/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "InputDispatcher" #define ATRACE_TAG ATRACE_TAG_INPUT #define LOG_NDEBUG 1 #include #include #include #include #include #include #include #include #include #if defined(__ANDROID__) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../InputDeviceMetricsSource.h" #include "Connection.h" #include "DebugConfig.h" #include "InputDispatcher.h" #include "trace/InputTracer.h" #include "trace/InputTracingPerfettoBackend.h" #include "trace/ThreadedBackend.h" #define INDENT " " #define INDENT2 " " #define INDENT3 " " #define INDENT4 " " using namespace android::ftl::flag_operators; using android::base::Error; using android::base::HwTimeoutMultiplier; using android::base::Result; using android::base::StringPrintf; using android::gui::DisplayInfo; using android::gui::FocusRequest; using android::gui::TouchOcclusionMode; using android::gui::WindowInfo; using android::gui::WindowInfoHandle; using android::os::InputEventInjectionResult; using android::os::InputEventInjectionSync; namespace input_flags = com::android::input::flags; namespace android::inputdispatcher { namespace { // Input tracing is only available on debuggable builds (userdebug and eng) when the feature // flag is enabled. When the flag is changed, tracing will only be available after reboot. bool isInputTracingEnabled() { static const std::string buildType = base::GetProperty("ro.build.type", "user"); static const bool isUserdebugOrEng = buildType == "userdebug" || buildType == "eng"; return input_flags::enable_input_event_tracing() && isUserdebugOrEng; } // Create the input tracing backend that writes to perfetto from a single thread. std::unique_ptr createInputTracingBackendIfEnabled() { if (!isInputTracingEnabled()) { return nullptr; } return std::make_unique>( trace::impl::PerfettoBackend()); } template void ensureEventTraced(const Entry& entry) { if (!entry.traceTracker) { LOG(FATAL) << "Expected event entry to be traced, but it wasn't: " << entry; } } // Helper to get a trace tracker from a traced key or motion entry. const std::unique_ptr& getTraceTracker(const EventEntry& entry) { switch (entry.type) { case EventEntry::Type::MOTION: { const auto& motion = static_cast(entry); ensureEventTraced(motion); return motion.traceTracker; } case EventEntry::Type::KEY: { const auto& key = static_cast(entry); ensureEventTraced(key); return key.traceTracker; } default: { const static std::unique_ptr kNullTracker; return kNullTracker; } } } // Temporarily releases a held mutex for the lifetime of the instance. // Named to match std::scoped_lock class scoped_unlock { public: explicit scoped_unlock(std::mutex& mutex) : mMutex(mutex) { mMutex.unlock(); } ~scoped_unlock() { mMutex.lock(); } private: std::mutex& mMutex; }; // Default input dispatching timeout if there is no focused application or paused window // from which to determine an appropriate dispatching timeout. const std::chrono::duration DEFAULT_INPUT_DISPATCHING_TIMEOUT = std::chrono::milliseconds( android::os::IInputConstants::UNMULTIPLIED_DEFAULT_DISPATCHING_TIMEOUT_MILLIS * HwTimeoutMultiplier()); // The default minimum time gap between two user activity poke events. const std::chrono::milliseconds DEFAULT_USER_ACTIVITY_POKE_INTERVAL = 100ms; const std::chrono::duration STALE_EVENT_TIMEOUT = std::chrono::seconds(10) * HwTimeoutMultiplier(); // Log a warning when an event takes longer than this to process, even if an ANR does not occur. constexpr nsecs_t SLOW_EVENT_PROCESSING_WARNING_TIMEOUT = 2000 * 1000000LL; // 2sec // Log a warning when an interception call takes longer than this to process. constexpr std::chrono::milliseconds SLOW_INTERCEPTION_THRESHOLD = 50ms; // Number of recent events to keep for debugging