/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include namespace android { namespace { // Default display id. constexpr ui::LogicalDisplayId DISPLAY_ID = ui::LogicalDisplayId::DEFAULT; constexpr float EPSILON = MotionEvent::ROUNDING_PRECISION; constexpr auto POINTER_0_DOWN = AMOTION_EVENT_ACTION_POINTER_DOWN | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); constexpr auto POINTER_1_DOWN = AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); constexpr auto POINTER_0_UP = AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); constexpr auto POINTER_1_UP = AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); std::array asFloat9(const ui::Transform& t) { std::array mat{}; mat[0] = t[0][0]; mat[1] = t[1][0]; mat[2] = t[2][0]; mat[3] = t[0][1]; mat[4] = t[1][1]; mat[5] = t[2][1]; mat[6] = t[0][2]; mat[7] = t[1][2]; mat[8] = t[2][2]; return mat; } class BaseTest : public testing::Test { protected: static constexpr std::array HMAC = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; }; } // namespace // --- PointerCoordsTest --- class PointerCoordsTest : public BaseTest { }; TEST_F(PointerCoordsTest, ClearSetsBitsToZero) { PointerCoords coords; coords.clear(); ASSERT_EQ(0ULL, coords.bits); ASSERT_FALSE(coords.isResampled); } TEST_F(PointerCoordsTest, AxisValues) { PointerCoords coords; coords.clear(); // Check invariants when no axes are present. ASSERT_EQ(0, coords.getAxisValue(0)) << "getAxisValue should return zero because axis is not present"; ASSERT_EQ(0, coords.getAxisValue(1)) << "getAxisValue should return zero because axis is not present"; // Set first axis. ASSERT_EQ(OK, coords.setAxisValue(1, 5)); ASSERT_EQ(5, coords.values[0]); ASSERT_EQ(0x4000000000000000ULL, coords.bits); ASSERT_EQ(0, coords.getAxisValue(0)) << "getAxisValue should return zero because axis is not present"; ASSERT_EQ(5, coords.getAxisValue(1)) << "getAxisValue should return value of axis"; // Set an axis with a higher id than all others. (appending value at the end) ASSERT_EQ(OK, coords.setAxisValue(3, 2)); ASSERT_EQ(0x5000000000000000ULL, coords.bits); ASSERT_EQ(5, coords.values[0]); ASSERT_EQ(2, coords.values[1]); ASSERT_EQ(0, coords.getAxisValue(0)) << "getAxisValue should return zero because axis is not present"; ASSERT_EQ(5, coords.getAxisValue(1)) << "getAxisValue should return value of axis"; ASSERT_EQ(0, coords.getAxisValue(2)) << "getAxisValue should return zero because axis is not present"; ASSERT_EQ(2, coords.getAxisValue(3)) << "getAxisValue should return value of axis"; // Set an axis with an id lower than all others. (prepending value at beginning) ASSERT_EQ(OK, coords.setAxisValue(0, 4)); ASSERT_EQ(0xd000000000000000ULL, coords.bits); ASSERT_EQ(4, coords.values[0]); ASSERT_EQ(5, coords.values[1]); ASSERT_EQ(2, coords.values[2]); ASSERT_EQ(4, coords.getAxisValue(0)) << "getAxisValue should return value of axis"; ASSERT_EQ(5, coords.getAxisValue(1)) << "getAxisValue should return value of axis"; ASSERT_EQ(0, coords.getAxisValue(2)) << "getAxisValue should return zero because axis is not present"; ASSERT_EQ(2, coords.getAxisValue(3)) << "getAxisValue should return value of axis"; // Set an axis with an id between the others. (inserting value in the middle) ASSERT_EQ(OK, coords.setAxisValue(2, 1)); ASSERT_EQ(0xf000000000000000ULL, coords.bits); ASSERT_EQ(4, coords.values[0]); ASSERT_EQ(5, coords.values[1]); ASSERT_EQ(1, coords.values[2]); ASSERT_EQ(2, coords.values[3]); ASSERT_EQ(4, coords.getAxisValue(0)) << "getAxisValue should return value of axis"; ASSERT_EQ(5, coords.getAxisValue(1)) << "getAxisValue should return value of axis"; ASSERT_EQ(1, coords.getAxisValue(2)) << "getAxisValue should return value of axis"; ASSERT_EQ(2, coords.getAxisValue(3)) << "getAxisValue should return value of axis"; // Set an existing axis value in place. ASSERT_EQ(OK, coords.setAxisValue(1, 6)); ASSERT_EQ(0xf000000000000000ULL, coords.bits); ASSERT_EQ(4, coords.values[0]); ASSERT_EQ(6, coords.values[1]); ASSERT_EQ(1, coords.values[2]); ASSERT_EQ(2, coords.values[3]); ASSERT_EQ(4, coords.getAxisValue(0)) << "getAxisValue should return value of axis"; ASSERT_EQ(6, coords.getAxisValue(1)) << "getAxisValue should return value of axis"; ASSERT_EQ(1, coords.getAxisValue(2)) << "getAxisValue should return value of axis"; ASSERT_EQ(2, coords.getAxisValue(3)) << "getAxisValue should return value of axis"; // Set maximum number of axes. for (size_t axis = 4; axis < PointerCoords::MAX_AXES; axis++) { ASSERT_EQ(OK, coords.setAxisValue(axis, axis)); } ASSERT_EQ(PointerCoords::MAX_AXES, __builtin_popcountll(coords.bits)); // Try to set one more axis beyond maximum number. // Ensure bits are unchanged. ASSERT_EQ(NO_MEMORY, coords.setAxisValue(PointerCoords::MAX_AXES, 100)); ASSERT_EQ(PointerCoords::MAX_AXES, __builtin_popcountll(coords.bits)); } TEST_F(PointerCoordsTest, Parcel) { Parcel parcel; PointerCoords inCoords; inCoords.clear(); PointerCoords outCoords; // Round trip with empty coords. inCoords.writeToParcel(&parcel); parcel.setDataPosition(0); outCoords.readFromParcel(&parcel); ASSERT_EQ(0ULL, outCoords.bits); ASSERT_FALSE(outCoords.isResampled); // Round trip with some values. parcel.freeData(); inCoords.setAxisValue(2, 5); inCoords.setAxisValue(5, 8); inCoords.isResampled = true; inCoords.writeToParcel(&parcel); parcel.setDataPosition(0); outCoords.readFromParcel(&parcel); ASSERT_EQ(outCoords.bits, inCoords.bits); ASSERT_EQ(outCoords.values[0], inCoords.values[0]); ASSERT_EQ(outCoords.values[1], inCoords.values[1]); ASSERT_TRUE(outCoords.isResampled); } // --- KeyEventTest --- class KeyEventTest : public BaseTest { }; TEST_F(KeyEventTest, Properties) { KeyEvent event; // Initialize and get properties. constexpr nsecs_t ARBITRARY_DOWN_TIME = 1; constexpr nsecs_t ARBITRARY_EVENT_TIME = 2; const int32_t id = InputEvent::nextId(); event.initialize(id, 2, AINPUT_SOURCE_GAMEPAD, DISPLAY_ID, HMAC, AKEY_EVENT_ACTION_DOWN, AKEY_EVENT_FLAG_FROM_SYSTEM, AKEYCODE_BUTTON_X, 121, AMETA_ALT_ON, 