/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.hardware; import java.util.Calendar; import java.util.TimeZone; /** * Estimates magnetic field at a given point on * Earth, and in particular, to compute the magnetic declination from true * north. * *
This uses the World Magnetic Model produced by the United States National * Geospatial-Intelligence Agency. More details about the model can be found at * http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml. * This class currently uses WMM-2020 which is valid until 2025, but should * produce acceptable results for several years after that. Future versions of * Android may use a newer version of the model. */ public class GeomagneticField { // The magnetic field at a given point, in nanoteslas in geodetic // coordinates. private float mX; private float mY; private float mZ; // Geocentric coordinates -- set by computeGeocentricCoordinates. private float mGcLatitudeRad; private float mGcLongitudeRad; private float mGcRadiusKm; // Constants from WGS84 (the coordinate system used by GPS) static private final float EARTH_SEMI_MAJOR_AXIS_KM = 6378.137f; static private final float EARTH_SEMI_MINOR_AXIS_KM = 6356.7523142f; static private final float EARTH_REFERENCE_RADIUS_KM = 6371.2f; // These coefficients and the formulae used below are from: // NOAA Technical Report: The US/UK World Magnetic Model for 2020-2025 static private final float[][] G_COEFF = new float[][]{ {0.0f}, {-29404.5f, -1450.7f}, {-2500.0f, 2982.0f, 1676.8f}, {1363.9f, -2381.0f, 1236.2f, 525.7f}, {903.1f, 809.4f, 86.2f, -309.4f, 47.9f}, {-234.4f, 363.1f, 187.8f, -140.7f, -151.2f, 13.7f}, {65.9f, 65.6f, 73.0f, -121.5f, -36.2f, 13.5f, -64.7f}, {80.6f, -76.8f, -8.3f, 56.5f, 15.8f, 6.4f, -7.2f, 9.8f}, {23.6f, 9.8f, -17.5f, -0.4f, -21.1f, 15.3f, 13.7f, -16.5f, -0.3f}, {5.0f, 8.2f, 2.9f, -1.4f, -1.1f, -13.3f, 1.1f, 8.9f, -9.3f, -11.9f}, {-1.9f, -6.2f, -0.1f, 1.7f, -0.9f, 0.6f, -0.9f, 1.9f, 1.4f, -2.4f, -3.9f}, {3.0f, -1.4f, -2.5f, 2.4f, -0.9f, 0.3f, -0.7f, -0.1f, 1.4f, -0.6f, 0.2f, 3.1f}, {-2.0f, -0.1f, 0.5f, 1.3f, -1.2f, 0.7f, 0.3f, 0.5f, -0.2f, -0.5f, 0.1f, -1.1f, -0.3f}}; static private final float[][] H_COEFF = new float[][]{ {0.0f}, {0.0f, 4652.9f}, {0.0f, -2991.6f, -734.8f}, {0.0f, -82.2f, 241.8f, -542.9f}, {0.0f, 282.0f, -158.4f, 199.8f, -350.1f}, {0.0f, 47.7f, 208.4f, -121.3f, 32.2f, 99.1f}, {0.0f, -19.1f, 25.0f, 52.7f, -64.4f, 9.0f, 68.1f}, {0.0f, -51.4f, -16.8f, 2.3f, 23.5f, -2.2f, -27.2f, -1.9f}, {0.0f, 8.4f, -15.3f, 12.8f, -11.8f, 14.9f, 3.6f, -6.9f, 2.8f}, {0.0f, -23.3f, 11.1f, 9.8f, -5.1f, -6.2f, 7.8f, 0.4f, -1.5f, 9.7f}, {0.0f, 3.4f, -0.2f, 3.5f, 4.8f, -8.6f, -0.1f, -4.2f, -3.4f, -0.1f, -8.8f}, {0.0f, 0.0f, 2.6f, -0.5f, -0.4f, 0.6f, -0.2f, -1.7f, -1.6f, -3.0f, -2.0f, -2.6f}, {0.0f, -1.2f, 0.5f, 1.3f, -1.8f, 0.1f, 0.7f, -0.1f, 0.6f, 0.2f, -0.9f, 0.0f, 0.5f}}; static private final float[][] DELTA_G = new float[][]{ {0.0f}, {6.7f, 7.7f}, {-11.5f, -7.1f, -2.2f}, {2.8f, -6.2f, 3.4f, -12.2f}, {-1.1f, -1.6f, -6.0f, 5.4f, -5.5f}, {-0.3f, 0.6f, -0.7f, 0.1f, 1.2f, 1.0f}, {-0.6f, -0.4f, 0.5f, 1.4f, -1.4f, 0.0f, 0.8f}, {-0.1f, -0.3f, -0.1f, 0.7f, 0.2f, -0.5f, -0.8f, 1.0f}, {-0.1f, 0.1f, -0.1f, 0.5f, -0.1f, 0.4f, 0.5f, 0.0f, 0.4f}, {-0.1f, -0.2f, 0.0f, 0.4f, -0.3f, 0.0f, 0.3f, 0.0f, 0.0f, -0.4f}, {0.0f, 0.0f, 0.0f, 0.2f, -0.1f, -0.2f, 0.0f, -0.1f, -0.2f, -0.1f, 0.0f}, {0.0f, -0.1f, 0.0f, 0.0f, 0.0f, -0.1f, 0.0f, 0.0f, -0.1f, -0.1f, -0.1f, -0.1f}, {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.1f}}; static