purposes. constexpr size_t RECENT_QUEUE_MAX_SIZE = 10; // Event log tags. See EventLogTags.logtags for reference. constexpr int LOGTAG_INPUT_INTERACTION = 62000; constexpr int LOGTAG_INPUT_FOCUS = 62001; constexpr int LOGTAG_INPUT_CANCEL = 62003; const ui::Transform kIdentityTransform; inline nsecs_t now() { return systemTime(SYSTEM_TIME_MONOTONIC); } inline const std::string binderToString(const sp& binder) { if (binder == nullptr) { return ""; } return StringPrintf("%p", binder.get()); } static std::string uidString(const gui::Uid& uid) { return uid.toString(); } Result checkKeyAction(int32_t action) { switch (action) { case AKEY_EVENT_ACTION_DOWN: case AKEY_EVENT_ACTION_UP: return {}; default: return Error() << "Key event has invalid action code " << action; } } Result validateKeyEvent(int32_t action) { return checkKeyAction(action); } Result checkMotionAction(int32_t action, int32_t actionButton, int32_t pointerCount) { switch (MotionEvent::getActionMasked(action)) { case AMOTION_EVENT_ACTION_DOWN: case AMOTION_EVENT_ACTION_UP: { if (pointerCount != 1) { return Error() << "invalid pointer count " << pointerCount; } return {}; } case AMOTION_EVENT_ACTION_MOVE: case AMOTION_EVENT_ACTION_HOVER_ENTER: case AMOTION_EVENT_ACTION_HOVER_MOVE: case AMOTION_EVENT_ACTION_HOVER_EXIT: { if (pointerCount < 1) { return Error() << "invalid pointer count " << pointerCount; } return {}; } case AMOTION_EVENT_ACTION_CANCEL: case AMOTION_EVENT_ACTION_OUTSIDE: case AMOTION_EVENT_ACTION_SCROLL: return {}; case AMOTION_EVENT_ACTION_POINTER_DOWN: case AMOTION_EVENT_ACTION_POINTER_UP: { const int32_t index = MotionEvent::getActionIndex(action); if (index < 0) { return Error() << "invalid index " << index << " for " << MotionEvent::actionToString(action); } if (index >= pointerCount) { return Error() << "invalid index " << index << " for pointerCount " << pointerCount; } if (pointerCount <= 1) { return Error() << "invalid pointer count " << pointerCount << " for " << MotionEvent::actionToString(action); } return {}; } case AMOTION_EVENT_ACTION_BUTTON_PRESS: case AMOTION_EVENT_ACTION_BUTTON_RELEASE: { if (actionButton == 0) { return Error() << "action button should be nonzero for " << MotionEvent::actionToString(action); } return {}; } default: return Error() << "invalid action " << action; } } int64_t millis(std::chrono::nanoseconds t) { return std::chrono::duration_cast(t).count(); } Result validateMotionEvent(int32_t action, int32_t actionButton, size_t pointerCount, const PointerProperties* pointerProperties) { Result actionCheck = checkMotionAction(action, actionButton, pointerCount); if (!actionCheck.ok()) { return actionCheck; } if (pointerCount < 1 || pointerCount > MAX_POINTERS) { return Error() << "Motion event has invalid pointer count " << pointerCount << "; value must be between 1 and " << MAX_POINTERS << "."; } std::bitset pointerIdBits; for (size_t i = 0; i < pointerCount; i++) { int32_t id = pointerProperties[i].id; if (id < 0 || id > MAX_POINTER_ID) { return Error() << "Motion event has invalid pointer id " << id << "; value must be between 0 and " << MAX_POINTER_ID; } if (pointerIdBits.test(id)) { return Error() << "Motion event has duplicate pointer id " << id; } pointerIdBits.set(id); } return {}; } Result validateInputEvent(const InputEvent& event) { switch (event.getType()) { case InputEventType::KEY: { const KeyEvent& key = static_cast(event); const int32_t action = key.getAction(); return validateKeyEvent(action); } case InputEventType::MOTION: { const MotionEvent& motion = static_cast(event); const int32_t action = motion.getAction(); const size_t pointerCount = motion.getPointerCount(); const PointerProperties* pointerProperties = motion.getPointerProperties(); const int32_t