/** * Copyright 2024 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #define LOG_TAG "InputTransport" #define ATRACE_TAG ATRACE_TAG_INPUT #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace input_flags = com::android::input::flags; namespace android { namespace { /** * Log debug messages relating to the consumer end of the transport channel. * Enable this via "adb shell setprop log.tag.InputTransportConsumer DEBUG" (requires restart) */ const bool DEBUG_TRANSPORT_CONSUMER = __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Consumer", ANDROID_LOG_INFO); const bool IS_DEBUGGABLE_BUILD = #if defined(__ANDROID__) android::base::GetBoolProperty("ro.debuggable", false); #else true; #endif /** * Log debug messages about touch event resampling. * * Enable this via "adb shell setprop log.tag.InputTransportResampling DEBUG". * This requires a restart on non-debuggable (e.g. user) builds, but should take effect immediately * on debuggable builds (e.g. userdebug). */ bool debugResampling() { if (!IS_DEBUGGABLE_BUILD) { static const bool DEBUG_TRANSPORT_RESAMPLING = __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Resampling", ANDROID_LOG_INFO); return DEBUG_TRANSPORT_RESAMPLING; } return __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Resampling", ANDROID_LOG_INFO); } void initializeKeyEvent(KeyEvent& event, const InputMessage& msg) { event.initialize(msg.body.key.eventId, msg.body.key.deviceId, msg.body.key.source, ui::LogicalDisplayId{msg.body.key.displayId}, msg.body.key.hmac, msg.body.key.action, msg.body.key.flags, msg.body.key.keyCode, msg.body.key.scanCode, msg.body.key.metaState, msg.body.key.repeatCount, msg.body.key.downTime, msg.body.key.eventTime); } void initializeFocusEvent(FocusEvent& event, const InputMessage& msg) { event.initialize(msg.body.focus.eventId, msg.body.focus.hasFocus); } void initializeCaptureEvent(CaptureEvent& event, const InputMessage& msg) { event.initialize(msg.body.capture.eventId, msg.body.capture.pointerCaptureEnabled); } void initializeDragEvent(DragEvent& event, const InputMessage& msg) { event.initialize(msg.body.drag.eventId, msg.body.drag.x, msg.body.drag.y, msg.body.drag.isExiting); } void initializeMotionEvent(MotionEvent& event, const InputMessage& msg) { uint32_t pointerCount = msg.body.motion.pointerCount; PointerProperties pointerProperties[pointerCount]; PointerCoords pointerCoords[pointerCount]; for (uint32_t i = 0; i < pointerCount; i++) { pointerProperties[i] = msg.body.motion.pointers[i].properties; pointerCoords[i] = msg.body.motion.pointers[i].coords; } ui::Transform transform; transform.set({msg.body.motion.dsdx, msg.body.motion.dtdx, msg.body.motion.tx, msg.body.motion.dtdy, msg.body.motion.dsdy, msg.body.motion.ty, 0, 0, 1}); ui::Transform displayTransform; displayTransform.set({msg.body.motion.dsdxRaw, msg.body.motion.dtdxRaw, msg.body.motion.txRaw, msg.body.motion.dtdyRaw, msg.body.motion.dsdyRaw, msg.body.motion.tyRaw, 0, 0, 1}); event.initialize(msg.body.motion.eventId, msg.body.motion.deviceId, msg.body.motion.source, ui::LogicalDisplayId{msg.body.motion.displayId}, msg.body.motion.hmac, msg.body.motion.action, msg.body.motion.actionButton, msg.body.motion.flags, msg.body.motion.edgeFlags, msg.body.motion.metaState, msg.body.motion.buttonState, msg.body.motion.classification, transform, msg.body.motion.xPrecision, msg.body.motion.yPrecision, msg.body.motion.xCursorPosition, msg.body.motion.yCursorPosition, displayTransform, msg.body.motion.downTime, msg.body.motion.eventTime, pointerCount, pointerProperties, pointerCoords); } void addSample(MotionEvent& event, const InputMessage& msg) { uint32_t pointerCount = msg.body.motion.pointerCount; PointerCoords pointerCoords[pointerCount]; for (uint32_t i = 0; i < pointerCount; i++) { pointerCoords[i] = msg.body.motion.pointers[i].coords; } event.setMetaState(event.getMetaState() | msg.body.motion.metaState); event.addSample(msg.body.motion.eventTime, pointerCoords); } void initializeTouchModeEvent(TouchModeEvent& event, const InputMessage& msg) { event.initialize(msg.body.touchMode.eventId, msg.body.touchMode.isInTouchMode); } // Nanoseconds per milliseconds. constexpr nsecs_t NANOS_PER_MS = 1000000; // Latency added during resampling. A few milliseconds doesn't hurt much but // reduces the impact of mispredicted touch positions. const std::chrono::duration RESAMPLE_LATENCY = 5ms; // Minimum time difference between consecutive samples before attempting to resample. const nsecs_t RESAMPLE_MIN_DELTA = 2 * NANOS_PER_MS; // Maximum time difference between consecutive samples before attempting to resample // by extrapolation. const nsecs_t RESAMPLE_MAX_DELTA = 20 * NANOS_PER_MS; // Maximum time to predict forward from the last known state, to avoid predicting too // far into the future. This time is further bounded by 50% of the last time delta. const nsecs_t RESAMPLE_MAX_PREDICTION = 8 * NANOS_PER_MS; /** * System property for enabling / disabling touch resampling. * Resampling extrapolates / interpolates the reported touch event coordinates to better * align them to the VSYNC signal, thus resulting in smoother scrolling performance. * Resampling is not needed (and should be disabled) on hardware that already * has touch events triggered by VSYNC. * Set to "1" to enable resampling (default). * Set to "0" to disable resampling. * Resampling is enabled by default. */ const char* PROPERTY_RESAMPLING_ENABLED = "ro.input.resampling"; inline float lerp(float a, float b, float alpha) { return a + alpha * (b - a); } inline bool isPointerEvent(int32_t source) { return (source & AINPUT_SOURCE_CLASS_POINTER) == AINPUT_SOURCE_CLASS_POINTER; } bool shouldResampleTool(ToolType toolType) { return toolType == ToolType::FINGER || toolType == ToolType::MOUSE || toolType == ToolType::STYLUS || toolType == ToolType::UNKNOWN; } } // namespace using android::base::Result; using android::base::StringPrintf; // --- InputConsumer --- InputConsumer::InputConsumer(const std::shared_ptr& channel) : InputConsumer(channel, isTouchResamplingEnabled()) {} InputConsumer::InputConsumer(const std::shared_ptr& channel, bool enableTouchResampling) : mResampleTouch(enableTouchResampling), mChannel(channel), mProcessingTraceTag(StringPrintf("InputConsumer processing on %s (%p)", mChannel->getName().c_str(), this)), mLifetimeTraceTag(StringPrintf("InputConsumer lifetime on %s (%p)", mChannel->getName().c_str(), this)), mLifetimeTraceCookie( static_cast(reinterpret_cast(this) & 0xFFFFFFFF)), mMsgDeferred(false) { ATRACE_ASYNC_BEGIN(mLifetimeTraceTag.c_str(), /*cookie=*/mLifetimeTraceCookie); } InputConsumer::~InputConsumer() { ATRACE_ASYNC_END(mLifetimeTraceTag.c_str(), /*cookie=*/mLifetimeTraceCookie); } bool InputConsumer::isTouchResamplingEnabled() { return property_get_bool(PROPERTY_RESAMPLING_ENABLED, true); } status_t InputConsumer::consume(InputEventFactoryInterface* factory, bool consumeBatches, nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent) { ALOGD_IF(DEBUG_TRANSPORT_CONSUMER, "channel '%s' consumer ~ consume: consumeBatches=%s, frameTime=%" PRId64, mChannel->getName().c_str(), toString(consumeBatches), frameTime); *outSeq = 0; *outEvent = nullptr; // Fetch the next input message. // Loop until an event can be returned or no additional events are received. while (!