1, ARBITRARY_DOWN_TIME, ARBITRARY_EVENT_TIME); ASSERT_EQ(id, event.getId()); ASSERT_EQ(InputEventType::KEY, event.getType()); ASSERT_EQ(2, event.getDeviceId()); ASSERT_EQ(AINPUT_SOURCE_GAMEPAD, event.getSource()); ASSERT_EQ(DISPLAY_ID, event.getDisplayId()); EXPECT_EQ(HMAC, event.getHmac()); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, event.getAction()); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, event.getFlags()); ASSERT_EQ(AKEYCODE_BUTTON_X, event.getKeyCode()); ASSERT_EQ(121, event.getScanCode()); ASSERT_EQ(AMETA_ALT_ON, event.getMetaState()); ASSERT_EQ(1, event.getRepeatCount()); ASSERT_EQ(ARBITRARY_DOWN_TIME, event.getDownTime()); ASSERT_EQ(ARBITRARY_EVENT_TIME, event.getEventTime()); // Set source. event.setSource(AINPUT_SOURCE_JOYSTICK); ASSERT_EQ(AINPUT_SOURCE_JOYSTICK, event.getSource()); // Set display id. constexpr ui::LogicalDisplayId newDisplayId = ui::LogicalDisplayId{2}; event.setDisplayId(newDisplayId); ASSERT_EQ(newDisplayId, event.getDisplayId()); } // --- MotionEventTest --- class MotionEventTest : public BaseTest { protected: static constexpr nsecs_t ARBITRARY_DOWN_TIME = 1; static constexpr nsecs_t ARBITRARY_EVENT_TIME = 2; static constexpr float X_SCALE = 2.0; static constexpr float Y_SCALE = 3.0; static constexpr float X_OFFSET = 1; static constexpr float Y_OFFSET = 1.1; static constexpr float RAW_X_SCALE = 4.0; static constexpr float RAW_Y_SCALE = -5.0; static constexpr float RAW_X_OFFSET = 12; static constexpr float RAW_Y_OFFSET = -41.1; void SetUp() override; int32_t mId; ui::Transform mTransform; ui::Transform mRawTransform; PointerProperties mPointerProperties[2]; struct Sample { PointerCoords pointerCoords[2]; }; std::array mSamples{}; void initializeEventWithHistory(MotionEvent* event); void assertEqualsEventWithHistory(const MotionEvent* event); }; void MotionEventTest::SetUp() { mId = InputEvent::nextId(); mTransform.set({X_SCALE, 0, X_OFFSET, 0, Y_SCALE, Y_OFFSET, 0, 0, 1}); mRawTransform.set({RAW_X_SCALE, 0, RAW_X_OFFSET, 0, RAW_Y_SCALE, RAW_Y_OFFSET, 0, 0, 1}); mPointerProperties[0].clear(); mPointerProperties[0].id = 1; mPointerProperties[0].toolType = ToolType::FINGER; mPointerProperties[1].clear(); mPointerProperties[1].id = 2; mPointerProperties[1].toolType = ToolType::STYLUS; mSamples[0].pointerCoords[0].clear(); mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, 10); mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, 11); mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 12); mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 13); mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 14); mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 15); mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 16); mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 17); mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 18); mSamples[0].pointerCoords[0].isResampled = true; mSamples[0].pointerCoords[1].clear(); mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_X, 20); mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_Y, 21); mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 22); mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 23); mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 24); mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 25); mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 26); mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 27); mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 28); mSamples[1].pointerCoords[0].clear(); mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, 110); mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, 111); mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 112); mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 113); mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 114); mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 115); mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 116); mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 117); mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 118); mSamples[1].pointerCoords[0].isResampled = true; mSamples[1].pointerCoords[1].clear(); mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_X, 120); mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_Y, 121); mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 122); mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 123); mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 124); mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 125); mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 126); mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 127); mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 128); mSamples[1].pointerCoords[1].isResampled = true; mSamples[2].pointerCoords[0].clear(); mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, 210); mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, 211); mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 212); mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 213); mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 214); mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 215); mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 216); mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 217); mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 218); mSamples[2].pointerCoords[1].clear(); mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_X, 220); mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_Y, 221); mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 222); mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 223); mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 224); mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 225); mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 226); mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 227); mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 228); } void MotionEventTest::initializeEventWithHistory(MotionEvent* event) { const int32_t flags = AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED | AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_ORIENTATION | AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_DIRECTIONAL_ORIENTATION; event->initialize(mId, 2, AINPUT_SOURCE_TOUCHSCREEN, DISPLAY_ID, HMAC, AMOTION_EVENT_ACTION_MOVE, 0, flags, AMOTION_EVENT_EDGE_FLAG_TOP, AMETA_ALT_ON, AMOTION_EVENT_BUTTON_PRIMARY, MotionClassification::NONE, mTransform, 2.0f, 2.1f, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, mRawTransform, ARBITRARY_DOWN_TIME, ARBITRARY_EVENT_TIME, 2, mPointerProperties, mSamples[0].pointerCoords); event->addSample(ARBITRARY_EVENT_TIME + 1, mSamples[1].pointerCoords); event->addSample(ARBITRARY_EVENT_TIME + 2, mSamples[2].pointerCoords); } void MotionEventTest::assertEqualsEventWithHistory(const MotionEvent* event) { // Check properties. ASSERT_EQ(mId, event->getId()); ASSERT_EQ(InputEventType::MOTION, event->getType()); ASSERT_EQ(2, event->getDeviceId()); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, event->getSource()); ASSERT_EQ(DISPLAY_ID, event->getDisplayId()); EXPECT_EQ(HMAC, event->getHmac()); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, event->getAction()); ASSERT_EQ(AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED | AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_ORIENTATION | AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_DIRECTIONAL_ORIENTATION, event->getFlags()); ASSERT_EQ(AMOTION_EVENT_EDGE_FLAG_TOP, event->getEdgeFlags()); ASSERT_EQ(AMETA_ALT_ON, event->getMetaState()); ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, event->getButtonState()); ASSERT_EQ(MotionClassification::NONE, event->getClassification()); EXPECT_EQ(mTransform, event->getTransform()); ASSERT_NEAR((-RAW_X_OFFSET / RAW_X_SCALE) * X_SCALE + X_OFFSET, event->getRawXOffset(), EPSILON); ASSERT_NEAR((-RAW_Y_OFFSET / RAW_Y_SCALE) * Y_SCALE + Y_OFFSET, event->getRawYOffset(), EPSILON); ASSERT_EQ(2.0f, event->getXPrecision()); ASSERT_EQ(2.1f, event->getYPrecision()); ASSERT_EQ(ARBITRARY_DOWN_TIME, event->getDownTime()); ASSERT_EQ(2U, event->getPointerCount()); ASSERT_EQ(1, event->getPointerId(0)); ASSERT_EQ(ToolType::FINGER, event->getToolType(0)); ASSERT_EQ(2, event->getPointerId(1)); ASSERT_EQ(ToolType::STYLUS, event->getToolType(1)); ASSERT_EQ(2U, event->getHistorySize()); // Check data. ASSERT_EQ(ARBITRARY_EVENT_TIME, event->getHistoricalEventTime(0)); ASSERT_EQ(ARBITRARY_EVENT_TIME + 1, event->getHistoricalEventTime(1)); ASSERT_EQ(ARBITRARY_EVENT_TIME + 2, event->getEventTime()); // Ensure the underlying PointerCoords are identical. for (int sampleIdx = 0; sampleIdx < 3; sampleIdx++) { for (int pointerIdx = 0; pointerIdx < 2; pointerIdx++) { ASSERT_EQ(mSamples[sampleIdx].pointerCoords[pointerIdx], event->getSamplePointerCoords()[sampleIdx * 2 + pointerIdx]); } } ASSERT_NEAR(11, event->getHistoricalRawPointerCoords(0, 0)->getAxisValue(AMOTION_EVENT_AXIS_Y), EPSILON); ASSERT_NEAR(21, event->getHistoricalRawPointerCoords(1, 0)->getAxisValue(AMOTION_EVENT_AXIS_Y), EPSILON); ASSERT_NEAR(111, event->getHistoricalRawPointerCoords(0, 1)->getAxisValue(AMOTION_EVENT_AXIS_Y), EPSILON); ASSERT_NEAR(121, event->getHistoricalRawPointerCoords(1, 1)->getAxisValue(AMOTION_EVENT_AXIS_Y), EPSILON); ASSERT_NEAR(211, event->getRawPointerCoords(0)->getAxisValue(AMOTION_EVENT_AXIS_Y), EPSILON); ASSERT_NEAR(221, event->getRawPointerCoords(1)->getAxisValue(AMOTION_EVENT_AXIS_Y), EPSILON); ASSERT_NEAR(RAW_Y_OFFSET + 11 * RAW_Y_SCALE, event->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, 0, 0), EPSILON); ASSERT_NEAR(RAW_Y_OFFSET + 21 * RAW_Y_SCALE, event->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, 1, 0), EPSILON); ASSERT_NEAR(RAW_Y_OFFSET + 111 * RAW_Y_SCALE, event->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, 0, 1), EPSILON); ASSERT_NEAR(RAW_Y_OFFSET + 121 * RAW_Y_SCALE, event->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, 1, 1), EPSILON); ASSERT_NEAR(RAW_Y_OFFSET + 211 * RAW_Y_SCALE, event->getRawAxisValue(AMOTION_EVENT_AXIS_Y, 0), EPSILON); ASSERT_NEAR(RAW_Y_OFFSET + 221 * RAW_Y_SCALE, event->getRawAxisValue(AMOTION_EVENT_AXIS_Y, 1), EPSILON); ASSERT_NEAR(RAW_X_OFFSET + 10 * RAW_X_SCALE, event->getHistoricalRawX(0, 0), EPSILON); ASSERT_NEAR(RAW_X_OFFSET + 20 * RAW_X_SCALE, event->getHistoricalRawX(1, 0), EPSILON); ASSERT_NEAR(RAW_X_OFFSET + 110 * RAW_X_SCALE, event->getHistoricalRawX(0, 1), EPSILON); ASSERT_NEAR(RAW_X_OFFSET + 120 * RAW_X_SCALE, event->getHistoricalRawX(1, 1), EPSILON); ASSERT_NEAR(RAW_X_OFFSET + 210 * RAW_X_SCALE, event->getRawX(0), EPSILON); ASSERT_NEAR(RAW_X_OFFSET + 220 * RAW_X_SCALE, event->getRawX(1), EPSILON); ASSERT_NEAR(RAW_Y_OFFSET + 11 * RAW_Y_SCALE, event->getHistoricalRawY(0, 0), EPSILON); ASSERT_NEAR(RAW_Y_OFFSET + 21 * RAW_Y_SCALE, event->getHistoricalRawY(1, 0), EPSILON); ASSERT_NEAR(RAW_Y_OFFSET + 111 * RAW_Y_SCALE, event->getHistoricalRawY(0, 1), EPSILON); ASSERT_NEAR(RAW_Y_OFFSET + 121 * RAW_Y_SCALE, event->getHistoricalRawY(1, 1), EPSILON); ASSERT_NEAR(RAW_Y_OFFSET + 211 * RAW_Y_SCALE, event->getRawY(0), EPSILON); ASSERT_NEAR(RAW_Y_OFFSET + 221 * RAW_Y_SCALE, event->getRawY(1), EPSILON); ASSERT_NEAR(X_OFFSET + 10 * X_SCALE, event->getHistoricalX(0, 0), EPSILON); ASSERT_NEAR(X_OFFSET + 20 * X_SCALE, event->getHistoricalX(1, 0), EPSILON); ASSERT_NEAR(X_OFFSET + 110 * X_SCALE, event->getHistoricalX(0, 1), EPSILON); ASSERT_NEAR(X_OFFSET + 120 * X_SCALE, event->getHistoricalX(1, 1), EPSILON); ASSERT_NEAR(X_OFFSET + 210 * X_SCALE, event->getX(0), EPSILON); ASSERT_NEAR(X_OFFSET + 220 * X_SCALE, event->getX(1), EPSILON); ASSERT_NEAR(Y_OFFSET + 11 * Y_SCALE, event->getHistoricalY(0, 0), EPSILON); ASSERT_NEAR(Y_OFFSET + 21 * Y_SCALE, event->getHistoricalY(1, 0), EPSILON); ASSERT_NEAR(Y_OFFSET + 111 * Y_SCALE, event->getHistoricalY(0, 1), EPSILON); ASSERT_NEAR(Y_OFFSET + 121 * Y_SCALE, event->getHistoricalY(1, 1), EPSILON); ASSERT_NEAR(Y_OFFSET + 211 * Y_SCALE, event->getY(0), EPSILON); ASSERT_NEAR(Y_OFFSET + 221 * Y_SCALE, event->getY(1), EPSILON); ASSERT_EQ(12, event->getHistoricalPressure(0, 0)); ASSERT_EQ(22, event->getHistoricalPressure(1, 