actionButton = motion.getActionButton(); return validateMotionEvent(action, actionButton, pointerCount, pointerProperties); } default: { return {}; } } } std::bitset getPointerIds(const std::vector& pointers) { std::bitset pointerIds; for (const PointerProperties& pointer : pointers) { pointerIds.set(pointer.id); } return pointerIds; } std::string dumpRegion(const Region& region) { if (region.isEmpty()) { return ""; } std::string dump; bool first = true; Region::const_iterator cur = region.begin(); Region::const_iterator const tail = region.end(); while (cur != tail) { if (first) { first = false; } else { dump += "|"; } dump += StringPrintf("[%d,%d][%d,%d]", cur->left, cur->top, cur->right, cur->bottom); cur++; } return dump; } std::string dumpQueue(const std::deque>& queue, nsecs_t currentTime) { constexpr size_t maxEntries = 50; // max events to print constexpr size_t skipBegin = maxEntries / 2; const size_t skipEnd = queue.size() - maxEntries / 2; // skip from maxEntries / 2 ... size() - maxEntries/2 // only print from 0 .. skipBegin and then from skipEnd .. size() std::string dump; for (size_t i = 0; i < queue.size(); i++) { const DispatchEntry& entry = *queue[i]; if (i >= skipBegin && i < skipEnd) { dump += StringPrintf(INDENT4 "\n", skipEnd - skipBegin); i = skipEnd - 1; // it will be incremented to "skipEnd" by 'continue' continue; } dump.append(INDENT4); dump += entry.eventEntry->getDescription(); dump += StringPrintf(", seq=%" PRIu32 ", targetFlags=%s, age=%" PRId64 "ms", entry.seq, entry.targetFlags.string().c_str(), ns2ms(currentTime - entry.eventEntry->eventTime)); if (entry.deliveryTime != 0) { // This entry was delivered, so add information on how long we've been waiting dump += StringPrintf(", wait=%" PRId64 "ms", ns2ms(currentTime - entry.deliveryTime)); } dump.append("\n"); } return dump; } /** * Find the entry in std::unordered_map by key, and return it. * If the entry is not found, return a default constructed entry. * * Useful when the entries are vectors, since an empty vector will be returned * if the entry is not found. * Also useful when the entries are sp<>. If an entry is not found, nullptr is returned. */ template V getValueByKey(const std::unordered_map& map, K key) { auto it = map.find(key); return it != map.end() ? it->second : V{}; } bool haveSameToken(const sp& first, const sp& second) { if (first == second) { return true; } if (first == nullptr || second == nullptr) { return false; } return first->getToken() == second->getToken(); } bool haveSameApplicationToken(const WindowInfo* first, const WindowInfo* second) { if (first == nullptr || second == nullptr) { return false; } return first->applicationInfo.token != nullptr && first->applicationInfo.token == second->applicationInfo.token; } template size_t firstMarkedBit(T set) { // TODO: replace with std::countr_zero from when that's available LOG_ALWAYS_FATAL_IF(set.none()); size_t i = 0; while (!set.test(i)) { i++; } return i; } std::unique_ptr createDispatchEntry(const IdGenerator& idGenerator, const InputTarget& inputTarget, std::shared_ptr eventEntry, ftl::Flags inputTargetFlags, int64_t vsyncId, trace::InputTracerInterface* tracer) { const bool zeroCoords = inputTargetFlags.test(InputTarget::Flags::ZERO_COORDS); const sp win = inputTarget.windowHandle; const std::optional windowId = win ? std::make_optional(win->getInfo()->id) : std::nullopt; // Assume the only targets that are not associated with a window are global monitors, and use // the system UID for global monitors for tracing purposes. const gui::Uid uid = win ? win->getInfo()->ownerUid : gui::Uid(AID_SYSTEM); if (inputTarget.useDefaultPointerTransform() && !zeroCoords) { const ui::Transform& transform = inputTarget.getDefaultPointerTransform(); return