC61937 packetized stream. // Use recordThread format. format = inputFormat; } audio_input_flags_t inputFlags = mAudioPatch.sources[0].config_mask & AUDIO_PORT_CONFIG_FLAGS ? mAudioPatch.sources[0].flags.input : AUDIO_INPUT_FLAG_NONE; if (sampleRate == mRecord.thread()->sampleRate() && inChannelMask == mRecord.thread()->channelMask() && mRecord.thread()->fastTrackAvailable() && mRecord.thread()->hasFastCapture()) { // Create a fast track if the record thread has fast capture to get better performance. // Only enable fast mode when there is no resample needed. inputFlags = (audio_input_flags_t) (inputFlags | AUDIO_INPUT_FLAG_FAST); } else { // Fast mode is not available in this case. inputFlags = (audio_input_flags_t) (inputFlags & ~AUDIO_INPUT_FLAG_FAST); } audio_output_flags_t outputFlags = mAudioPatch.sinks[0].config_mask & AUDIO_PORT_CONFIG_FLAGS ? mAudioPatch.sinks[0].flags.output : AUDIO_OUTPUT_FLAG_NONE; audio_stream_type_t streamType = AUDIO_STREAM_PATCH; audio_source_t source = AUDIO_SOURCE_DEFAULT; if (mAudioPatch.num_sources == 2 && mAudioPatch.sources[1].type == AUDIO_PORT_TYPE_MIX) { // "reuse one existing output mix" case streamType = mAudioPatch.sources[1].ext.mix.usecase.stream; // For telephony patches, propagate voice communication use case to record side if (streamType == AUDIO_STREAM_VOICE_CALL) { source = AUDIO_SOURCE_VOICE_COMMUNICATION; } } if (mPlayback.thread()->hasFastMixer()) { // Create a fast track if the playback thread has fast mixer to get better performance. // Note: we should have matching channel mask, sample rate, and format by the logic above. outputFlags = (audio_output_flags_t) (outputFlags | AUDIO_OUTPUT_FLAG_FAST); } else { outputFlags = (audio_output_flags_t) (outputFlags & ~AUDIO_OUTPUT_FLAG_FAST); } sp tempRecordTrack; const bool usePassthruPatchRecord = (inputFlags & AUDIO_INPUT_FLAG_DIRECT) && (outputFlags & AUDIO_OUTPUT_FLAG_DIRECT); const size_t playbackFrameCount = mPlayback.thread()->frameCount(); const size_t recordFrameCount = mRecord.thread()->frameCount(); size_t frameCount = 0; if (usePassthruPatchRecord) { // PassthruPatchRecord producesBufferOnDemand, so use // maximum of playback and record thread framecounts frameCount = std::max(playbackFrameCount, recordFrameCount); ALOGV("%s() playframeCount %zu recordFrameCount %zu frameCount %zu", __func__, playbackFrameCount, recordFrameCount, frameCount); tempRecordTrack = IAfPatchRecord::createPassThru( mRecord.thread().get(), sampleRate, inChannelMask, format, frameCount, inputFlags, source); } else { // use a pseudo LCM between input and output framecount int playbackShift = __builtin_ctz(playbackFrameCount); int shift = __builtin_ctz(recordFrameCount); if (playbackShift < shift) { shift = playbackShift; } frameCount = (playbackFrameCount * recordFrameCount) >> shift; ALOGV("%s() playframeCount %zu recordFrameCount %zu frameCount %zu", __func__, playbackFrameCount, recordFrameCount, frameCount); tempRecordTrack = IAfPatchRecord::create( mRecord.thread().get(), sampleRate, inChannelMask, format, frameCount, nullptr, (size_t)0 /* bufferSize */, inputFlags, {} /* timeout */, source); } status = mRecord.checkTrack(tempRecordTrack.get()); if (status != NO_ERROR) { return status; } // create a special playback track to render to playback thread. // this track is given the same buffer as the PatchRecord buffer // Default behaviour is to start as soon as possible to have the lowest possible latency even if // it might glitch. // Disable this behavior for FM Tuner source if no fast capture/mixer available. const bool isFmBridge = mAudioPatch.sources[0].ext.device.type == AUDIO_DEVICE_IN_FM_TUNER; const size_t frameCountToBeReady = isFmBridge && !usePassthruPatchRecord ? frameCount / 4 : 1; sp tempPatchTrack = IAfPatchTrack::create( mPlayback.thread().get(), streamType, sampleRate, outChannelMask, format, frameCount, tempRecordTrack->buffer(), tempRecordTrack->bufferSize(), outputFlags, {} /*timeout*/, frameCountToBeReady, 1.0f); status = mPlayback.checkTrack(tempPatchTrack.get()); if (status != NO_ERROR) { return status; } // tie playback and record tracks together // In the case of PassthruPatchRecord no I/O activity happens on RecordThread, // everything is driven from PlaybackThread. Thus AudioBufferProvider methods // of PassthruPatchRecord can only be called if the corresponding PatchTrack // is alive. There is no need to hold a reference, and there is no need // to clear it. In fact, since playback stopping is asynchronous, there is // no proper time when clearing could be done. mRecord.setTrackAndPeer(tempRecordTrack, tempPatchTrack, !usePassthruPatchRecord); mPlayback.setTrackAndPeer(tempPatchTrack, tempRecordTrack, true /*holdReference*/); // start capture and playback mRecord.track()->start(AudioSystem::SYNC_EVENT_NONE, AUDIO_SESSION_NONE); mPlayback.track()->start(); return status; } void PatchPanel::Patch::clearConnections_l(const sp& panel) { ALOGV("%s() mRecord.handle %d mPlayback.handle %d", __func__, mRecord.handle(), mPlayback.handle()); mRecord.stopTrack(); mPlayback.stopTrack(); mRecord.clearTrackPeer(); // mRecord stop is synchronous. Break PeerProxy sp<> cycle. mRecord.closeConnections_l(panel); mPlayback.closeConnections_l(panel); } status_t PatchPanel::Patch::getLatencyMs(double* latencyMs) const { if (!isSoftware()) return INVALID_OPERATION; auto recordTrack = mRecord.const_track(); if (recordTrack.get() == nullptr) return INVALID_OPERATION; auto playbackTrack = mPlayback.const_track(); if (playbackTrack.get() == nullptr) return INVALID_OPERATION; // Latency information for tracks may be called without obtaining // the underlying thread lock. // // We use record server latency + playback track latency (generally smaller than the // reverse due to internal biases). // // TODO: is this stable enough? Consider a PatchTrack synchronized version of this. // For PCM tracks get server latency. if (audio_is_linear_pcm(recordTrack->format())) { double recordServerLatencyMs, playbackTrackLatencyMs; if (recordTrack->getServerLatencyMs(&recordServerLatencyMs) == OK && playbackTrack->getTrackLatencyMs(&playbackTrackLatencyMs) == OK) { *latencyMs = recordServerLatencyMs + playbackTrackLatencyMs; return OK; } } // See if kernel latencies are available. // If so, do a frame diff and time difference computation to estimate // the total patch latency. This requires that frame counts are reported by the // HAL are matched properly in the case of record overruns and playback underruns. IAfTrack::FrameTime recordFT{}, playFT{}; recordTrack->getKernelFrameTime(&recordFT); playbackTrack->getKernelFrameTime(&playFT); if (recordFT.timeNs > 0 && playFT.timeNs > 0) { const int64_t frameDiff = recordFT.frames - playFT.frames; const int64_t timeDiffNs = recordFT.timeNs - playFT.timeNs; // It is possible that the patch track and patch record have a large time disparity because // one thread runs but another is stopped. We arbitrarily choose the maximum timestamp // time difference based on how often we expect the timestamps to update in normal operation // (typical should be no more than 50 ms). // // If the timestamps aren't sampled close enough, the patch latency is not // considered valid. // // TODO: change this based on more experiments. constexpr int64_t maxValidTimeDiffNs = 200 * NANOS_PER_MILLISECOND; if (std::abs(timeDiffNs) < maxValidTimeDiffNs) { *latencyMs = frameDiff * 1e3 / recordTrack->sampleRate() - timeDiffNs * 1e-6; return OK; } } return INVALID_OPERATION; } String8 PatchPanel::Patch::dump(audio_patch_handle_t myHandle) const { // TODO: Consider table dump form for patches, just like tracks. String8 result = String8::format("Patch %d: %s (thread %p => thread %p)", myHandle, isSoftware() ? "Software