*outEvent) { if (mMsgDeferred) { // mMsg contains a valid input message from the previous call to consume // that has not yet been processed. mMsgDeferred = false; } else { // Receive a fresh message. status_t result = mChannel->receiveMessage(&mMsg); if (result == OK) { const auto [_, inserted] = mConsumeTimes.emplace(mMsg.header.seq, systemTime(SYSTEM_TIME_MONOTONIC)); LOG_ALWAYS_FATAL_IF(!inserted, "Already have a consume time for seq=%" PRIu32, mMsg.header.seq); // Trace the event processing timeline - event was just read from the socket ATRACE_ASYNC_BEGIN(mProcessingTraceTag.c_str(), /*cookie=*/mMsg.header.seq); } if (result) { // Consume the next batched event unless batches are being held for later. if (consumeBatches || result != WOULD_BLOCK) { result = consumeBatch(factory, frameTime, outSeq, outEvent); if (*outEvent) { ALOGD_IF(DEBUG_TRANSPORT_CONSUMER, "channel '%s' consumer ~ consumed batch event, seq=%u", mChannel->getName().c_str(), *outSeq); break; } } return result; } } switch (mMsg.header.type) { case InputMessage::Type::KEY: { KeyEvent* keyEvent = factory->createKeyEvent(); if (!keyEvent) return NO_MEMORY; initializeKeyEvent(*keyEvent, mMsg); *outSeq = mMsg.header.seq; *outEvent = keyEvent; ALOGD_IF(DEBUG_TRANSPORT_CONSUMER, "channel '%s' consumer ~ consumed key event, seq=%u", mChannel->getName().c_str(), *outSeq); break; } case InputMessage::Type::MOTION: { ssize_t batchIndex = findBatch(mMsg.body.motion.deviceId, mMsg.body.motion.source); if (batchIndex >= 0) { Batch& batch = mBatches[batchIndex]; if (canAddSample(batch, &mMsg)) { batch.samples.push_back(mMsg); ALOGD_IF(DEBUG_TRANSPORT_CONSUMER, "channel '%s' consumer ~ appended to batch event", mChannel->getName().c_str()); break; } else if (isPointerEvent(mMsg.body.motion.source) && mMsg.body.motion.action == AMOTION_EVENT_ACTION_CANCEL) { // No need to process events that we are going to cancel anyways const size_t count = batch.samples.size(); for (size_t i = 0; i < count; i++) { const InputMessage& msg = batch.samples[i]; sendFinishedSignal(msg.header.seq, false); } batch.samples.erase(batch.samples.begin(), batch.samples.begin() + count); mBatches.erase(mBatches.begin() + batchIndex); } else { // We cannot append to the batch in progress, so we need to consume // the previous batch right now and defer the new message until later. mMsgDeferred = true; status_t result = consumeSamples(factory, batch, batch.samples.size(), outSeq, outEvent); mBatches.erase(mBatches.begin() + batchIndex); if (result) { return result; } ALOGD_IF(DEBUG_TRANSPORT_CONSUMER, "channel '%s' consumer ~ consumed batch event and " "deferred current event, seq=%u", mChannel->getName().c_str(), *outSeq); break; } } // Start a new batch if needed. if (mMsg.body.motion.action == AMOTION_EVENT_ACTION_MOVE || mMsg.body.motion.action == AMOTION_EVENT_ACTION_HOVER_MOVE) { Batch batch; batch.samples.push_back(mMsg); mBatches.push_back(batch); ALOGD_IF(DEBUG_TRANSPORT_CONSUMER, "channel '%s' consumer ~ started batch event", mChannel->getName().c_str()); break; } MotionEvent* motionEvent = factory->createMotionEvent(); if (!motionEvent) return NO_MEMORY; updateTouchState(mMsg); initializeMotionEvent(*motionEvent, mMsg); *outSeq = mMsg.header.seq; *outEvent = motionEvent; ALOGD_IF(DEBUG_TRANSPORT_CONSUMER, "channel '%s' consumer ~ consumed motion event, seq=%u", mChannel->getName().c_str(), *outSeq); break; } case InputMessage::Type::FINISHED: case InputMessage::Type::TIMELINE: { LOG(FATAL) << "Consumed a " << ftl::enum_string(mMsg.header.type) << " message, which should never be seen by " "InputConsumer on " << mChannel->getName(); break; } case InputMessage::Type::FOCUS: { FocusEvent* focusEvent = factory->createFocusEvent(); if (!focusEvent) return NO_MEMORY; initializeFocusEvent(*focusEvent, mMsg); *outSeq = mMsg.header.seq; *outEvent = focusEvent; break; } case InputMessage::Type::CAPTURE: { CaptureEvent* captureEvent = factory->createCaptureEvent(); if (!captureEvent) return NO_MEMORY; initializeCaptureEvent(*captureEvent, mMsg); *outSeq = mMsg.header.seq; *outEvent = captureEvent; break; } case InputMessage::Type::DRAG: { DragEvent* dragEvent = factory->createDragEvent(); if (!dragEvent) return NO_MEMORY; initializeDragEvent(*dragEvent, mMsg); *outSeq = mMsg.header.seq; *outEvent = dragEvent; break; } case InputMessage::Type::TOUCH_MODE: { TouchModeEvent* touchModeEvent = factory->createTouchModeEvent(); if (!touchModeEvent) return NO_MEMORY; initializeTouchModeEvent(*touchModeEvent, mMsg); *outSeq = mMsg.header.seq; *outEvent = touchModeEvent; break; } } } return OK; } status_t InputConsumer::consumeBatch(InputEventFactoryInterface* factory, nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent) { status_t result; for (size_t i = mBatches.size(); i > 0;) { i--; Batch& batch = mBatches[i]; if (frameTime < 0) { result = consumeSamples(factory, batch, batch.samples.size(), outSeq, outEvent); mBatches.erase(mBatches.begin() + i); return result; } nsecs_t sampleTime = frameTime; if (mResampleTouch) { sampleTime -= std::chrono::nanoseconds(RESAMPLE_LATENCY).count(); } ssize_t split = findSampleNoLaterThan(batch, sampleTime); if (split < 0) { continue; } result = consumeSamples(factory, batch, split + 1, outSeq, outEvent); const InputMessage* next; if (batch.samples.empty()) { mBatches.erase(mBatches.begin() + i); next = nullptr; } else { next = &batch.samples[0]; } if (!result && mResampleTouch) { resampleTouchState(sampleTime, static_cast(*outEvent), next); } return result; } return WOULD_BLOCK; } status_t InputConsumer::consumeSamples(InputEventFactoryInterface* factory, Batch& batch, size_t count, uint32_t* outSeq, InputEvent** outEvent) { MotionEvent* motionEvent = factory->createMotionEvent(); if (!motionEvent) return NO_MEMORY; uint32_t chain = 0; for (size_t i = 0; i < count; i++) { InputMessage& msg = batch.samples[i]; updateTouchState(msg); if (i) { SeqChain seqChain; seqChain.seq = msg.header.seq; seqChain.chain = chain; mSeqChains.push_back(seqChain); addSample(*motionEvent, msg); } else { initializeMotionEvent(*motionEvent, msg); } chain = msg.header.seq; } batch.samples.erase(batch.samples.begin(), batch.samples.begin() + count); *outSeq = chain; *outEvent = motionEvent; return OK; } void InputConsumer::updateTouchState(InputMessage& msg) { if (!mResampleTouch || !isPointerEvent(msg.body.motion.source)) { return; } int32_t deviceId = msg.body.motion.deviceId; int32_t source = msg.body.motion.source; // Update the touch state history to incorporate the new input message. // If the message is in the past relative to the most recently produced resampled // touch, then use the resampled time and coordinates instead. switch (msg.body.motion.action & AMOTION_EVENT_ACTION_MASK) { case AMOTION_EVENT_ACTION_DOWN: { ssize_t index = findTouchState(deviceId, source); if (index < 0) { mTouchStates.push_back({}); index = mTouchStates.size() - 1; } TouchState& touchState = mTouchStates[index]; touchState.initialize(deviceId, source); touchState.addHistory(msg); break; } case AMOTION_EVENT_ACTION_MOVE: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { TouchState& touchState = mTouchStates[index]; touchState.addHistory(msg); rewriteMessage(touchState, msg); } break; } case AMOTION_EVENT_ACTION_POINTER_DOWN: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { TouchState& touchState = mTouchStates[index]; touchState.lastResample.idBits.clearBit(msg.body.motion.getActionId()); rewriteMessage(touchState, msg); } break; } case AMOTION_EVENT_ACTION_POINTER_UP: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { TouchState& touchState = mTouchStates[index]; rewriteMessage(touchState, msg); touchState.lastResample.idBits.clearBit(msg.body.motion.getActionId()); } break; } case AMOTION_EVENT_ACTION_SCROLL: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { TouchState& touchState = mTouchStates[index]; rewriteMessage(touchState, msg); } break; } case AMOTION_EVENT_ACTION_UP: case AMOTION_EVENT_ACTION_CANCEL: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { TouchState& touchState = mTouchStates[index]; rewriteMessage(touchState, msg); mTouchStates.erase(mTouchStates.begin() + index); } break; } } } /** * Replace the coordinates in msg with the coordinates in lastResample, if necessary. * * If lastResample is no longer valid for a specific pointer (i.e. the lastResample time * is in the past relative to msg and the past two events do not contain identical coordinates), * then invalidate the lastResample data for that pointer. * If the two past events have identical coordinates, then lastResample data for that pointer will * remain valid, and will be used to replace these coordinates. Thus, if a certain coordinate x0 is * resampled to the new value x1, then x1 will always be used to replace x0 until some new value * not equal to x0 is received. */ void InputConsumer::rewriteMessage(TouchState& state, InputMessage& msg) { nsecs_t eventTime = msg.body.motion.eventTime; for (uint32_t i = 0; i < msg.body.motion.pointerCount; i++) { uint32_t id = msg.body.motion.pointers[i].properties.id; if (state.lastResample.idBits.hasBit(id)) { if (eventTime < state.lastResample.eventTime || state.recentCoordinatesAreIdentical(id)) { PointerCoords& msgCoords = msg.body.motion.pointers[i].coords; const PointerCoords& resampleCoords = state.lastResample.getPointerById(id); ALOGD_IF(debugResampling(), "[%d] - rewrite (%0.3f, %0.3f), old (%0.3f, %0.3f)", id, resampleCoords.getX(), resampleCoords.getY(), msgCoords.getX(), msgCoords.getY()); msgCoords.setAxisValue(AMOTION_EVENT_AXIS_X, resampleCoords.getX()); msgCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, resampleCoords.getY()); msgCoords.isResampled = true; } else { state.lastResample.idBits.clearBit(id); } } } } void InputConsumer::resampleTouchState(nsecs_t sampleTime, MotionEvent* event, const InputMessage* next) { if (!mResampleTouch || !(isPointerEvent(event->getSource())) || event->getAction() != AMOTION_EVENT_ACTION_MOVE) { return; } ssize_t index = findTouchState(event->getDeviceId(), event->getSource()); if (index < 0) { ALOGD_IF(debugResampling(), "Not resampled, no touch state for device."); return; } TouchState& touchState = mTouchStates[index]; if (touchState.historySize < 1) { ALOGD_IF(debugResampling(), "Not resampled, no history for device."); return; } // Ensure that the current sample has all of the pointers that need to be reported. const History* current = touchState.getHistory(0); size_t pointerCount = event->getPointerCount(); for (size_t i = 0; i < pointerCount; i++) { uint32_t id = event->getPointerId(i); if (!current->idBits.hasBit(id)) { ALOGD_IF(debugResampling(), "Not resampled, missing id %d", id); return; } if (!shouldResampleTool(event->getToolType(i))) { ALOGD_IF(debugResampling(), "Not resampled, containing unsupported tool type at pointer %d", id); return; } } // Find the data to use for resampling. const History* other; History future; float alpha; if (next) { // Interpolate between current sample and future sample. // So current->eventTime <= sampleTime <= future.eventTime. future.initializeFrom(*next); other = &future; nsecs_t delta = future.eventTime - current->eventTime; if (delta < RESAMPLE_MIN_DELTA) { ALOGD_IF(debugResampling(), "Not resampled, delta time is too small: %" PRId64 " ns.", delta); return; } alpha = float(sampleTime - current->eventTime) / delta; } else if (touchState.historySize >= 2) { // Extrapolate future sample using current sample and past sample. // So other->eventTime <= current->eventTime <= sampleTime. other = touchState.getHistory(1); nsecs_t delta = current->eventTime - other->eventTime; if (delta < RESAMPLE_MIN_DELTA) { ALOGD_IF(debugResampling(), "Not resampled, delta time is too small: %" PRId64 " ns.", delta); return; } else if (delta > RESAMPLE_MAX_DELTA) { ALOGD_IF(debugResampling(), "Not resampled, delta time is too large: %" PRId64 " ns.", delta); return; } nsecs_t maxPredict = current->eventTime + std::min(delta / 2, RESAMPLE_MAX_PREDICTION); if (sampleTime > maxPredict) { ALOGD_IF(debugResampling(), "Sample time is too far in the future, adjusting prediction " "from %" PRId64 " to %" PRId64 " ns.", sampleTime - current->eventTime, maxPredict - current->eventTime); sampleTime = maxPredict; } alpha = float(current->eventTime - sampleTime) / delta; } else { ALOGD_IF(debugResampling(), "Not resampled, insufficient data."); return; } if (current->eventTime == sampleTime) { ALOGD_IF(debugResampling(), "Not resampled, 2 events with identical times."); return; } for (size_t i = 0; i < pointerCount; i++) { uint32_t id = event->getPointerId(i); if (!other->idBits.hasBit(id)) { ALOGD_IF(debugResampling(), "Not resampled, the other doesn't have pointer id %d.", id); return; } } // Resample touch coordinates. History oldLastResample; oldLastResample.initializeFrom(touchState.lastResample); touchState.lastResample.eventTime = sampleTime; touchState.lastResample.idBits.clear(); for (size_t i = 0; i < pointerCount; i++) { uint32_t id = event->getPointerId(i); touchState.lastResample.idToIndex[id] = i; touchState.lastResample.idBits.markBit(id); if (oldLastResample.hasPointerId(id) && touchState.recentCoordinatesAreIdentical(id)) { // We maintain the previously resampled value for this pointer (stored in // oldLastResample) when the coordinates for this pointer haven't changed since then. // This way we don't introduce artificial jitter when pointers haven't actually moved. // The isResampled flag isn't cleared as the values don't reflect what the device is // actually reporting. // We know here that the coordinates for the pointer haven't changed because we // would've cleared the resampled bit in rewriteMessage if they had. We can't modify // lastResample in place because the mapping from pointer ID to index may have changed. touchState.lastResample.pointers[i] = oldLastResample.getPointerById(id); continue; } PointerCoords& resampledCoords = touchState.lastResample.pointers[i]; const PointerCoords& currentCoords = current->getPointerById(id); resampledCoords = currentCoords; resampledCoords.isResampled = true; const PointerCoords& otherCoords = other->getPointerById(id); resampledCoords.setAxisValue(AMOTION_EVENT_AXIS_X, lerp(currentCoords.getX(), otherCoords.getX(), alpha)); resampledCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, lerp(currentCoords.getY(), otherCoords.getY(), alpha)); ALOGD_IF(debugResampling(), "[%d] - out (%0.3f, %0.3f), cur (%0.3f, %0.3f), " "other (%0.3f, %0.3f), alpha %0.3f", id, resampledCoords.getX(), resampledCoords.getY(), currentCoords.getX(), currentCoords.getY(), otherCoords.getX(), otherCoords.getY(), alpha); } event->addSample(sampleTime, touchState.lastResample.pointers); } status_t InputConsumer::sendFinishedSignal(uint32_t seq, bool handled) { ALOGD_IF(DEBUG_TRANSPORT_CONSUMER, "channel '%s' consumer ~ sendFinishedSignal: seq=%u, handled=%s", mChannel->getName().c_str(), seq, toString(handled)); if (!seq) { ALOGE("Attempted to send a finished signal with sequence number 0."); return BAD_VALUE; } // Send finished signals for