std::make_unique(eventEntry, inputTargetFlags, transform, inputTarget.displayTransform, inputTarget.globalScaleFactor, uid, vsyncId, windowId); } ALOG_ASSERT(eventEntry->type == EventEntry::Type::MOTION); const MotionEntry& motionEntry = static_cast(*eventEntry); std::vector pointerCoords{motionEntry.getPointerCount()}; const ui::Transform* transform = &kIdentityTransform; const ui::Transform* displayTransform = &kIdentityTransform; if (zeroCoords) { std::for_each(pointerCoords.begin(), pointerCoords.end(), [](auto& pc) { pc.clear(); }); } else { // Use the first pointer information to normalize all other pointers. This could be any // pointer as long as all other pointers are normalized to the same value and the final // DispatchEntry uses the transform for the normalized pointer. transform = &inputTarget.getTransformForPointer(firstMarkedBit(inputTarget.getPointerIds())); const ui::Transform inverseTransform = transform->inverse(); displayTransform = &inputTarget.displayTransform; // Iterate through all pointers in the event to normalize against the first. for (size_t i = 0; i < motionEntry.getPointerCount(); i++) { PointerCoords& newCoords = pointerCoords[i]; const auto pointerId = motionEntry.pointerProperties[i].id; const ui::Transform& currTransform = inputTarget.getTransformForPointer(pointerId); newCoords.copyFrom(motionEntry.pointerCoords[i]); // First, apply the current pointer's transform to update the coordinates into // window space. MotionEvent::calculateTransformedCoordsInPlace(newCoords, motionEntry.source, motionEntry.flags, currTransform); // Next, apply the inverse transform of the normalized coordinates so the // current coordinates are transformed into the normalized coordinate space. MotionEvent::calculateTransformedCoordsInPlace(newCoords, motionEntry.source, motionEntry.flags, inverseTransform); } } std::unique_ptr combinedMotionEntry = std::make_unique(idGenerator.nextId(), motionEntry.injectionState, motionEntry.eventTime, motionEntry.deviceId, motionEntry.source, motionEntry.displayId, motionEntry.policyFlags, motionEntry.action, motionEntry.actionButton, motionEntry.flags, motionEntry.metaState, motionEntry.buttonState, motionEntry.classification, motionEntry.edgeFlags, motionEntry.xPrecision, motionEntry.yPrecision, motionEntry.xCursorPosition, motionEntry.yCursorPosition, motionEntry.downTime, motionEntry.pointerProperties, pointerCoords); if (tracer) { combinedMotionEntry->traceTracker = tracer->traceDerivedEvent(*combinedMotionEntry, *motionEntry.traceTracker); } std::unique_ptr dispatchEntry = std::make_unique(std::move(combinedMotionEntry), inputTargetFlags, *transform, *displayTransform, inputTarget.globalScaleFactor, uid, vsyncId, windowId); return dispatchEntry; } template bool sharedPointersEqual(const std::shared_ptr& lhs, const std::shared_ptr& rhs) { if (lhs == nullptr && rhs == nullptr) { return true; } if (lhs == nullptr || rhs == nullptr) { return false; } return *lhs == *rhs; } KeyEvent createKeyEvent(const KeyEntry& entry) { KeyEvent event; event.initialize(entry.id, entry.deviceId, entry.source, entry.displayId, INVALID_HMAC, entry.action, entry.flags, entry.keyCode, entry.scanCode, entry.metaState, entry.repeatCount, entry.downTime, entry.eventTime); return event; } bool shouldReportMetricsForConnection(const Connection& connection) { // Do not keep track of gesture monitors. They receive every event and would disproportionately // affect the statistics. if (connection.monitor) { return false; } // If the connection is experiencing ANR, let's skip it. We have separate ANR metrics if (!connection.responsive) { return false; } return true; } bool shouldReportFinishedEvent(const DispatchEntry& dispatchEntry, const