bridge between" : "No software bridge", mRecord.const_thread().get(), mPlayback.const_thread().get()); bool hasSinkDevice = mAudioPatch.num_sinks > 0 && mAudioPatch.sinks[0].type == AUDIO_PORT_TYPE_DEVICE; bool hasSourceDevice = mAudioPatch.num_sources > 0 && mAudioPatch.sources[0].type == AUDIO_PORT_TYPE_DEVICE; result.appendFormat(" thread %p %s (%d) first device type %08x", mThread.unsafe_get(), hasSinkDevice ? "num sinks" : (hasSourceDevice ? "num sources" : "no devices"), hasSinkDevice ? mAudioPatch.num_sinks : (hasSourceDevice ? mAudioPatch.num_sources : 0), hasSinkDevice ? mAudioPatch.sinks[0].ext.device.type : (hasSourceDevice ? mAudioPatch.sources[0].ext.device.type : 0)); // add latency if it exists double latencyMs; if (getLatencyMs(&latencyMs) == OK) { result.appendFormat(" latency: %.2lf ms", latencyMs); } return result; } /* Disconnect a patch */ status_t PatchPanel::releaseAudioPatch_l(audio_patch_handle_t handle) //unlocks AudioFlinger::mLock when calling IAfThreadBase::sendReleaseAudioPatchConfigEvent //to avoid deadlocks if the thread loop needs to acquire AudioFlinger::mLock //before processing the release patch request. NO_THREAD_SAFETY_ANALYSIS { ALOGV("%s handle %d", __func__, handle); status_t status = NO_ERROR; bool doReleasePatch = true; auto iter = mPatches.find(handle); if (iter == mPatches.end()) { return BAD_VALUE; } Patch &removedPatch = iter->second; const bool isSwBridge = removedPatch.isSoftware(); const struct audio_patch &patch = removedPatch.mAudioPatch; const struct audio_port_config &src = patch.sources[0]; switch (src.type) { case AUDIO_PORT_TYPE_DEVICE: { sp hwDevice = findHwDeviceByModule_l(src.ext.device.hw_module); if (hwDevice == 0) { ALOGW("%s() bad src hw module %d", __func__, src.ext.device.hw_module); status = BAD_VALUE; break; } if (removedPatch.isSoftware()) { removedPatch.clearConnections_l(this); break; } if (patch.sinks[0].type == AUDIO_PORT_TYPE_MIX) { audio_io_handle_t ioHandle = patch.sinks[0].ext.mix.handle; sp thread = mAfPatchPanelCallback->checkRecordThread_l(ioHandle); if (thread == 0) { thread = mAfPatchPanelCallback->checkMmapThread_l(ioHandle); if (thread == 0) { ALOGW("%s() bad capture I/O handle %d", __func__, ioHandle); status = BAD_VALUE; break; } } mAfPatchPanelCallback->mutex().unlock(); status = thread->sendReleaseAudioPatchConfigEvent(removedPatch.mHalHandle); mAfPatchPanelCallback->mutex().lock(); } else { status = hwDevice->releaseAudioPatch(removedPatch.mHalHandle); } } break; case AUDIO_PORT_TYPE_MIX: { if (findHwDeviceByModule_l(src.ext.mix.hw_module) == 0) { ALOGW("%s() bad src hw module %d", __func__, src.ext.mix.hw_module); status = BAD_VALUE; break; } audio_io_handle_t ioHandle = src.ext.mix.handle; sp thread = mAfPatchPanelCallback->checkPlaybackThread_l(ioHandle); if (thread == 0) { thread = mAfPatchPanelCallback->checkMmapThread_l(ioHandle); if (thread == 0) { ALOGW("%s() bad playback I/O handle %d", __func__, ioHandle); status = BAD_VALUE; break; } } // Check whether the removed patch Hal Handle is used in another non-Endpoint patch. // Since this is a non-Endpoint patch, the removed patch is not considered (it is // removed later from mPatches). if (removedPatch.mIsEndpointPatch) { for (auto& p: mPatches) { if (!p.second.mIsEndpointPatch && p.second.mHalHandle == removedPatch.mHalHandle) { ALOGV("%s() Sw Bridge endpoint used existing halHandle=%d, do not release", __func__, p.second.mHalHandle); doReleasePatch = false; break; } } } if (doReleasePatch) { mAfPatchPanelCallback->mutex().unlock(); status = thread->sendReleaseAudioPatchConfigEvent(removedPatch.mHalHandle); mAfPatchPanelCallback->mutex().lock(); } } break; default: status = BAD_VALUE; } erasePatch(handle, /* reuseExistingHalPatch= */ !doReleasePatch || isSwBridge); return status; } void PatchPanel::erasePatch(audio_patch_handle_t