the batch sequence chain first. size_t seqChainCount = mSeqChains.size(); if (seqChainCount) { uint32_t currentSeq = seq; uint32_t chainSeqs[seqChainCount]; size_t chainIndex = 0; for (size_t i = seqChainCount; i > 0;) { i--; const SeqChain& seqChain = mSeqChains[i]; if (seqChain.seq == currentSeq) { currentSeq = seqChain.chain; chainSeqs[chainIndex++] = currentSeq; mSeqChains.erase(mSeqChains.begin() + i); } } status_t status = OK; while (!status && chainIndex > 0) { chainIndex--; status = sendUnchainedFinishedSignal(chainSeqs[chainIndex], handled); } if (status) { // An error occurred so at least one signal was not sent, reconstruct the chain. for (;;) { SeqChain seqChain; seqChain.seq = chainIndex != 0 ? chainSeqs[chainIndex - 1] : seq; seqChain.chain = chainSeqs[chainIndex]; mSeqChains.push_back(seqChain); if (!chainIndex) break; chainIndex--; } return status; } } // Send finished signal for the last message in the batch. return sendUnchainedFinishedSignal(seq, handled); } status_t InputConsumer::sendTimeline(int32_t inputEventId, std::array graphicsTimeline) { ALOGD_IF(DEBUG_TRANSPORT_CONSUMER, "channel '%s' consumer ~ sendTimeline: inputEventId=%" PRId32 ", gpuCompletedTime=%" PRId64 ", presentTime=%" PRId64, mChannel->getName().c_str(), inputEventId, graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME], graphicsTimeline[GraphicsTimeline::PRESENT_TIME]); InputMessage msg; msg.header.type = InputMessage::Type::TIMELINE; msg.header.seq = 0; msg.body.timeline.eventId = inputEventId; msg.body.timeline.graphicsTimeline = std::move(graphicsTimeline); return mChannel->sendMessage(&msg); } nsecs_t InputConsumer::getConsumeTime(uint32_t seq) const { auto it = mConsumeTimes.find(seq); // Consume time will be missing if either 'finishInputEvent' is called twice, or if it was // called for the wrong (synthetic?) input event. Either way, it is a bug that should be fixed. LOG_ALWAYS_FATAL_IF(it == mConsumeTimes.end(), "Could not find consume time for seq=%" PRIu32, seq); return it->second; } void InputConsumer::popConsumeTime(uint32_t seq) { mConsumeTimes.erase(seq); } status_t InputConsumer::sendUnchainedFinishedSignal(uint32_t seq, bool handled) { InputMessage msg; msg.header.type = InputMessage::Type::FINISHED; msg.header.seq = seq; msg.body.finished.handled = handled; msg.body.finished.consumeTime = getConsumeTime(seq); status_t result = mChannel->sendMessage(&msg); if (result == OK) { // Remove the consume time if the socket write succeeded. We will not need to ack this // message anymore. If the socket write did not succeed, we will try again and will still // need consume time. popConsumeTime(seq); // Trace the event processing timeline - event was just finished ATRACE_ASYNC_END(mProcessingTraceTag.c_str(), /*cookie=*/seq); } return result; } bool InputConsumer::hasPendingBatch() const { return !mBatches.empty(); } int32_t InputConsumer::getPendingBatchSource() const { if (mBatches.empty()) { return AINPUT_SOURCE_CLASS_NONE; } const Batch& batch = mBatches[0]; const InputMessage& head = batch.samples[0]; return head.body.motion.source; } bool InputConsumer::probablyHasInput() const { return hasPendingBatch() || mChannel->probablyHasInput(); } ssize_t InputConsumer::findBatch(int32_t deviceId, int32_t source) const { for (size_t i = 0; i < mBatches.size(); i++) { const Batch& batch = mBatches[i]; const InputMessage& head = batch.samples[0]; if (head.body.motion.deviceId == deviceId && head.body.motion.source == source) { return i; } } return -1; } ssize_t InputConsumer::findTouchState(int32_t deviceId, int32_t source) const { for (size_t i = 0; i < mTouchStates.size(); i++) { const TouchState& touchState = mTouchStates[i]; if (touchState.deviceId == deviceId && touchState.source == source) { return i; } } return -1; } bool InputConsumer::canAddSample(const Batch& batch, const InputMessage* msg) { const InputMessage& head = batch.samples[0]; uint32_t pointerCount = msg->body.motion.pointerCount; if (head.body.motion.pointerCount != pointerCount || head.body.motion.action != msg->body.motion.action) { return false; } for (size_t i = 0; i < pointerCount; i++) { if (head.body.motion.pointers[i].properties != msg->body.motion.pointers[i].properties) { return false; } } return true; } ssize_t InputConsumer::findSampleNoLaterThan(const Batch& batch, nsecs_t time) { size_t numSamples = batch.samples.size(); size_t index = 0; while (index < numSamples && batch.samples[index].body.motion.eventTime <= time) { index += 1; } return ssize_t(index) - 1; } std::string InputConsumer::dump() const { std::string out; out = out + "mResampleTouch = " + toString(mResampleTouch) + "\n"; out = out + "mChannel = " + mChannel->getName() + "\n"; out = out + "mMsgDeferred: " + toString(mMsgDeferred) + "\n"; if (mMsgDeferred) { out = out + "mMsg : " + ftl::enum_string(mMsg.header.type) + "\n"; } out += "Batches:\n"; for (const Batch& batch : mBatches) { out += " Batch:\n"; for (const InputMessage& msg : batch.samples) { out += android::base::StringPrintf(" Message %" PRIu32 ": %s ", msg.header.seq, ftl::enum_string(msg.header.type).c_str()); switch (msg.header.type) { case InputMessage::Type::KEY: { out += android::base::StringPrintf("action=%s keycode=%" PRId32, KeyEvent::actionToString( msg.body.key.action), msg.body.key.keyCode); break; } case InputMessage::Type::MOTION: { out = out + "action=" + MotionEvent::actionToString(msg.body.motion.action); for (uint32_t i = 0; i < msg.body.motion.pointerCount; i++) { const float x = msg.body.motion.pointers[i].coords.getX(); const float y = msg.body.motion.pointers[i].coords.getY(); out += android::base::StringPrintf("\n Pointer %" PRIu32 " : x=%.1f y=%.1f", i, x, y); } break; } case InputMessage::Type::FINISHED: { out += android::base::StringPrintf("handled=%s, consumeTime=%" PRId64, toString(msg.body.finished.handled), msg.body.finished.consumeTime); break; } case InputMessage::Type::FOCUS: { out += android::base::StringPrintf("hasFocus=%s", toString(msg.body.focus.hasFocus)); break; } case InputMessage::Type::CAPTURE: { out += android::base::StringPrintf("hasCapture=%s", toString(msg.body.capture .pointerCaptureEnabled)); break; } case InputMessage::Type::DRAG: { out += android::base::StringPrintf("x=%.1f y=%.1f, isExiting=%s", msg.body.drag.x, msg.body.drag.y, toString(msg.body.drag.isExiting)); break; } case InputMessage::Type::TIMELINE: { const nsecs_t gpuCompletedTime = msg.body.timeline .graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME]; const nsecs_t presentTime = msg.body.timeline.graphicsTimeline[GraphicsTimeline::PRESENT_TIME]; out += android::base::StringPrintf("inputEventId=%" PRId32 ", gpuCompletedTime=%" PRId64 ", presentTime=%" PRId64, msg.body.timeline.eventId, gpuCompletedTime, presentTime); break; } case InputMessage::Type::TOUCH_MODE: { out += android::base::StringPrintf("isInTouchMode=%s", toString(msg.body.touchMode.isInTouchMode)); break; } } out += "\n"; } } if (mBatches.empty()) { out += " \n"; } out += "mSeqChains:\n"; for (const SeqChain& chain : mSeqChains) { out += android::base::StringPrintf(" chain: seq = %" PRIu32 " chain=%" PRIu32, chain.seq, chain.chain); } if (mSeqChains.empty()) { out += " \n"; } out += "mConsumeTimes:\n"; for (const auto& [seq, consumeTime] : mConsumeTimes) { out += android::base::StringPrintf(" seq = %" PRIu32 " consumeTime = %" PRId64, seq, consumeTime); } if (mConsumeTimes.empty()) { out += " \n"; } return out; } } // namespace android