Connection& connection) { const EventEntry& eventEntry = *dispatchEntry.eventEntry; const int32_t& inputEventId = eventEntry.id; if (inputEventId == android::os::IInputConstants::INVALID_INPUT_EVENT_ID) { return false; } // Only track latency for events that originated from hardware if (eventEntry.isSynthesized()) { return false; } const EventEntry::Type& inputEventEntryType = eventEntry.type; if (inputEventEntryType == EventEntry::Type::KEY) { const KeyEntry& keyEntry = static_cast(eventEntry); if (keyEntry.flags & AKEY_EVENT_FLAG_CANCELED) { return false; } } else if (inputEventEntryType == EventEntry::Type::MOTION) { const MotionEntry& motionEntry = static_cast(eventEntry); if (motionEntry.action == AMOTION_EVENT_ACTION_CANCEL || motionEntry.action == AMOTION_EVENT_ACTION_HOVER_EXIT) { return false; } } else { // Not a key or a motion return false; } if (!shouldReportMetricsForConnection(connection)) { return false; } return true; } /** * Connection is responsive if it has no events in the waitQueue that are older than the * current time. */ bool isConnectionResponsive(const Connection& connection) { const nsecs_t currentTime = now(); for (const auto& dispatchEntry : connection.waitQueue) { if (dispatchEntry->timeoutTime < currentTime) { return false; } } return true; } // Returns true if the event type passed as argument represents a user activity. bool isUserActivityEvent(const EventEntry& eventEntry) { switch (eventEntry.type) { case EventEntry::Type::CONFIGURATION_CHANGED: case EventEntry::Type::DEVICE_RESET: case EventEntry::Type::DRAG: case EventEntry::Type::FOCUS: case EventEntry::Type::POINTER_CAPTURE_CHANGED: case EventEntry::Type::SENSOR: case EventEntry::Type::TOUCH_MODE_CHANGED: return false; case EventEntry::Type::KEY: case EventEntry::Type::MOTION: return true; } } // Returns true if the given window can accept pointer events at the given display location. bool windowAcceptsTouchAt(const WindowInfo& windowInfo, ui::LogicalDisplayId displayId, float x, float y, bool isStylus, const ui::Transform& displayTransform) { const auto inputConfig = windowInfo.inputConfig; if (windowInfo.displayId != displayId || inputConfig.test(WindowInfo::InputConfig::NOT_VISIBLE)) { return false; } const bool windowCanInterceptTouch = isStylus && windowInfo.interceptsStylus(); if (inputConfig.test(WindowInfo::InputConfig::NOT_TOUCHABLE) && !windowCanInterceptTouch) { return false; } // Window Manager works in the logical display coordinate space. When it specifies bounds for a // window as (l, t, r, b), the range of x in [l, r) and y in [t, b) are considered to be inside // the window. Points on the right and bottom edges should not be inside the window, so we need // to be careful about performing a hit test when the display is rotated, since the "right" and // "bottom" of the window will be different in the display (un-rotated) space compared to in the // logical display in which WM determined the bounds. Perform the hit test in the logical // display space to ensure these edges are considered correctly in all orientations. const auto touchableRegion = displayTransform.transform(windowInfo.touchableRegion); const auto p = displayTransform.transform(x, y); if (!touchableRegion.contains(std::floor(p.x), std::floor(p.y))) { return false; } return true; } // Returns true if the given window's frame can occlude pointer events at the given display // location. bool windowOccludesTouchAt(const WindowInfo& windowInfo, ui::LogicalDisplayId displayId, float x, float y, const ui::Transform& displayTransform) { if (windowInfo.displayId != displayId) { return false; } const auto frame = displayTransform.transform(windowInfo.frame); const auto p = floor(displayTransform.transform(x, y)); return