/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.util; import android.compat.annotation.UnsupportedAppUsage; import android.graphics.Rect; /** * A class that contains utility methods related to numbers. * * @hide Pending API council approval */ @android.ravenwood.annotation.RavenwoodKeepWholeClass public final class MathUtils { private static final float DEG_TO_RAD = 3.1415926f / 180.0f; private static final float RAD_TO_DEG = 180.0f / 3.1415926f; private MathUtils() { } @UnsupportedAppUsage public static float abs(float v) { return v > 0 ? v : -v; } @UnsupportedAppUsage public static int constrain(int amount, int low, int high) { return amount < low ? low : (amount > high ? high : amount); } public static long constrain(long amount, long low, long high) { return amount < low ? low : (amount > high ? high : amount); } @UnsupportedAppUsage public static float constrain(float amount, float low, float high) { return amount < low ? low : (amount > high ? high : amount); } public static float log(float a) { return (float) Math.log(a); } public static float exp(float a) { return (float) Math.exp(a); } public static float pow(float a, float b) { return (float) Math.pow(a, b); } public static float sqrt(float a) { return (float) Math.sqrt(a); } public static float max(float a, float b) { return a > b ? a : b; } @UnsupportedAppUsage public static float max(int a, int b) { return a > b ? a : b; } public static float max(float a, float b, float c) { return a > b ? (a > c ? a : c) : (b > c ? b : c); } public static float max(int a, int b, int c) { return a > b ? (a > c ? a : c) : (b > c ? b : c); } public static float min(float a, float b) { return a < b ? a : b; } public static float min(int a, int b) { return a < b ? a : b; } public static float min(float a, float b, float c) { return a < b ? (a < c ? a : c) : (b < c ? b : c); } public static float min(int a, int b, int c) { return a < b ? (a < c ? a : c) : (b < c ? b : c); } public static float dist(float x1, float y1, float x2, float y2) { final float x = (x2 - x1); final float y = (y2 - y1); return (float) Math.hypot(x, y); } public static float dist(float x1, float y1, float z1, float x2, float y2, float z2) { final float x = (x2 - x1); final float y = (y2 - y1); final float z = (z2 - z1); return (float) Math.sqrt(x * x + y * y + z * z); } public static float mag(float a, float b) { return (float) Math.hypot(a, b); } public static float mag(float a, float b, float c) { return (float) Math.sqrt(a * a + b * b + c * c); } public static float sq(float v) { return v * v; } public static float dot(float v1x, float v1y, float v2x, float v2y) { return v1x * v2x + v1y * v2y; } public static float cross(float v1x, float v1y, float v2x, float v2y) { return v1x * v2y - v1y * v2x; } public static float radians(float degrees) { return degrees * DEG_TO_RAD; } public static float degrees(float radians) { return radians * RAD_TO_DEG; } public static float acos(float value) { return (float) Math.acos(value); } public static float asin(float value) { return (float) Math.asin(value); } public static float atan(float value) { return (float) Math.atan(value); } public static float atan2(float a, float b) { return (float) Math.atan2(a, b); } public static float tan(float angle) { return (float) Math.tan(angle); } @UnsupportedAppUsage public static float lerp(float start, float stop, float amount) { return start + (stop - start) * amount; } public static float lerp(int start, int stop, float amount) { return lerp((float) start, (float) stop, amount); } /** * Returns the interpolation scalar (s) that satisfies the equation: {@code value = }{@link * #lerp}{@code (a, b, s)} * *
If {@code a == b}, then this function will return 0. */ public static float lerpInv(float a, float b, float value) { return a != b ? ((value - a) / (b - a)) : 0.0f; } /** Returns the single argument constrained between [0.0, 1.0]. */ public static float saturate(float value) { return constrain(value, 0.0f, 1.0f); } /** Returns the saturated (constrained between [0, 1]) result of {@link #lerpInv}. */ public static float lerpInvSat(float a, float b, float value) { return saturate(lerpInv(a, b, value)); } /** * Returns an interpolated angle in degrees between a set of start and end * angles. *
* Unlike {@link #lerp(float, float, float)}, the direction and distance of * travel is determined by the shortest angle between the start and end * angles. For example, if the starting angle is 0 and the ending angle is * 350, then the interpolated angle will be in the range [0,-10] rather * than [0,350]. * * @param start the starting angle in degrees * @param end the ending angle in degrees * @param amount the position between start and end in the range [0,1] * where 0 is the starting angle and 1 is the ending angle * @return the interpolated angle in degrees */ public static float lerpDeg(float start, float end, float amount) { final float minAngle = (((end - start) + 180) % 360) - 180; return minAngle * amount + start; } public static float norm(float start, float stop, float value) { return (value - start) / (stop - start); } public static float map(float minStart, float minStop, float maxStart, float maxStop, float value) { return maxStart + (maxStop - maxStart) * ((value - minStart) / (minStop - minStart)); } /** * Calculates a value in [rangeMin, rangeMax] that maps value in [valueMin, valueMax] to * returnVal in [rangeMin, rangeMax]. *
* Always returns a constrained value in the range [rangeMin, rangeMax], even if value is * outside [valueMin, valueMax]. *
* Eg: * constrainedMap(0f, 100f, 0f, 1f, 0.5f) = 50f * constrainedMap(20f, 200f, 10f, 20f, 20f) = 200f * constrainedMap(20f, 200f, 10f, 20f, 50f) = 200f * constrainedMap(10f, 50f, 10f, 20f, 5f) = 10f * * @param rangeMin minimum of the range that should be returned. * @param rangeMax maximum of the range that should be returned. * @param valueMin minimum of range to map {@code value} to. * @param valueMax maximum of range to map {@code value} to. * @param value to map to the range [{@code valueMin}, {@code valueMax}]. Note, can be outside * this range, resulting in a clamped value. * @return the mapped value, constrained to [{@code rangeMin}, {@code rangeMax}. */ public static float constrainedMap( float rangeMin, float rangeMax, float valueMin, float valueMax, float value) { return lerp(rangeMin, rangeMax, lerpInvSat(valueMin, valueMax, value)); } /** * Perform Hermite interpolation between two values. * Eg: * smoothStep(0, 0.5f, 0.5f) = 1f * smoothStep(0, 0.5f, 0.25f) = 0.5f * * @param start Left edge. * @param end Right edge. * @param x A value between {@code start} and {@code end}. * @return A number between 0 and 1 representing where {@code x} is in the interpolation. */ public static float smoothStep(float start, float end, float x) { return constrain((x - start) / (end - start), 0f, 1f); } /** * Returns the sum of the two parameters, or throws an exception if the resulting sum would * cause an overflow or underflow. * @throws IllegalArgumentException when overflow or underflow would occur. */ public static int addOrThrow(int a, int b) throws IllegalArgumentException { if (b == 0) { return a; } if (b > 0 && a <= (Integer.MAX_VALUE - b)) { return a + b; } if (b < 0 && a >= (Integer.MIN_VALUE - b)) { return a + b; } throw new IllegalArgumentException("Addition overflow: " + a + " + " + b); } /** * Resize a {@link Rect} so one size would be {@param largestSide}. * * @param outToResize Rectangle that will be resized. * @param largestSide Size of the largest side. */ public static void fitRect(Rect outToResize, int largestSide) { if (outToResize.isEmpty()) { return; } float maxSize = Math.max(outToResize.width(), outToResize.height()); outToResize.scale(largestSide / maxSize); } }