0)); ASSERT_EQ(112, event->getHistoricalPressure(0, 1)); ASSERT_EQ(122, event->getHistoricalPressure(1, 1)); ASSERT_EQ(212, event->getPressure(0)); ASSERT_EQ(222, event->getPressure(1)); ASSERT_EQ(13, event->getHistoricalSize(0, 0)); ASSERT_EQ(23, event->getHistoricalSize(1, 0)); ASSERT_EQ(113, event->getHistoricalSize(0, 1)); ASSERT_EQ(123, event->getHistoricalSize(1, 1)); ASSERT_EQ(213, event->getSize(0)); ASSERT_EQ(223, event->getSize(1)); ASSERT_EQ(14, event->getHistoricalTouchMajor(0, 0)); ASSERT_EQ(24, event->getHistoricalTouchMajor(1, 0)); ASSERT_EQ(114, event->getHistoricalTouchMajor(0, 1)); ASSERT_EQ(124, event->getHistoricalTouchMajor(1, 1)); ASSERT_EQ(214, event->getTouchMajor(0)); ASSERT_EQ(224, event->getTouchMajor(1)); ASSERT_EQ(15, event->getHistoricalTouchMinor(0, 0)); ASSERT_EQ(25, event->getHistoricalTouchMinor(1, 0)); ASSERT_EQ(115, event->getHistoricalTouchMinor(0, 1)); ASSERT_EQ(125, event->getHistoricalTouchMinor(1, 1)); ASSERT_EQ(215, event->getTouchMinor(0)); ASSERT_EQ(225, event->getTouchMinor(1)); ASSERT_EQ(16, event->getHistoricalToolMajor(0, 0)); ASSERT_EQ(26, event->getHistoricalToolMajor(1, 0)); ASSERT_EQ(116, event->getHistoricalToolMajor(0, 1)); ASSERT_EQ(126, event->getHistoricalToolMajor(1, 1)); ASSERT_EQ(216, event->getToolMajor(0)); ASSERT_EQ(226, event->getToolMajor(1)); ASSERT_EQ(17, event->getHistoricalToolMinor(0, 0)); ASSERT_EQ(27, event->getHistoricalToolMinor(1, 0)); ASSERT_EQ(117, event->getHistoricalToolMinor(0, 1)); ASSERT_EQ(127, event->getHistoricalToolMinor(1, 1)); ASSERT_EQ(217, event->getToolMinor(0)); ASSERT_EQ(227, event->getToolMinor(1)); // Calculate the orientation after scaling, keeping in mind that an orientation of 0 is "up", // and the positive y direction is "down". auto toScaledOrientation = [](float angle) { const float x = sinf(angle) * X_SCALE; const float y = -cosf(angle) * Y_SCALE; return atan2f(x, -y); }; ASSERT_EQ(toScaledOrientation(18), event->getHistoricalOrientation(0, 0)); ASSERT_EQ(toScaledOrientation(28), event->getHistoricalOrientation(1, 0)); ASSERT_EQ(toScaledOrientation(118), event->getHistoricalOrientation(0, 1)); ASSERT_EQ(toScaledOrientation(128), event->getHistoricalOrientation(1, 1)); ASSERT_EQ(toScaledOrientation(218), event->getOrientation(0)); ASSERT_EQ(toScaledOrientation(228), event->getOrientation(1)); ASSERT_TRUE(event->isResampled(0, 0)); ASSERT_FALSE(event->isResampled(1, 0)); ASSERT_TRUE(event->isResampled(0, 1)); ASSERT_TRUE(event->isResampled(1, 1)); ASSERT_FALSE(event->isResampled(0, 2)); ASSERT_FALSE(event->isResampled(1, 2)); } TEST_F(MotionEventTest, Properties) { MotionEvent event; // Initialize, add samples and check properties. initializeEventWithHistory(&event); ASSERT_NO_FATAL_FAILURE(assertEqualsEventWithHistory(&event)); // Set source. event.setSource(AINPUT_SOURCE_JOYSTICK); ASSERT_EQ(AINPUT_SOURCE_JOYSTICK, event.getSource()); // Set displayId. constexpr ui::LogicalDisplayId newDisplayId = ui::LogicalDisplayId{2}; event.setDisplayId(newDisplayId); ASSERT_EQ(newDisplayId, event.getDisplayId()); // Set action. event.setAction(AMOTION_EVENT_ACTION_CANCEL); ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, event.getAction()); // Set meta state. event.setMetaState(AMETA_CTRL_ON); ASSERT_EQ(AMETA_CTRL_ON, event.getMetaState()); } TEST_F(MotionEventTest, CopyFrom_KeepHistory) { MotionEvent event; initializeEventWithHistory(&event); MotionEvent copy; copy.copyFrom(&event, /*keepHistory=*/true); ASSERT_NO_FATAL_FAILURE(assertEqualsEventWithHistory(&event)); } TEST_F(MotionEventTest, CopyFrom_DoNotKeepHistory) { MotionEvent event; initializeEventWithHistory(&event); MotionEvent copy; copy.copyFrom(&event, /*keepHistory=*/false); ASSERT_EQ(event.getPointerCount(), copy.getPointerCount()); ASSERT_EQ(0U, copy.getHistorySize()); ASSERT_EQ(event.getPointerId(0), copy.getPointerId(0)); ASSERT_EQ(event.getPointerId(1), copy.getPointerId(1)); ASSERT_EQ(event.getEventTime(), copy.getEventTime()); ASSERT_EQ(event.getX(0), copy.getX(0)); } TEST_F(MotionEventTest, SplitPointerDown) { MotionEvent event = MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN) .downTime(ARBITRARY_DOWN_TIME) .pointer(PointerBuilder(/*id=*/4, ToolType::FINGER).x(4).y(4)) .pointer(PointerBuilder(/*id=*/6, ToolType::FINGER).x(6).y(6)) .pointer(PointerBuilder(/*id=*/8, ToolType::FINGER).x(8).y(8)) .build(); MotionEvent splitDown; std::bitset splitDownIds{}; splitDownIds.set(6, true); splitDown.splitFrom(event, splitDownIds, /*eventId=*/42); ASSERT_EQ(splitDown.getAction(), AMOTION_EVENT_ACTION_DOWN); ASSERT_EQ(splitDown.getPointerCount(), 1u); ASSERT_EQ(splitDown.getPointerId(0), 6); ASSERT_EQ(splitDown.getX(0), 6); ASSERT_EQ(splitDown.getY(0), 6); MotionEvent splitPointerDown; std::bitset splitPointerDownIds{}; splitPointerDownIds.set(6, true); splitPointerDownIds.set(8, true); splitPointerDown.splitFrom(event, splitPointerDownIds, /*eventId=*/42); ASSERT_EQ(splitPointerDown.getAction(), POINTER_0_DOWN); ASSERT_EQ(splitPointerDown.getPointerCount(), 2u); ASSERT_EQ(splitPointerDown.getPointerId(0), 6); ASSERT_EQ(splitPointerDown.getX(0), 6); ASSERT_EQ(splitPointerDown.getY(0), 6); ASSERT_EQ(splitPointerDown.getPointerId(1), 8); ASSERT_EQ(splitPointerDown.getX(1), 8); ASSERT_EQ(splitPointerDown.getY(1), 8); MotionEvent splitMove; std::bitset splitMoveIds{}; splitMoveIds.set(4, true); splitMove.splitFrom(event, splitMoveIds, /*eventId=*/43); ASSERT_EQ(splitMove.getAction(), AMOTION_EVENT_ACTION_MOVE); ASSERT_EQ(splitMove.getPointerCount(), 1u); ASSERT_EQ(splitMove.getPointerId(0), 4); ASSERT_EQ(splitMove.getX(0), 4); ASSERT_EQ(splitMove.getY(0), 4); } TEST_F(MotionEventTest, SplitPointerUp) { MotionEvent event = MotionEventBuilder(POINTER_0_UP, AINPUT_SOURCE_TOUCHSCREEN) .downTime(ARBITRARY_DOWN_TIME) .pointer(PointerBuilder(/*id=*/4, ToolType::FINGER).x(4).y(4)) .pointer(PointerBuilder(/*id=*/6, ToolType::FINGER).x(6).y(6)) .pointer(PointerBuilder(/*id=*/8, ToolType::FINGER).x(8).y(8)) .build(); MotionEvent splitUp; std::bitset