/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ResourceValues.h" #include #include #include #include #include #include "android-base/stringprintf.h" #include "androidfw/ResourceTypes.h" #include "Resource.h" #include "ResourceUtils.h" #include "ValueVisitor.h" #include "util/Util.h" using ::aapt::text::Printer; using ::android::StringPiece; using ::android::base::StringPrintf; namespace aapt { void Value::PrettyPrint(Printer* printer) const { std::ostringstream str_stream; Print(&str_stream); printer->Print(str_stream.str()); } std::ostream& operator<<(std::ostream& out, const Value& value) { value.Print(&out); return out; } std::unique_ptr Value::Transform(ValueTransformer& transformer) const { return std::unique_ptr(this->TransformValueImpl(transformer)); } std::unique_ptr Item::Transform(ValueTransformer& transformer) const { return std::unique_ptr(this->TransformItemImpl(transformer)); } template void BaseValue::Accept(ValueVisitor* visitor) { visitor->Visit(static_cast(this)); } template void BaseValue::Accept(ConstValueVisitor* visitor) const { visitor->Visit(static_cast(this)); } template void BaseItem::Accept(ValueVisitor* visitor) { visitor->Visit(static_cast(this)); } template void BaseItem::Accept(ConstValueVisitor* visitor) const { visitor->Visit(static_cast(this)); } RawString::RawString(const android::StringPool::Ref& ref) : value(ref) { } bool RawString::Equals(const Value* value) const { const RawString* other = ValueCast(value); if (!other) { return false; } return *this->value == *other->value; } bool RawString::Flatten(android::Res_value* out_value) const { out_value->dataType = android::Res_value::TYPE_STRING; out_value->data = android::util::HostToDevice32(static_cast(value.index())); return true; } void RawString::Print(std::ostream* out) const { *out << "(raw string) " << *value; } Reference::Reference() : reference_type(Type::kResource) {} Reference::Reference(const ResourceNameRef& n, Type t) : name(n.ToResourceName()), reference_type(t) {} Reference::Reference(const ResourceId& i, Type type) : id(i), reference_type(type) {} Reference::Reference(const ResourceNameRef& n, const ResourceId& i) : name(n.ToResourceName()), id(i), reference_type(Type::kResource) {} bool Reference::Equals(const Value* value) const { const Reference* other = ValueCast(value); if (!other) { return false; } return reference_type == other->reference_type && private_reference == other->private_reference && id == other->id && name == other->name && type_flags == other->type_flags; } bool Reference::Flatten(android::Res_value* out_value) const { if (name && name.value().type.type == ResourceType::kMacro) { return false; } const ResourceId resid = id.value_or(ResourceId(0)); const bool dynamic = resid.is_valid() && is_dynamic; if (reference_type == Reference::Type::kResource) { if (dynamic) { out_value->dataType = android::Res_value::TYPE_DYNAMIC_REFERENCE; } else { out_value->dataType = android::Res_value::TYPE_REFERENCE; } } else { if (dynamic) { out_value->dataType = android::Res_value::TYPE_DYNAMIC_ATTRIBUTE; } else { out_value->dataType = android::Res_value::TYPE_ATTRIBUTE; } } out_value->data = android::util::HostToDevice32(resid.id); return true; } void Reference::Print(std::ostream* out) const { if (reference_type == Type::kResource) { *out << "(reference) @"; if (!name && !id) { *out << "null"; return; } } else { *out << "(attr-reference) ?"; } if (private_reference) { *out << "*"; } if (name) { *out << name.value(); } if (id && id.value().is_valid()) { if (name) { *out << " "; } *out << id.value(); } } static void PrettyPrintReferenceImpl(const Reference& ref, bool print_package, Printer* printer) { switch (ref.reference_type) { case Reference::Type::kResource: printer->Print("@"); break; case Reference::Type::kAttribute: printer->Print("?"); break; } if (!ref.name && !ref.id) { printer->Print("null"); return; } if (ref.private_reference) { printer->Print("*"); } if (ref.name) { const ResourceName& name = ref.name.value(); if (print_package) { printer->Print(name.to_string()); } else { printer->Print(name.type.to_string()); printer->Print("/"); printer->Print(name.entry); } } else if (ref.id && ref.id.value().is_valid()) { printer->Print(ref.id.value().to_string()); } } void Reference::PrettyPrint(Printer* printer) const { PrettyPrintReferenceImpl(*this, true /*print_package*/, printer); } void Reference::PrettyPrint(StringPiece package, Printer* printer) const { const bool print_package = name ? package != name.value().package : true; PrettyPrintReferenceImpl(*this, print_package, printer); } bool Id::Equals(const Value* value) const { return ValueCast(value) != nullptr; } bool Id::Flatten(android::Res_value* out) const { out->dataType = android::Res_value::TYPE_INT_BOOLEAN; out->data = android::util::HostToDevice32(0); return true; } void Id::Print(std::ostream* out) const { *out << "(id)"; } String::String(const android::StringPool::Ref& ref) : value(ref) { } bool String::Equals(const Value* value) const { const String* other = ValueCast(value); if (!other) { return false; } if (this->value != other->value) { return false; } if (untranslatable_sections.size() != other->untranslatable_sections.size()) { return false; } auto other_iter = other->untranslatable_sections.begin(); for (const UntranslatableSection& this_section : untranslatable_sections) { if (this_section != *other_iter) { return false; } ++other_iter; } return true; } bool String::Flatten(android::Res_value* out_value) const { // Verify that our StringPool index is within encode-able limits. if (value.index() > std::numeric_limits::max()) { return false; } out_value->dataType = android::Res_value::TYPE_STRING; out_value->data = android::util::HostToDevice32(static_cast(value.index())); return true; } void String::Print(std::ostream* out) const { *out << "(string) \"" << *value << "\""; } void String::PrettyPrint(Printer* printer) const { printer->Print("\""); printer->Print(*value); printer->Print("\""); } StyledString::StyledString(const android::StringPool::StyleRef& ref) : value(ref) { } bool StyledString::Equals(const Value* value) const { const StyledString* other = ValueCast(value); if (!other) { return false; } if (this->value != other->value) { return false; } if (untranslatable_sections.size() != other->untranslatable_sections.size()) { return false; } auto other_iter = other->untranslatable_sections.begin(); for (const UntranslatableSection& this_section : untranslatable_sections) { if (this_section != *other_iter) { return false; } ++other_iter; } return true; } bool StyledString::Flatten(android::Res_value* out_value) const { if (value.index() > std::numeric_limits::max()) { return false; } out_value->dataType = android::Res_value::TYPE_STRING; out_value->data = android::util::HostToDevice32(static_cast(value.index())); return true; } void StyledString::Print(std::ostream* out) const { *out << "(styled string) \"" << value->value << "\""; for (const android::StringPool::Span& span : value->spans) { *out << " " << *span.name << ":" << span.first_char << "," << span.last_char; } } FileReference::FileReference(const android::StringPool::Ref& _path) : path(_path) { } bool FileReference::Equals(const Value* value) const { const FileReference* other = ValueCast(value); if (!other) { return false; } return path == other->path; } bool FileReference::Flatten(android::Res_value* out_value) const { if (path.index() > std::numeric_limits::max()) { return false; } out_value->dataType = android::Res_value::TYPE_STRING; out_value->data = android::util::HostToDevice32(static_cast(path.index())); return true; } void FileReference::Print(std::ostream* out) const { *out << "(file) " << *path; switch (type) { case ResourceFile::Type::kBinaryXml: *out << " type=XML"; break; case ResourceFile::Type::kProtoXml: *out << " type=protoXML"; break; case ResourceFile::Type::kPng: *out << " type=PNG"; break; default: break; } } BinaryPrimitive::BinaryPrimitive(const android::Res_value& val) : value(val) { } BinaryPrimitive::BinaryPrimitive(uint8_t dataType, uint32_t data) { value.dataType = dataType; value.data = data; } bool BinaryPrimitive::Equals(const Value* value) const { const BinaryPrimitive* other = ValueCast(value); if (!other) { return false; } return this->value.dataType == other->value.dataType && this->value.data == other->value.data; } bool BinaryPrimitive::Flatten(::android::Res_value* out_value) const { out_value->dataType = value.dataType; out_value->data = android::util::HostToDevice32(value.data); return true; } void BinaryPrimitive::Print(std::ostream* out) const { *out << StringPrintf("(primitive) type=0x%02x data=0x%08x", value.dataType, value.data); } static std::string ComplexToString(uint32_t complex_value, bool fraction) { using ::android::Res_value; constexpr std::array kRadixShifts = {{23, 16, 8, 0}}; // Determine the radix that was used. const uint32_t radix = (complex_value >> Res_value::COMPLEX_RADIX_SHIFT) & Res_value::COMPLEX_RADIX_MASK; const uint64_t mantissa = uint64_t{(complex_value >> Res_value::COMPLEX_MANTISSA_SHIFT) & Res_value::COMPLEX_MANTISSA_MASK} << kRadixShifts[radix]; const float value = mantissa * (1.0f / (1 << 23)); std::string str = StringPrintf("%f", value); const int unit_type = (complex_value >> Res_value::COMPLEX_UNIT_SHIFT) & Res_value::COMPLEX_UNIT_MASK; if (fraction) { switch (unit_type) { case Res_value::COMPLEX_UNIT_FRACTION: str += "%"; break; case Res_value::COMPLEX_UNIT_FRACTION_PARENT: str += "%p"; break; default: str += "???"; break; } } else { switch (unit_type) { case Res_value::COMPLEX_UNIT_PX: str += "px"; break; case Res_value::COMPLEX_UNIT_DIP: str += "dp"; break; case Res_value::COMPLEX_UNIT_SP: str += "sp"; break; case Res_value::COMPLEX_UNIT_PT: str += "pt"; break; case Res_value::COMPLEX_UNIT_IN: str += "in"; break; case Res_value::COMPLEX_UNIT_MM: str += "mm"; break; default: str += "???"; break; } } return str; } // This function is designed to using different specifier to print different floats, // which can print more accurate format rather than using %g only. const char* BinaryPrimitive::DecideFormat(float f) { // if the float is either too big or too tiny, print it in scientific notation. // eg: "10995116277760000000000" to 1.099512e+22, "0.00000000001" to 1.000000e-11 if (fabs(f) > std::numeric_limits::max() || fabs(f) < 1e-10) { return "%e"; // Else if the number is an integer exactly, print it without trailing zeros. // eg: "1099511627776" to 1099511627776 } else if (int64_t(f) == f) { return "%.0f"; } return "%g"; } void BinaryPrimitive::PrettyPrint(Printer* printer) const { using ::android::Res_value; switch (value.dataType) { case Res_value::TYPE_NULL: if (value.data == Res_value::DATA_NULL_EMPTY) { printer->Print("@empty"); } else { printer->Print("@null"); } break; case Res_value::TYPE_INT_DEC: printer->Print(StringPrintf("%" PRIi32, static_cast(value.data))); break; case Res_value::TYPE_INT_HEX: printer->Print(StringPrintf("0x%08x", value.data)); break; case Res_value::TYPE_INT_BOOLEAN: printer->Print(value.data != 0 ? "true" : "false"); break; case Res_value::TYPE_INT_COLOR_ARGB8: case Res_value::TYPE_INT_COLOR_RGB8: case Res_value::TYPE_INT_COLOR_ARGB4: case Res_value::TYPE_INT_COLOR_RGB4: printer->Print(StringPrintf("#%08x", value.data)); break; case Res_value::TYPE_FLOAT: float f; f = *reinterpret_cast(&value.data); printer->Print(StringPrintf(DecideFormat(f), f)); break; case Res_value::TYPE_DIMENSION: printer->Print(ComplexToString(value.data, false /*fraction*/)); break; case Res_value::TYPE_FRACTION: printer->Print(ComplexToString(value.data, true /*fraction*/)); break; default: printer->Print(StringPrintf("(unknown 0x%02x) 