private final float[][] DELTA_H = new float[][]{ {0.0f}, {0.0f, -25.1f}, {0.0f, -30.2f, -23.9f}, {0.0f, 5.7f, -1.0f, 1.1f}, {0.0f, 0.2f, 6.9f, 3.7f, -5.6f}, {0.0f, 0.1f, 2.5f, -0.9f, 3.0f, 0.5f}, {0.0f, 0.1f, -1.8f, -1.4f, 0.9f, 0.1f, 1.0f}, {0.0f, 0.5f, 0.6f, -0.7f, -0.2f, -1.2f, 0.2f, 0.3f}, {0.0f, -0.3f, 0.7f, -0.2f, 0.5f, -0.3f, -0.5f, 0.4f, 0.1f}, {0.0f, -0.3f, 0.2f, -0.4f, 0.4f, 0.1f, 0.0f, -0.2f, 0.5f, 0.2f}, {0.0f, 0.0f, 0.1f, -0.3f, 0.1f, -0.2f, 0.1f, 0.0f, -0.1f, 0.2f, 0.0f}, {0.0f, 0.0f, 0.1f, 0.0f, 0.2f, 0.0f, 0.0f, 0.1f, 0.0f, -0.1f, 0.0f, 0.0f}, {0.0f, 0.0f, 0.0f, -0.1f, 0.1f, 0.0f, 0.0f, 0.0f, 0.1f, 0.0f, 0.0f, 0.0f, -0.1f}}; static private final long BASE_TIME = new Calendar.Builder() .setTimeZone(TimeZone.getTimeZone("UTC")) .setDate(2020, Calendar.JANUARY, 1) .build() .getTimeInMillis(); // The ratio between the Gauss-normalized associated Legendre functions and // the Schmid quasi-normalized ones. Compute these once staticly since they // don't depend on input variables at all. static private final float[][] SCHMIDT_QUASI_NORM_FACTORS = computeSchmidtQuasiNormFactors(G_COEFF.length); /** * Estimate the magnetic field at a given point and time. * * @param gdLatitudeDeg * Latitude in WGS84 geodetic coordinates -- positive is east. * @param gdLongitudeDeg * Longitude in WGS84 geodetic coordinates -- positive is north. * @param altitudeMeters * Altitude in WGS84 geodetic coordinates, in meters. * @param timeMillis * Time at which to evaluate the declination, in milliseconds * since January 1, 1970. (approximate is fine -- the declination * changes very slowly). */ public GeomagneticField(float gdLatitudeDeg, float gdLongitudeDeg, float altitudeMeters, long timeMillis) { final int MAX_N = G_COEFF.length; // Maximum degree of the coefficients. // We don't handle the north and south poles correctly -- pretend that // we're not quite at them to avoid crashing. gdLatitudeDeg = Math.min(90.0f - 1e-5f, Math.max(-90.0f + 1e-5f, gdLatitudeDeg)); computeGeocentricCoordinates(gdLatitudeDeg, gdLongitudeDeg, altitudeMeters); assert G_COEFF.length == H_COEFF.length; // Note: LegendreTable computes associated Legendre functions for // cos(theta). We want the associated Legendre functions for // sin(latitude), which is the same as cos(PI/2 - latitude), except the // derivate will be negated. LegendreTable legendre = new LegendreTable(MAX_N - 1, (float) (Math.PI / 2.0 - mGcLatitudeRad)); // Compute a table of (EARTH_REFERENCE_RADIUS_KM / radius)^n for i in // 0..MAX_N-2 (this is much faster than calling Math.pow MAX_N+1 times). float[] relativeRadiusPower = new float[MAX_N + 2]; relativeRadiusPower[0] = 1.0f; relativeRadiusPower[1] = EARTH_REFERENCE_RADIUS_KM / mGcRadiusKm; for (int i = 2; i < relativeRadiusPower.length; ++i) { relativeRadiusPower[i] = relativeRadiusPower[i - 1] * relativeRadiusPower[1]; } // Compute tables of sin(lon * m) and cos(lon * m) for m = 0..MAX_N -- // this is much faster than calling Math.sin and Math.com MAX_N+1 times. float[] sinMLon = new float[MAX_N]; float[] cosMLon = new float[MAX_N]; sinMLon[0] = 0.0f; cosMLon[0] = 1.0f; sinMLon[1] = (float) Math.sin(mGcLongitudeRad); cosMLon[1] = (float) Math.cos(mGcLongitudeRad); for (int m = 2; m < MAX_N; ++m) { // Standard expansions for sin((m-x)*theta + x*theta) and // cos((m-x)*theta + x*theta). int x = m >> 1; sinMLon[m] = sinMLon[m-x] * cosMLon[x] + cosMLon[m-x] * sinMLon[x]; cosMLon[m] = cosMLon[m-x] * cosMLon[x] - sinMLon[m-x] * sinMLon[x]; } float