splitUpIds{}; splitUpIds.set(4, true); splitUp.splitFrom(event, splitUpIds, /*eventId=*/42); ASSERT_EQ(splitUp.getAction(), AMOTION_EVENT_ACTION_UP); ASSERT_EQ(splitUp.getPointerCount(), 1u); ASSERT_EQ(splitUp.getPointerId(0), 4); ASSERT_EQ(splitUp.getX(0), 4); ASSERT_EQ(splitUp.getY(0), 4); MotionEvent splitPointerUp; std::bitset splitPointerUpIds{}; splitPointerUpIds.set(4, true); splitPointerUpIds.set(8, true); splitPointerUp.splitFrom(event, splitPointerUpIds, /*eventId=*/42); ASSERT_EQ(splitPointerUp.getAction(), POINTER_0_UP); ASSERT_EQ(splitPointerUp.getPointerCount(), 2u); ASSERT_EQ(splitPointerUp.getPointerId(0), 4); ASSERT_EQ(splitPointerUp.getX(0), 4); ASSERT_EQ(splitPointerUp.getY(0), 4); ASSERT_EQ(splitPointerUp.getPointerId(1), 8); ASSERT_EQ(splitPointerUp.getX(1), 8); ASSERT_EQ(splitPointerUp.getY(1), 8); MotionEvent splitMove; std::bitset splitMoveIds{}; splitMoveIds.set(6, true); splitMoveIds.set(8, true); splitMove.splitFrom(event, splitMoveIds, /*eventId=*/43); ASSERT_EQ(splitMove.getAction(), AMOTION_EVENT_ACTION_MOVE); ASSERT_EQ(splitMove.getPointerCount(), 2u); ASSERT_EQ(splitMove.getPointerId(0), 6); ASSERT_EQ(splitMove.getX(0), 6); ASSERT_EQ(splitMove.getY(0), 6); ASSERT_EQ(splitMove.getPointerId(1), 8); ASSERT_EQ(splitMove.getX(1), 8); ASSERT_EQ(splitMove.getY(1), 8); } TEST_F(MotionEventTest, SplitPointerUpCancel) { MotionEvent event = MotionEventBuilder(POINTER_1_UP, AINPUT_SOURCE_TOUCHSCREEN) .downTime(ARBITRARY_DOWN_TIME) .pointer(PointerBuilder(/*id=*/4, ToolType::FINGER).x(4).y(4)) .pointer(PointerBuilder(/*id=*/6, ToolType::FINGER).x(6).y(6)) .pointer(PointerBuilder(/*id=*/8, ToolType::FINGER).x(8).y(8)) .addFlag(AMOTION_EVENT_FLAG_CANCELED) .build(); MotionEvent splitUp; std::bitset splitUpIds{}; splitUpIds.set(6, true); splitUp.splitFrom(event, splitUpIds, /*eventId=*/42); ASSERT_EQ(splitUp.getAction(), AMOTION_EVENT_ACTION_CANCEL); ASSERT_EQ(splitUp.getPointerCount(), 1u); ASSERT_EQ(splitUp.getPointerId(0), 6); ASSERT_EQ(splitUp.getX(0), 6); ASSERT_EQ(splitUp.getY(0), 6); } TEST_F(MotionEventTest, SplitPointerMove) { MotionEvent event = MotionEventBuilder(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN) .downTime(ARBITRARY_DOWN_TIME) .pointer(PointerBuilder(/*id=*/4, ToolType::FINGER).x(4).y(4)) .pointer(PointerBuilder(/*id=*/6, ToolType::FINGER).x(6).y(6)) .pointer(PointerBuilder(/*id=*/8, ToolType::FINGER).x(8).y(8)) .transform(ui::Transform(ui::Transform::ROT_90, 100, 100)) .rawTransform(ui::Transform(ui::Transform::FLIP_H, 50, 50)) .build(); MotionEvent splitMove; std::bitset splitMoveIds{}; splitMoveIds.set(4, true); splitMoveIds.set(8, true); splitMove.splitFrom(event, splitMoveIds, /*eventId=*/42); ASSERT_EQ(splitMove.getAction(), AMOTION_EVENT_ACTION_MOVE); ASSERT_EQ(splitMove.getPointerCount(), 2u); ASSERT_EQ(splitMove.getPointerId(0), 4); ASSERT_EQ(splitMove.getX(0), event.getX(0)); ASSERT_EQ(splitMove.getY(0), event.getY(0)); ASSERT_EQ(splitMove.getRawX(0), event.getRawX(0)); ASSERT_EQ(splitMove.getRawY(0), event.getRawY(0)); ASSERT_EQ(splitMove.getPointerId(1), 8); ASSERT_EQ(splitMove.getX(1), event.getX(2)); ASSERT_EQ(splitMove.getY(1), event.getY(2)); ASSERT_EQ(splitMove.getRawX(1), event.getRawX(2)); ASSERT_EQ(splitMove.getRawY(1), event.getRawY(2)); } TEST_F(MotionEventTest, OffsetLocation) { MotionEvent event; initializeEventWithHistory(&event); const float xOffset = event.getRawXOffset(); const float yOffset = event.getRawYOffset(); event.offsetLocation(5.0f, -2.0f); ASSERT_EQ(xOffset + 5.0f, event.getRawXOffset()); ASSERT_EQ(yOffset - 2.0f, event.getRawYOffset()); } TEST_F(MotionEventTest, Scale) { MotionEvent event; initializeEventWithHistory(&event); const float unscaledOrientation = event.getOrientation(0); const float unscaledXOffset = event.getRawXOffset(); const float unscaledYOffset = event.getRawYOffset(); event.scale(2.0f); ASSERT_EQ(unscaledXOffset * 2, event.getRawXOffset()); ASSERT_EQ(unscaledYOffset * 2, event.getRawYOffset()); ASSERT_NEAR((RAW_X_OFFSET + 210 * RAW_X_SCALE) * 2, event.getRawX(0), EPSILON); ASSERT_NEAR((RAW_Y_OFFSET + 211 * RAW_Y_SCALE) * 2, event.getRawY(0), EPSILON); ASSERT_NEAR((X_OFFSET + 210 * X_SCALE) * 2, event.getX(0), EPSILON); ASSERT_NEAR((Y_OFFSET + 211 * Y_SCALE) * 2, event.getY(0), EPSILON); ASSERT_EQ(212, event.getPressure(0)); ASSERT_EQ(213, event.getSize(0)); ASSERT_EQ(214 * 2, event.getTouchMajor(0)); ASSERT_EQ(215 * 2, event.getTouchMinor(0)); ASSERT_EQ(216 * 2, event.getToolMajor(0)); ASSERT_EQ(217 * 2, event.getToolMinor(0)); ASSERT_EQ(unscaledOrientation, event.getOrientation(0)); } TEST_F(MotionEventTest, Parcel) { Parcel parcel; MotionEvent inEvent; initializeEventWithHistory(&inEvent); MotionEvent outEvent; // Round trip. inEvent.writeToParcel(&parcel); parcel.setDataPosition(0); outEvent.readFromParcel(&parcel); ASSERT_NO_FATAL_FAILURE(assertEqualsEventWithHistory(&outEvent)); } static void setRotationMatrix(std::array& matrix, float angle) { float sin = sinf(angle); float cos = cosf(angle); matrix[0] = cos; matrix[1] = -sin; matrix[2] = 0; matrix[3] = sin; matrix[4] = cos; matrix[5] = 0; matrix[6] = 0; matrix[7] = 0; matrix[8] = 1.0f; } TEST_F(MotionEventTest, Transform) { // Generate some points on a circle. // Each point 'i' is a point on a circle of radius ROTATION centered at (3,2) at an angle // of ARC * i degrees clockwise relative to the Y axis. // The geometrical representation is irrelevant to the test, it's just easy to generate // and check rotation. We set the orientation to the same angle. // Coordinate system: down is increasing Y, right is increasing X. static constexpr float PI_180 = float(M_PI / 180); static constexpr float RADIUS = 10; static constexpr float ARC = 36; static constexpr float ROTATION = ARC * 2; const size_t pointerCount = 11; PointerProperties pointerProperties[pointerCount]; PointerCoords pointerCoords[pointerCount]; for (size_t i = 0; i < pointerCount; i++) { float angle = float(i * ARC * PI_180); pointerProperties[i].clear(); pointerProperties[i].id = i; pointerCoords[i].clear(); pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, sinf(angle) * RADIUS + 3); pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, -cosf(angle) * RADIUS + 2); pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, angle); } MotionEvent event; ui::Transform identityTransform; const int32_t flags = AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_ORIENTATION | AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_DIRECTIONAL_ORIENTATION; event.initialize(InputEvent::nextId(), /*deviceId=*/0, AINPUT_SOURCE_TOUCHSCREEN, DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_MOVE, /*actionButton=*/0, flags, AMOTION_EVENT_EDGE_FLAG_NONE, AMETA_NONE, /*buttonState=*/0, MotionClassification::NONE, identityTransform, /*xPrecision=*/0, /*yPrecision=*/0, /*xCursorPosition=*/3 + RADIUS, /*yCursorPosition=*/2, identityTransform, /*downTime=*/0, /*eventTime=*/0, pointerCount, pointerProperties, pointerCoords); float originalRawX = 0 + 3; float originalRawY = -RADIUS + 2; // Check original raw X and Y assumption. ASSERT_NEAR(originalRawX, event.getRawX(0), 0.001); ASSERT_NEAR(originalRawY, event.getRawY(0), 0.001); // Now translate the motion event so the circle's origin is at (0,0). event.offsetLocation(-3, -2); // Offsetting the location should preserve the raw X and Y of the first point. ASSERT_NEAR(originalRawX, event.getRawX(0), 0.001); ASSERT_NEAR(originalRawY, event.getRawY(0), 0.001); // Apply a rotation about the origin by ROTATION degrees clockwise. std::array matrix; setRotationMatrix(matrix, ROTATION * PI_180); event.transform(matrix); // Check the points. for (size_t i = 0; i < pointerCount; i++) { float angle = float((i * ARC + ROTATION) * PI_180); ASSERT_NEAR(sinf(angle) * RADIUS, event.getX(i), 0.001); ASSERT_NEAR(-cosf(angle) * RADIUS, event.getY(i), 0.001); ASSERT_NEAR(tanf(angle), tanf(event.getOrientation(i)), 0.1); } // Check cursor positions. The original cursor position is at (3 + RADIUS, 2), where the center // of the circle is (3, 2), so the cursor position is to the right of the center of the circle. // The choice of triangular functions in this test defines the angle of rotation clockwise // relative to the y-axis. Therefore the cursor position's angle is 90 degrees. Here we swap the // triangular function so that we don't have to add the 90 degrees. ASSERT_NEAR(cosf(PI_180 * ROTATION) * RADIUS, event.getXCursorPosition(), 0.001); ASSERT_NEAR(sinf(PI_180 * ROTATION) * RADIUS, event.getYCursorPosition(), 0.001); // Applying the transformation should preserve the raw X and Y of the first point. ASSERT_NEAR(originalRawX, event.getRawX(0), 0.001); ASSERT_NEAR(originalRawY, event.getRawY(0), 0.001); } MotionEvent createMotionEvent(int32_t source, uint32_t action, float x, float y, float dx, float dy, const ui::Transform& transform, const ui::Transform& rawTransform) { std::vector pointerProperties; pointerProperties.push_back(PointerProperties{/*id=*/0, ToolType::FINGER}); std::vector pointerCoords; pointerCoords.emplace_back().clear(); pointerCoords.back().setAxisValue(AMOTION_EVENT_AXIS_X, x); pointerCoords.back().setAxisValue(AMOTION_EVENT_AXIS_Y, y); pointerCoords.back().setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, dx); pointerCoords.back().setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, dy); nsecs_t eventTime = systemTime(SYSTEM_TIME_MONOTONIC); MotionEvent event; event.initialize(InputEvent::nextId(), /*deviceId=*/1, source, ui::LogicalDisplayId::DEFAULT, INVALID_HMAC, action, /*actionButton=*/0, /*flags=*/0, /*edgeFlags=*/0, AMETA_NONE, /*buttonState=*/0, MotionClassification::NONE, transform, /*xPrecision=*/0, /*yPrecision=*/0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, rawTransform, eventTime, eventTime, pointerCoords.size(), pointerProperties.data(), pointerCoords.data()); return event; } MotionEvent createTouchDownEvent(float x, float y, float dx, float dy, const ui::Transform& transform, const ui::Transform& rawTransform) { return createMotionEvent(AINPUT_SOURCE_TOUCHSCREEN, AMOTION_EVENT_ACTION_DOWN, x, y, dx, dy, transform, rawTransform); } TEST_F(MotionEventTest, ApplyTransform) { // Create a rotate-90 transform with an offset (like a window which isn't fullscreen). ui::Transform identity; ui::Transform transform(ui::Transform::ROT_90, 800, 400); transform.set(transform.tx() + 20, transform.ty() + 40); ui::Transform rawTransform(ui::Transform::ROT_90, 800, 400); MotionEvent event = createTouchDownEvent(60, 100, 42, 96, transform, rawTransform); ASSERT_EQ(700, event.getRawX(0)); ASSERT_EQ(60, event.getRawY(0)); ASSERT_NE(event.getRawX(0), event.getX(0)); ASSERT_NE(event.getRawY(0), event.getY(0)); // Relative values should be rotated but not translated. ASSERT_EQ(-96, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0)); ASSERT_EQ(42, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0)); MotionEvent changedEvent = createTouchDownEvent(60, 100, 42, 96, identity, identity); const std::array rowMajor{transform[0][0], transform[1][0], transform[2][0], transform[0][1], transform[1][1], transform[2][1], transform[0][2], transform[1][2], transform[2][2]}; changedEvent.applyTransform(rowMajor); // transformContent effectively rotates the raw coordinates, so those should now include // both rotation AND offset. ASSERT_EQ(720, changedEvent.getRawX(0)); ASSERT_EQ(100, changedEvent.getRawY(0)); // Relative values should be rotated but not translated. ASSERT_EQ(-96, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0)); ASSERT_EQ(42, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0)); // The transformed output should be the same then. ASSERT_NEAR(event.getX(0), changedEvent.getX(0), 0.001); ASSERT_NEAR(event.getY(0), changedEvent.getY(0), 0.001); ASSERT_NEAR(event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0), changedEvent.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0), 0.001); ASSERT_NEAR(event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0), changedEvent.