handle, bool reuseExistingHalPatch) { mPatches.erase(handle); removeSoftwarePatchFromInsertedModules(handle); if (!reuseExistingHalPatch) { mAfPatchPanelCallback->getPatchCommandThread()->releaseAudioPatch(handle); } } /* List connected audio ports and they attributes */ status_t PatchPanel::listAudioPatches_l(unsigned int* /* num_patches */, struct audio_patch *patches __unused) { ALOGV(__func__); return NO_ERROR; } status_t PatchPanel::getDownstreamSoftwarePatches( audio_io_handle_t stream, std::vector* patches) const { for (const auto& module : mInsertedModules) { if (module.second.streams.count(stream)) { for (const auto& patchHandle : module.second.sw_patches) { const auto& patch_iter = mPatches.find(patchHandle); if (patch_iter != mPatches.end()) { const Patch &patch = patch_iter->second; patches->emplace_back(sp::fromExisting(this), patchHandle, patch.mPlayback.const_thread()->id(), patch.mRecord.const_thread()->id()); } else { ALOGE("Stale patch handle in the cache: %d", patchHandle); } } return OK; } } // The stream is not associated with any of inserted modules. return BAD_VALUE; } void PatchPanel::notifyStreamOpened( AudioHwDevice *audioHwDevice, audio_io_handle_t stream, struct audio_patch *patch) { if (audioHwDevice->isInsert()) { mInsertedModules[audioHwDevice->handle()].streams.insert(stream); if (patch != nullptr) { std::vector swPatches; getDownstreamSoftwarePatches(stream, &swPatches); if (swPatches.size() > 0) { auto iter = mPatches.find(swPatches[0].getPatchHandle()); if (iter != mPatches.end()) { *patch = iter->second.mAudioPatch; } } } } } void PatchPanel::notifyStreamClosed(audio_io_handle_t stream) { for (auto& module : mInsertedModules) { module.second.streams.erase(stream); } } AudioHwDevice* PatchPanel::findAudioHwDeviceByModule_l(audio_module_handle_t module) { if (module == AUDIO_MODULE_HANDLE_NONE) return nullptr; ssize_t index = mAfPatchPanelCallback->getAudioHwDevs_l().indexOfKey(module); if (index < 0) { ALOGW("%s() bad hw module %d", __func__, module); return nullptr; } return mAfPatchPanelCallback->getAudioHwDevs_l().valueAt(index); } sp PatchPanel::findHwDeviceByModule_l(audio_module_handle_t module) { AudioHwDevice *audioHwDevice = findAudioHwDeviceByModule_l(module); return audioHwDevice ? audioHwDevice->hwDevice() : nullptr; } void PatchPanel::addSoftwarePatchToInsertedModules_l( audio_module_handle_t module, audio_patch_handle_t handle, const struct audio_patch *patch) { mInsertedModules[module].sw_patches.insert(handle); if (!mInsertedModules[module].streams.empty()) { mAfPatchPanelCallback->updateDownStreamPatches_l(patch, mInsertedModules[module].streams); } } void PatchPanel::removeSoftwarePatchFromInsertedModules( audio_patch_handle_t handle) { for (auto& module : mInsertedModules) { module.second.sw_patches.erase(handle); } } void PatchPanel::dump(int fd) const { String8 patchPanelDump; const char *indent = " "; bool headerPrinted = false; for (const auto& iter : mPatches) { if (!headerPrinted) { patchPanelDump += "\nPatches:\n"; headerPrinted = true; } patchPanelDump.appendFormat("%s%s\n", indent, iter.second.dump(iter.first).c_str()); } headerPrinted = false; for (const auto& module : mInsertedModules) { if (!module.second.streams.empty() || !module.second.sw_patches.empty()) { if (!headerPrinted) { patchPanelDump += "\nTracked inserted modules:\n"; headerPrinted = true; } String8 moduleDump = String8::format("Module %d: I/O handles: ", module.first); for (const auto& stream : module.second.streams) { moduleDump.appendFormat("%d ", stream); } moduleDump.append("; SW Patches: "); for (const auto& patch : module.second.sw_patches) { moduleDump.appendFormat("%d ", patch); } patchPanelDump.appendFormat("%s%s\n", indent, moduleDump.c_str()); } } if (!patchPanelDump.empty()) { write(fd, patchPanelDump.c_str(), patchPanelDump.size()); } } } // namespace android