p.x >= frame.left && p.x < frame.right && p.y >= frame.top && p.y < frame.bottom; } bool isPointerFromStylus(const MotionEntry& entry, int32_t pointerIndex) { return isFromSource(entry.source, AINPUT_SOURCE_STYLUS) && isStylusToolType(entry.pointerProperties[pointerIndex].toolType); } // Determines if the given window can be targeted as InputTarget::Flags::FOREGROUND. // Foreground events are only sent to "foreground targetable" windows, but not all gestures sent to // such window are necessarily targeted with the flag. For example, an event with ACTION_OUTSIDE can // be sent to such a window, but it is not a foreground event and doesn't use // InputTarget::Flags::FOREGROUND. bool canReceiveForegroundTouches(const WindowInfo& info) { // A non-touchable window can still receive touch events (e.g. in the case of // STYLUS_INTERCEPTOR), so prevent such windows from receiving foreground events for touches. return !info.inputConfig.test(gui::WindowInfo::InputConfig::NOT_TOUCHABLE) && !info.isSpy(); } bool isWindowOwnedBy(const sp& windowHandle, gui::Pid pid, gui::Uid uid) { if (windowHandle == nullptr) { return false; } const WindowInfo* windowInfo = windowHandle->getInfo(); if (pid == windowInfo->ownerPid && uid == windowInfo->ownerUid) { return true; } return false; } // Checks targeted injection using the window's owner's uid. // Returns an empty string if an entry can be sent to the given window, or an error message if the // entry is a targeted injection whose uid target doesn't match the window owner. std::optional verifyTargetedInjection(const sp& window, const EventEntry& entry) { if (entry.injectionState == nullptr || !entry.injectionState->targetUid) { // The event was not injected, or the injected event does not target a window. return {}; } const auto uid = *entry.injectionState->targetUid; if (window == nullptr) { return StringPrintf("No valid window target for injection into uid %s.", uid.toString().c_str()); } if (entry.injectionState->targetUid != window->getInfo()->ownerUid) { return StringPrintf("Injected event targeted at uid %s would be dispatched to window '%s' " "owned by uid %s.", uid.toString().c_str(), window->getName().c_str(), window->getInfo()->ownerUid.toString().c_str()); } return {}; } std::pair resolveTouchedPosition(const MotionEntry& entry) { const bool isFromMouse = isFromSource(entry.source, AINPUT_SOURCE_MOUSE); // Always dispatch mouse events to cursor position. if (isFromMouse) { return {entry.xCursorPosition, entry.yCursorPosition}; } const int32_t pointerIndex = MotionEvent::getActionIndex(entry.action); return {entry.pointerCoords[pointerIndex].getAxisValue(AMOTION_EVENT_AXIS_X), entry.pointerCoords[pointerIndex].getAxisValue(AMOTION_EVENT_AXIS_Y)}; } std::optional getDownTime(const EventEntry& eventEntry) { if (eventEntry.type == EventEntry::Type::KEY) { const KeyEntry& keyEntry = static_cast(eventEntry); return keyEntry.downTime; } else if (eventEntry.type == EventEntry::Type::MOTION) { const MotionEntry& motionEntry = static_cast(eventEntry); return motionEntry.downTime; } return std::nullopt; } /** * Compare the old touch state to the new touch state, and generate the corresponding touched * windows (== input targets). * If a window had the hovering pointer, but now it doesn't, produce HOVER_EXIT for that window. * If the pointer just entered the new window, produce HOVER_ENTER. * For pointers remaining in the window, produce HOVER_MOVE. */ std::vector getHoveringWindowsLocked(const TouchState* oldState, const TouchState& newTouchState, const MotionEntry& entry) { const int32_t maskedAction = MotionEvent::getActionMasked(entry.action); if (maskedAction == AMOTION_EVENT_ACTION_SCROLL) { // ACTION_SCROLL events should not affect the