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0), 0.001); } TEST_F(MotionEventTest, JoystickAndTouchpadAreNotTransformed) { constexpr static std::array kNonTransformedSources = {std::pair(AINPUT_SOURCE_TOUCHPAD, AMOTION_EVENT_ACTION_DOWN), std::pair(AINPUT_SOURCE_JOYSTICK, AMOTION_EVENT_ACTION_MOVE), std::pair(AINPUT_SOURCE_MOUSE_RELATIVE, AMOTION_EVENT_ACTION_MOVE)}; // Create a rotate-90 transform with an offset (like a window which isn't fullscreen). ui::Transform transform(ui::Transform::ROT_90, 800, 400); transform.set(transform.tx() + 20, transform.ty() + 40); for (const auto& [source, action] : kNonTransformedSources) { const MotionEvent event = createMotionEvent(source, action, 60, 100, 0, 0, transform, transform); // These events should not be transformed in any way. ASSERT_EQ(60, event.getX(0)); ASSERT_EQ(100, event.getY(0)); ASSERT_EQ(event.getRawX(0), event.getX(0)); ASSERT_EQ(event.getRawY(0), event.getY(0)); } } TEST_F(MotionEventTest, NonPointerSourcesAreNotTranslated) { constexpr static std::array kNonPointerSources = {std::pair(AINPUT_SOURCE_TRACKBALL, AMOTION_EVENT_ACTION_DOWN), std::pair(AINPUT_SOURCE_TOUCH_NAVIGATION, AMOTION_EVENT_ACTION_MOVE)}; // Create a rotate-90 transform with an offset (like a window which isn't fullscreen). ui::Transform transform(ui::Transform::ROT_90, 800, 400); transform.set(transform.tx() + 20, transform.ty() + 40); for (const auto& [source, action] : kNonPointerSources) { const MotionEvent event = createMotionEvent(source, action, 60, 100, 42, 96, transform, transform); // Since this event comes from a non-pointer source, it should include rotation but not // translation/offset. ASSERT_EQ(-100, event.getX(0)); ASSERT_EQ(60, event.getY(0)); ASSERT_EQ(event.getRawX(0), event.getX(0)); ASSERT_EQ(event.getRawY(0), event.getY(0)); } } TEST_F(MotionEventTest, AxesAreCorrectlyTransformed) { const ui::Transform identity; ui::Transform transform; transform.set({1.1, -2.2, 3.3, -4.4, 5.5, -6.6, 0, 0, 1}); ui::Transform rawTransform; rawTransform.set({-6.6, 5.5, -4.4, 3.3, -2.2, 1.1, 0, 0, 1}); auto transformWithoutTranslation = [](const ui::Transform& t, float x, float y) { auto newPoint = t.transform(x, y); auto newOrigin = t.transform(0, 0); return newPoint - newOrigin; }; const MotionEvent event = createTouchDownEvent(60, 100, 42, 96, transform, rawTransform); // The x and y axes should have the window transform applied. const auto newPoint = transform.transform(60, 100); ASSERT_NEAR(newPoint.x, event.getX(0), EPSILON); ASSERT_NEAR(newPoint.y, event.getY(0), EPSILON); // The raw values should have the display transform applied. const auto raw = rawTransform.transform(60, 100); ASSERT_NEAR(raw.x, event.getRawX(0), EPSILON); ASSERT_NEAR(raw.y, event.getRawY(0), EPSILON); // Relative values should have the window transform applied without any translation. const auto rel = transformWithoutTranslation(transform, 42, 96); ASSERT_NEAR(rel.x, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0), EPSILON); ASSERT_NEAR(rel.y, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0), EPSILON); } TEST_F(MotionEventTest, Initialize_SetsClassification) { std::array classifications = { MotionClassification::NONE, MotionClassification::AMBIGUOUS_GESTURE, MotionClassification::DEEP_PRESS, }; MotionEvent event; constexpr size_t pointerCount = 1; PointerProperties pointerProperties[pointerCount]; PointerCoords pointerCoords[pointerCount]; for (size_t i = 0; i < pointerCount; i++) { pointerProperties[i].clear(); pointerProperties[i].id = i; pointerCoords[i].clear(); } ui::Transform identityTransform; for (MotionClassification classification : classifications) { event.initialize(InputEvent::nextId(), /*deviceId=*/0, AINPUT_SOURCE_TOUCHSCREEN, DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_DOWN, 0, 0, AMOTION_EVENT_EDGE_FLAG_NONE, AMETA_NONE, 0, classification, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, /*downTime=*/0, /*eventTime=*/0, pointerCount, pointerProperties, pointerCoords); ASSERT_EQ(classification, event.getClassification()); } } TEST_F(MotionEventTest, Initialize_SetsCursorPosition) { MotionEvent event; constexpr size_t pointerCount = 1; PointerProperties pointerProperties[pointerCount]; PointerCoords pointerCoords[pointerCount]; for (size_t i = 0; i < pointerCount; i++) { pointerProperties[i].clear(); pointerProperties[i].id = i; pointerCoords[i].clear(); } ui::Transform identityTransform; event.initialize(InputEvent::nextId(), /*deviceId=*/0, AINPUT_SOURCE_MOUSE, DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_DOWN, 0, 0, AMOTION_EVENT_EDGE_FLAG_NONE, AMETA_NONE, 0, MotionClassification::NONE, identityTransform, 0, 0, /*xCursorPosition=*/280, /*yCursorPosition=*/540, identityTransform, /*downTime=*/0, /*eventTime=*/0, pointerCount, pointerProperties, pointerCoords); event.offsetLocation(20, 60); ASSERT_EQ(280, event.getRawXCursorPosition()); ASSERT_EQ(540, event.getRawYCursorPosition()); ASSERT_EQ(300, event.getXCursorPosition()); ASSERT_EQ(600, event.getYCursorPosition()); } TEST_F(MotionEventTest, SetCursorPosition) { MotionEvent event; initializeEventWithHistory(&event); event.setSource(AINPUT_SOURCE_MOUSE); event.setCursorPosition(3, 4); ASSERT_EQ(3, event.getXCursorPosition()); ASSERT_EQ(4, event.getYCursorPosition()); } TEST_F(MotionEventTest, CoordinatesAreRoundedAppropriately) { // These are specifically integral values, since we are testing for rounding. const vec2 EXPECTED{400.f, 700.f}; // Pick a transform such that transforming the point with its inverse and bringing that // back to the original coordinate space results in a non-zero error amount due to the // nature of floating point arithmetics. This can happen when the display is scaled. // For example, the 'adb shell wm size' command can be used to set an override for the // logical display size, which could result in the display being scaled. constexpr float scale = 720.f / 1080.f; ui::Transform transform; transform.set(scale, 0, 0, scale); ASSERT_NE(EXPECTED, transform.transform(transform.inverse().transform(EXPECTED))); // Store the inverse-transformed values in the motion event. const vec2 rawCoords = transform.inverse().transform(EXPECTED); PointerCoords