0x%08x", value.dataType, value.data)); break; } } Attribute::Attribute(uint32_t t) : type_mask(t), min_int(std::numeric_limits::min()), max_int(std::numeric_limits::max()) { } std::ostream& operator<<(std::ostream& out, const Attribute::Symbol& s) { if (s.symbol.name) { out << s.symbol.name.value().entry; } else { out << "???"; } return out << "=" << s.value; } template constexpr T* add_pointer(T& val) { return &val; } bool Attribute::Equals(const Value* value) const { const Attribute* other = ValueCast(value); if (!other) { return false; } if (symbols.size() != other->symbols.size()) { return false; } if (type_mask != other->type_mask || min_int != other->min_int || max_int != other->max_int) { return false; } std::vector sorted_a; std::transform(symbols.begin(), symbols.end(), std::back_inserter(sorted_a), add_pointer); std::sort(sorted_a.begin(), sorted_a.end(), [](const Symbol* a, const Symbol* b) -> bool { return a->symbol.name < b->symbol.name; }); std::vector sorted_b; std::transform(other->symbols.begin(), other->symbols.end(), std::back_inserter(sorted_b), add_pointer); std::sort(sorted_b.begin(), sorted_b.end(), [](const Symbol* a, const Symbol* b) -> bool { return a->symbol.name < b->symbol.name; }); return std::equal(sorted_a.begin(), sorted_a.end(), sorted_b.begin(), [](const Symbol* a, const Symbol* b) -> bool { return a->symbol.Equals(&b->symbol) && a->value == b->value; }); } bool Attribute::IsCompatibleWith(const Attribute& attr) const { // If the high bits are set on any of these attribute type masks, then they are incompatible. // We don't check that flags and enums are identical. if ((type_mask & ~android::ResTable_map::TYPE_ANY) != 0 || (attr.type_mask & ~android::ResTable_map::TYPE_ANY) != 0) { return false; } // Every attribute accepts a reference. uint32_t this_type_mask = type_mask | android::ResTable_map::TYPE_REFERENCE; uint32_t that_type_mask = attr.type_mask | android::ResTable_map::TYPE_REFERENCE; return this_type_mask == that_type_mask; } std::string Attribute::MaskString(uint32_t type_mask) { if (type_mask == android::ResTable_map::TYPE_ANY) { return "any"; } std::ostringstream out; bool set = false; if ((type_mask & android::ResTable_map::TYPE_REFERENCE) != 0) { if (!set) { set = true; } else { out << "|"; } out << "reference"; } if ((type_mask & android::ResTable_map::TYPE_STRING) != 0) { if (!set) { set = true; } else { out << "|"; } out << "string"; } if ((type_mask & android::ResTable_map::TYPE_INTEGER) != 0) { if (!set) { set = true; } else { out << "|"; } out << "integer"; } if ((type_mask & android::ResTable_map::TYPE_BOOLEAN) != 0) { if (!set) { set = true; } else { out << "|"; } out << "boolean"; } if ((type_mask & android::ResTable_map::TYPE_COLOR) != 0) { if (!set) { set = true; } else { out << "|"; } out << "color"; } if ((type_mask & android::ResTable_map::TYPE_FLOAT) != 0) { if (!set) { set = true; } else { out << "|"; } out << "float"; } if ((type_mask & android::ResTable_map::TYPE_DIMENSION) != 0) { if (!set) { set = true; } else { out << "|"; } out << "dimension"; } if ((type_mask & android::ResTable_map::TYPE_FRACTION) != 0) { if (!set) { set = true; } else { out << "|"; } out << "fraction"; } if ((type_mask & android::ResTable_map::TYPE_ENUM) != 0) { if (!set) { set = true; } else { out << "|"; } out << "enum"; } if ((type_mask & android::ResTable_map::TYPE_FLAGS) != 0) { if (!set) { set = true; } else { out << "|"; } out << "flags"; } return out.str(); } std::string Attribute::MaskString() const { return MaskString(type_mask); } void Attribute::Print(std::ostream* out) const { *out << "(attr) " << MaskString(); if (!symbols.empty()) { *out << " [" << util::Joiner(symbols, ", ") << "]"; } if (min_int != std::numeric_limits::min()) { *out << " min=" << min_int; } if (max_int != std::numeric_limits::max()) { *out << " max=" << max_int; } if (IsWeak()) { *out << " [weak]"; } } static void