inverseCosLatitude = 1.0f / (float) Math.cos(mGcLatitudeRad); float yearsSinceBase = (timeMillis - BASE_TIME) / (365f * 24f * 60f * 60f * 1000f); // We now compute the magnetic field strength given the geocentric // location. The magnetic field is the derivative of the potential // function defined by the model. See NOAA Technical Report: The US/UK // World Magnetic Model for 2020-2025 for the derivation. float gcX = 0.0f; // Geocentric northwards component. float gcY = 0.0f; // Geocentric eastwards component. float gcZ = 0.0f; // Geocentric downwards component. for (int n = 1; n < MAX_N; n++) { for (int m = 0; m <= n; m++) { // Adjust the coefficients for the current date. float g = G_COEFF[n][m] + yearsSinceBase * DELTA_G[n][m]; float h = H_COEFF[n][m] + yearsSinceBase * DELTA_H[n][m]; // Negative derivative with respect to latitude, divided by // radius. This looks like the negation of the version in the // NOAA Technical report because that report used // P_n^m(sin(theta)) and we use P_n^m(cos(90 - theta)), so the // derivative with respect to theta is negated. gcX += relativeRadiusPower[n+2] * (g * cosMLon[m] + h * sinMLon[m]) * legendre.mPDeriv[n][m] * SCHMIDT_QUASI_NORM_FACTORS[n][m]; // Negative derivative with respect to longitude, divided by // radius. gcY += relativeRadiusPower[n+2] * m * (g * sinMLon[m] - h * cosMLon[m]) * legendre.mP[n][m] * SCHMIDT_QUASI_NORM_FACTORS[n][m] * inverseCosLatitude; // Negative derivative with respect to radius. gcZ -= (n + 1) * relativeRadiusPower[n+2] * (g * cosMLon[m] + h * sinMLon[m]) * legendre.mP[n][m] * SCHMIDT_QUASI_NORM_FACTORS[n][m]; } } // Convert back to geodetic coordinates. This is basically just a // rotation around the Y-axis by the difference in latitudes between the // geocentric frame and the geodetic frame. double latDiffRad = Math.toRadians(gdLatitudeDeg) - mGcLatitudeRad; mX = (float) (gcX * Math.cos(latDiffRad) + gcZ * Math.sin(latDiffRad)); mY = gcY; mZ = (float) (- gcX * Math.sin(latDiffRad) + gcZ * Math.cos(latDiffRad)); } /** * @return The X (northward) component of the magnetic field in nanoteslas. */ public float getX() { return mX; } /** * @return The Y (eastward) component of the magnetic field in nanoteslas. */ public float getY() { return mY; } /** * @return The Z (downward) component of the magnetic field in nanoteslas. */ public float getZ() { return mZ; } /** * @return The declination of the horizontal component of the magnetic * field from true north, in degrees (i.e. positive means the * magnetic field is rotated east that much from true north). */ public float getDeclination() { return (float) Math.toDegrees(Math.atan2(mY, mX)); } /** * @return The inclination of the magnetic field in degrees -- positive * means the magnetic field is rotated downwards. */ public float getInclination() { return (float) Math.toDegrees(Math.atan2(mZ, getHorizontalStrength())); } /** * @return Horizontal component of the field strength in nanoteslas. */ public float getHorizontalStrength() { return (float) Math.hypot(mX, mY); } /** * @return Total field strength in nanoteslas. */ public float getFieldStrength() { return (float) Math.sqrt(mX * mX + mY * mY + mZ * mZ); } /** * @param gdLatitudeDeg * Latitude in WGS84 geodetic coordinates. * @param gdLongitudeDeg * Longitude in WGS84 geodetic coordinates. * @param altitudeMeters * Altitude above sea level in WGS84 geodetic