pc{}; pc.setAxisValue(AMOTION_EVENT_AXIS_X, rawCoords.x); pc.setAxisValue(AMOTION_EVENT_AXIS_Y, rawCoords.y); PointerProperties pp{}; MotionEvent event; event.initialize(InputEvent::nextId(), 2, AINPUT_SOURCE_TOUCHSCREEN, DISPLAY_ID, HMAC, AMOTION_EVENT_ACTION_MOVE, 0, AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED, AMOTION_EVENT_EDGE_FLAG_TOP, AMETA_ALT_ON, AMOTION_EVENT_BUTTON_PRIMARY, MotionClassification::NONE, transform, 2.0f, 2.1f, rawCoords.x, rawCoords.y, transform, ARBITRARY_DOWN_TIME, ARBITRARY_EVENT_TIME, 1, &pp, &pc); // When using the getters from the MotionEvent to obtain the coordinates, the transformed // values should be rounded by an appropriate amount so that they now precisely equal the // original coordinates. ASSERT_EQ(EXPECTED.x, event.getX(0)); ASSERT_EQ(EXPECTED.y, event.getY(0)); ASSERT_EQ(EXPECTED.x, event.getRawX(0)); ASSERT_EQ(EXPECTED.y, event.getRawY(0)); ASSERT_EQ(EXPECTED.x, event.getXCursorPosition()); ASSERT_EQ(EXPECTED.y, event.getYCursorPosition()); } TEST_F(MotionEventTest, InvalidOrientationNotRotated) { // This touch event does not have a value for AXIS_ORIENTATION, and the flags are implicitly // set to 0. The transform is set to a 90-degree rotation. MotionEvent event = MotionEventBuilder(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN) .downTime(ARBITRARY_DOWN_TIME) .pointer(PointerBuilder(/*id=*/4, ToolType::FINGER).x(4).y(4)) .transform(ui::Transform(ui::Transform::ROT_90, 100, 100)) .rawTransform(ui::Transform(ui::Transform::FLIP_H, 50, 50)) .build(); ASSERT_EQ(event.getOrientation(/*pointerIndex=*/0), 0.f); event.transform(asFloat9(ui::Transform(ui::Transform::ROT_90, 100, 100))); ASSERT_EQ(event.getOrientation(/*pointerIndex=*/0), 0.f); event.transform(asFloat9(ui::Transform(ui::Transform::ROT_180, 100, 100))); ASSERT_EQ(event.getOrientation(/*pointerIndex=*/0), 0.f); event.applyTransform(asFloat9(ui::Transform(ui::Transform::ROT_270, 100, 100))); ASSERT_EQ(event.getOrientation(/*pointerIndex=*/0), 0.f); } TEST_F(MotionEventTest, ValidZeroOrientationRotated) { // This touch events will implicitly have a value of 0 for its AXIS_ORIENTATION. auto builder = MotionEventBuilder(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN) .downTime(ARBITRARY_DOWN_TIME) .pointer(PointerBuilder(/*id=*/4, ToolType::FINGER).x(4).y(4)) .transform(ui::Transform(ui::Transform::ROT_90, 100, 100)) .rawTransform(ui::Transform(ui::Transform::FLIP_H, 50, 50)) .addFlag(AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_ORIENTATION); MotionEvent nonDirectionalEvent = builder.build(); MotionEvent directionalEvent = builder.addFlag(AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_DIRECTIONAL_ORIENTATION).build(); // The angle is rotated by the initial transform, a 90-degree rotation. ASSERT_NEAR(fabs(nonDirectionalEvent.getOrientation(/*pointerIndex=*/0)), M_PI_2, EPSILON); ASSERT_NEAR(directionalEvent.getOrientation(/*pointerIndex=*/0), M_PI_2, EPSILON); nonDirectionalEvent.transform(asFloat9(ui::Transform(ui::Transform::ROT_90, 100, 100))); directionalEvent.transform(asFloat9(ui::Transform(ui::Transform::ROT_90, 100, 100))); ASSERT_NEAR(nonDirectionalEvent.getOrientation(/*pointerIndex=*/0), 0.f, EPSILON); ASSERT_NEAR(fabs(directionalEvent.getOrientation(/*pointerIndex=*/0)), M_PI, EPSILON); nonDirectionalEvent.transform(asFloat9(ui::Transform(ui::Transform::ROT_180, 100, 100))); directionalEvent.transform(asFloat9(ui::Transform(ui::Transform::ROT_180, 100, 100))); ASSERT_NEAR(nonDirectionalEvent.getOrientation(/*pointerIndex=*/0), 0.f, EPSILON); ASSERT_NEAR(directionalEvent.getOrientation(/*pointerIndex=*/0), 0.f, EPSILON); nonDirectionalEvent.applyTransform(asFloat9(ui::Transform(ui::Transform::ROT_270, 100, 100))); directionalEvent.applyTransform(asFloat9(ui::Transform(ui::Transform::ROT_270, 100, 100))); ASSERT_NEAR(fabs(nonDirectionalEvent.getOrientation(/*pointerIndex=*/0)), M_PI_2, EPSILON); ASSERT_NEAR(directionalEvent.getOrientation(/*pointerIndex=*/0), -M_PI_2, EPSILON); } TEST_F(MotionEventTest, ValidNonZeroOrientationRotated) { const float initial = 1.f; auto builder = MotionEventBuilder(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN) .downTime(ARBITRARY_DOWN_TIME) .pointer(PointerBuilder(/*id=*/4, ToolType::FINGER) .x(4) .y(4) .axis(AMOTION_EVENT_AXIS_ORIENTATION, initial)) .transform(ui::Transform(ui::Transform::ROT_90, 100, 100)) .rawTransform(ui::Transform(ui::Transform::FLIP_H, 50, 50)) .addFlag(AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_ORIENTATION); MotionEvent nonDirectionalEvent = builder.build(); MotionEvent directionalEvent = builder.addFlag(AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_DIRECTIONAL_ORIENTATION).build(); // The angle is rotated by the initial transform, a 90-degree rotation. ASSERT_NEAR(nonDirectionalEvent.getOrientation(/*pointerIndex=*/0), initial - M_PI_2, EPSILON); ASSERT_NEAR(directionalEvent.getOrientation(/*pointerIndex=*/0), initial + M_PI_2, EPSILON); nonDirectionalEvent.transform(asFloat9(ui::Transform(ui::Transform::ROT_90, 100, 100))); directionalEvent.transform(asFloat9(ui::Transform(ui::Transform::ROT_90, 100, 100))); ASSERT_NEAR(nonDirectionalEvent.getOrientation(/*pointerIndex=*/0), initial, EPSILON); ASSERT_NEAR(directionalEvent.getOrientation(/*pointerIndex=*/0), initial - M_PI, EPSILON); nonDirectionalEvent.transform(asFloat9(ui::Transform(ui::Transform::ROT_180, 100, 100))); directionalEvent.transform(asFloat9(ui::Transform(ui::Transform::ROT_180, 100, 100))); ASSERT_NEAR(nonDirectionalEvent.getOrientation(/*pointerIndex=*/0), initial, EPSILON); ASSERT_NEAR(directionalEvent.getOrientation(/*pointerIndex=*/0), initial, EPSILON); nonDirectionalEvent.applyTransform(asFloat9(ui::Transform(ui::Transform::ROT_270, 100, 100))); directionalEvent.applyTransform(asFloat9(ui::Transform(ui::Transform::ROT_270, 100, 100))); ASSERT_NEAR(nonDirectionalEvent.getOrientation(/*pointerIndex=*/0), initial - M_PI_2, EPSILON); ASSERT_NEAR(directionalEvent.getOrientation(/*pointerIndex=*/0), initial - M_PI_2, EPSILON); } } // namespace android