BuildAttributeMismatchMessage(const Attribute& attr, const Item& value, android::DiagMessage* out_msg) { *out_msg << "expected"; if (attr.type_mask & android::ResTable_map::TYPE_BOOLEAN) { *out_msg << " boolean"; } if (attr.type_mask & android::ResTable_map::TYPE_COLOR) { *out_msg << " color"; } if (attr.type_mask & android::ResTable_map::TYPE_DIMENSION) { *out_msg << " dimension"; } if (attr.type_mask & android::ResTable_map::TYPE_ENUM) { *out_msg << " enum"; } if (attr.type_mask & android::ResTable_map::TYPE_FLAGS) { *out_msg << " flags"; } if (attr.type_mask & android::ResTable_map::TYPE_FLOAT) { *out_msg << " float"; } if (attr.type_mask & android::ResTable_map::TYPE_FRACTION) { *out_msg << " fraction"; } if (attr.type_mask & android::ResTable_map::TYPE_INTEGER) { *out_msg << " integer"; } if (attr.type_mask & android::ResTable_map::TYPE_REFERENCE) { *out_msg << " reference"; } if (attr.type_mask & android::ResTable_map::TYPE_STRING) { *out_msg << " string"; } *out_msg << " but got " << value; } bool Attribute::Matches(const Item& item, android::DiagMessage* out_msg) const { constexpr const uint32_t TYPE_ENUM = android::ResTable_map::TYPE_ENUM; constexpr const uint32_t TYPE_FLAGS = android::ResTable_map::TYPE_FLAGS; constexpr const uint32_t TYPE_INTEGER = android::ResTable_map::TYPE_INTEGER; constexpr const uint32_t TYPE_REFERENCE = android::ResTable_map::TYPE_REFERENCE; android::Res_value val = {}; item.Flatten(&val); const uint32_t flattened_data = android::util::DeviceToHost32(val.data); // Always allow references. const uint32_t actual_type = ResourceUtils::AndroidTypeToAttributeTypeMask(val.dataType); // Only one type must match between the actual and expected. if ((actual_type & (type_mask | TYPE_REFERENCE)) == 0) { if (out_msg) { BuildAttributeMismatchMessage(*this, item, out_msg); } return false; } // Enums and flags are encoded as integers, so check them first before doing any range checks. if ((type_mask & TYPE_ENUM) != 0 && (actual_type & TYPE_ENUM) != 0) { for (const Symbol& s : symbols) { if (flattened_data == s.value) { return true; } } // If the attribute accepts integers, we can't fail here. if ((type_mask & TYPE_INTEGER) == 0) { if (out_msg) { *out_msg << item << " is not a valid enum"; } return false; } } if ((type_mask & TYPE_FLAGS) != 0 && (actual_type & TYPE_FLAGS) != 0) { uint32_t mask = 0u; for (const Symbol& s : symbols) { mask |= s.value; } // Check if the flattened data is covered by the flag bit mask. // If the attribute accepts integers, we can't fail here. if ((mask & flattened_data) == flattened_data) { return true; } else if ((type_mask & TYPE_INTEGER) == 0) { if (out_msg) { *out_msg << item << " is not a valid flag"; } return false; } } // Finally check the integer range of the value. if ((type_mask & TYPE_INTEGER) != 0 && (actual_type & TYPE_INTEGER) != 0) { if (static_cast(flattened_data) < min_int) { if (out_msg) { *out_msg << item << " is less than minimum integer " << min_int; } return false; } else if (static_cast(flattened_data) > max_int) { if (out_msg) { *out_msg << item << " is greater than maximum integer " << max_int; } return false; } } return true; } std::ostream& operator<<(std::ostream& out, const Style::Entry& entry) { if (entry.key.name) { out << entry.key.name.value(); } else if (entry.key.id) { out << entry.key.id.value(); } else { out << "???"; } out << " = " << entry.value; return out; } template std::vector ToPointerVec(std::vector& src) { std::vector dst; dst.reserve(src.size()); for (T& in : src) { dst.push_back(&in); } return dst; } template std::vector ToPointerVec(const std::vector& src) { std::vector dst; dst.reserve(src.size()); for (const T& in : src) { dst.push_back(&in); } return dst; } static bool KeyNameComparator(const Style::Entry* a, const Style::Entry* b) { return a->key.name < b->key.name; } bool Style::Equals(const Value* value) const { const Style* other = ValueCast