coordinates. * @return Geocentric latitude (i.e. angle between closest point on the * equator and this point, at the center of the earth. */ private void computeGeocentricCoordinates(float gdLatitudeDeg, float gdLongitudeDeg, float altitudeMeters) { float altitudeKm = altitudeMeters / 1000.0f; float a2 = EARTH_SEMI_MAJOR_AXIS_KM * EARTH_SEMI_MAJOR_AXIS_KM; float b2 = EARTH_SEMI_MINOR_AXIS_KM * EARTH_SEMI_MINOR_AXIS_KM; double gdLatRad = Math.toRadians(gdLatitudeDeg); float clat = (float) Math.cos(gdLatRad); float slat = (float) Math.sin(gdLatRad); float tlat = slat / clat; float latRad = (float) Math.sqrt(a2 * clat * clat + b2 * slat * slat); mGcLatitudeRad = (float) Math.atan(tlat * (latRad * altitudeKm + b2) / (latRad * altitudeKm + a2)); mGcLongitudeRad = (float) Math.toRadians(gdLongitudeDeg); float radSq = altitudeKm * altitudeKm + 2 * altitudeKm * (float) Math.sqrt(a2 * clat * clat + b2 * slat * slat) + (a2 * a2 * clat * clat + b2 * b2 * slat * slat) / (a2 * clat * clat + b2 * slat * slat); mGcRadiusKm = (float) Math.sqrt(radSq); } /** * Utility class to compute a table of Gauss-normalized associated Legendre * functions P_n^m(cos(theta)) */ static private class LegendreTable { // These are the Gauss-normalized associated Legendre functions -- that // is, they are normal Legendre functions multiplied by // (n-m)!/(2n-1)!! (where (2n-1)!! = 1*3*5*...*2n-1) public final float[][] mP; // Derivative of mP, with respect to theta. public final float[][] mPDeriv; /** * @param maxN * The maximum n- and m-values to support * @param thetaRad * Returned functions will be Gauss-normalized * P_n^m(cos(thetaRad)), with thetaRad in radians. */ public LegendreTable(int maxN, float thetaRad) { // Compute the table of Gauss-normalized associated Legendre // functions using standard recursion relations. Also compute the // table of derivatives using the derivative of the recursion // relations. float cos = (float) Math.cos(thetaRad); float sin = (float) Math.sin(thetaRad); mP = new float[maxN + 1][]; mPDeriv = new float[maxN + 1][]; mP[0] = new float[] { 1.0f }; mPDeriv[0] = new float[] { 0.0f }; for (int n = 1; n <= maxN; n++) { mP[n] = new float[n + 1]; mPDeriv[n] = new float[n + 1]; for (int m = 0; m <= n; m++) { if (n == m) { mP[n][m] = sin * mP[n - 1][m - 1]; mPDeriv[n][m] = cos * mP[n - 1][m - 1] + sin * mPDeriv[n - 1][m - 1]; } else if (n == 1 || m == n - 1) { mP[n][m] = cos * mP[n - 1][m]; mPDeriv[n][m] = -sin * mP[n - 1][m] + cos * mPDeriv[n - 1][m]; } else { assert n > 1 && m < n - 1; float k = ((n - 1) * (n - 1) - m * m) / (float) ((2 * n - 1) * (2 * n - 3)); mP[n][m] = cos * mP[n - 1][m] - k * mP[n - 2][m]; mPDeriv[n][m] = -sin * mP[n - 1][m] + cos * mPDeriv[n - 1][m] - k * mPDeriv[n - 2][m]; } } } } } /** * Compute the ration between the Gauss-normalized associated Legendre * functions and the Schmidt quasi-normalized version. This is equivalent to * sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! */ private static float[][] computeSchmidtQuasiNormFactors(int maxN) { float[][] schmidtQuasiNorm = new float[maxN + 1][]; schmidtQuasiNorm[0] = new float[] { 1.0f }; for (int n = 1; n <= maxN; n++) { schmidtQuasiNorm[n] = new float[n + 1]; schmidtQuasiNorm[n][0] = schmidtQuasiNorm[n - 1][0] * (2 * n - 1) / (float) n; for (int m = 1; m <= n; m++) { schmidtQuasiNorm[n][m] = schmidtQuasiNorm[n][m - 1] * (float) Math.sqrt((n - m + 1) * (m == 1 ? 2 : 1) / (float) (n + m)); } } return schmidtQuasiNorm; } }