hovering pointer dispatch return {}; } std::vector out; // We should consider all hovering pointers here. But for now, just use the first one const PointerProperties& pointer = entry.pointerProperties[0]; std::set> oldWindows; if (oldState != nullptr) { oldWindows = oldState->getWindowsWithHoveringPointer(entry.deviceId, pointer.id); } std::set> newWindows = newTouchState.getWindowsWithHoveringPointer(entry.deviceId, pointer.id); // If the pointer is no longer in the new window set, send HOVER_EXIT. for (const sp& oldWindow : oldWindows) { if (newWindows.find(oldWindow) == newWindows.end()) { TouchedWindow touchedWindow; touchedWindow.windowHandle = oldWindow; touchedWindow.dispatchMode = InputTarget::DispatchMode::HOVER_EXIT; out.push_back(touchedWindow); } } for (const sp& newWindow : newWindows) { TouchedWindow touchedWindow; touchedWindow.windowHandle = newWindow; if (oldWindows.find(newWindow) == oldWindows.end()) { // Any windows that have this pointer now, and didn't have it before, should get // HOVER_ENTER touchedWindow.dispatchMode = InputTarget::DispatchMode::HOVER_ENTER; } else { // This pointer was already sent to the window. Use ACTION_HOVER_MOVE. if (CC_UNLIKELY(maskedAction != AMOTION_EVENT_ACTION_HOVER_MOVE)) { android::base::LogSeverity severity = android::base::LogSeverity::FATAL; if (!input_flags::a11y_crash_on_inconsistent_event_stream() && entry.flags & AMOTION_EVENT_FLAG_IS_ACCESSIBILITY_EVENT) { // The Accessibility injected touch exploration event stream // has known inconsistencies, so log ERROR instead of // crashing the device with FATAL. severity = android::base::LogSeverity::ERROR; } LOG(severity) << "Expected ACTION_HOVER_MOVE instead of " << entry.getDescription(); } touchedWindow.dispatchMode = InputTarget::DispatchMode::AS_IS; } touchedWindow.addHoveringPointer(entry.deviceId, pointer); if (canReceiveForegroundTouches(*newWindow->getInfo())) { touchedWindow.targetFlags |= InputTarget::Flags::FOREGROUND; } out.push_back(touchedWindow); } return out; } template std::vector& operator+=(std::vector& left, const std::vector& right) { left.insert(left.end(), right.begin(), right.end()); return left; } // Filter windows in a TouchState and targets in a vector to remove untrusted windows/targets from // both. void filterUntrustedTargets(TouchState& touchState, std::vector& targets) { std::erase_if(touchState.windows, [&](const TouchedWindow& window) { if (!window.windowHandle->getInfo()->inputConfig.test( WindowInfo::InputConfig::TRUSTED_OVERLAY)) { // In addition to TouchState, erase this window from the input targets! We don't have a // good way to do this today except by adding a nested loop. // TODO(b/282025641): simplify this code once InputTargets are being identified // separately from TouchedWindows. std::erase_if(targets, [&](const InputTarget& target) { return target.connection->getToken() == window.windowHandle->getToken(); }); return true; } return false; }); } /** * In general, touch should be always split between windows. Some exceptions: * 1. Don't split touch if all of the below is true: * (a) we have an active pointer down *and* * (b) a new pointer is going down that's from the same device *and* * (c) the window that's receiving the current pointer does not support split touch. * 2. Don't split mouse events */ bool shouldSplitTouch(const TouchState& touchState, const MotionEntry& entry) { if (isFromSource(entry.source, AINPUT_SOURCE_MOUSE)) { // We should never split mouse events return false; } for (const TouchedWindow& touchedWindow : touchState.windows) { if (touchedWindow.windowHandle->getInfo()->isSpy()) { // Spy windows should not affect whether or not touch is split. continue; } if (touchedWindow.windowHandle->getInfo()->supportsSplitTouch()) { continue; } if (touchedWindow.windowHandle->getInfo()->inputConfig.test( gui::WindowInfo::InputConfig::IS_WALLPAPER)) { // Wallpaper window should not affect whether or not touch is split continue; } if (touchedWindow.hasTouchingPointers(entry.deviceId)) { return false; } } return true; } /** * Return true if stylus is currently down anywhere on the specified display, and false otherwise. */ bool isStylusActiveInDisplay(ui::LogicalDisplayId displayId, const std::unordered_map& touchStatesByDisplay) { const auto it = touchStatesByDisplay.find(displayId); if (it == touchStatesByDisplay.end()) { return false; } const TouchState& state = it->second; return state.hasActiveStylus(); } Result validateWindowInfosUpdate(const gui::WindowInfosUpdate& update) { struct HashFunction { size_t operator()(const WindowInfo& info) const { return info.id; } }; std::unordered_set windowSet; for (const WindowInfo& info : update.windowInfos) { const auto [_, inserted] = windowSet.insert(info); if (!inserted) { return Error() << "Duplicate entry for " << info; } } return {}; } int32_t getUserActivityEventType(const EventEntry& eventEntry) { switch (eventEntry.type) { case EventEntry::Type::KEY: { return USER_ACTIVITY_EVENT_BUTTON; } case EventEntry::Type::MOTION: { const MotionEntry& motionEntry = static_cast(eventEntry); if (MotionEvent::isTouchEvent(motionEntry.source, motionEntry.action)) { return USER_ACTIVITY_EVENT_TOUCH; } return USER_ACTIVITY_EVENT_OTHER; } default: { LOG_ALWAYS_FATAL("%s events are not user activity", ftl::enum_string(eventEntry.type).c_str()); } } } std::pair expandCancellationMode( CancelationOptions::Mode mode) { switch (mode) { case CancelationOptions::Mode::CANCEL_ALL_EVENTS: return {true, true}; case CancelationOptions::Mode::CANCEL_POINTER_EVENTS: return {true, false}; case CancelationOptions::Mode::CANCEL_NON_POINTER_EVENTS: return {false, true}; case CancelationOptions::Mode::CANCEL_FALLBACK_EVENTS: return {false, true}; } } class ScopedSyntheticEventTracer { public: ScopedSyntheticEventTracer(std::unique_ptr& tracer) : mTracer(tracer), mProcessingTimestamp(now()) { if (mTracer) { mEventTracker = mTracer->createTrackerForSyntheticEvent(); } } ~ScopedSyntheticEventTracer() { if (mTracer) { mTracer->eventProcessingComplete(*mEventTracker, mProcessingTimestamp); } } const std::unique_ptr& getTracker() const { return mEventTracker; } private: const std::unique_ptr& mTracer; std::unique_ptr mEventTracker; const nsecs_t mProcessingTimestamp; }; } // namespace // --- InputDispatcher --- InputDispatcher::InputDispatcher(InputDispatcherPolicyInterface& policy) : InputDispatcher(policy, createInputTracingBackendIfEnabled()) {} InputDispatcher::InputDispatcher(InputDispatcherPolicyInterface& policy, std::unique_ptr traceBackend) : mPolicy(policy), mPendingEvent(nullptr), mLastDropReason(DropReason::NOT_DROPPED), mIdGenerator(IdGenerator::Source::INPUT_DISPATCHER), mMinTimeBetweenUserActivityPokes(DEFAULT_USER_ACTIVITY_POKE_INTERVAL), mNextUnblockedEvent(nullptr), mMonitorDispatchingTimeout(DEFAULT_INPUT_DISPATCHING_TIMEOUT), mDispatchEnabled(false), mDispatchFrozen(false), mInputFilterEnabled(false), mMaximumObscuringOpacityForTouch(1.0f), mFocusedDisplayId(ui::LogicalDisplayId::DEFAULT), mWindowTokenWithPointerCapture(nullptr), mAwaitedApplicationDisplayId(ui::LogicalDisplayId::INVALID), mLatencyAggregator(), mLatencyTracker(&mLatencyAggregator) { mLooper = sp::make(false); mReporter = createInputReporter(); mWindowInfoListener = sp::make(*this); #if defined(__ANDROID__) SurfaceComposerClient::getDefault()->addWindowInfosListener(mWindowInfoListener); #endif mKeyRepeatState.lastKeyEntry = nullptr; if (traceBackend) { mTracer = std::make_unique(std::move(traceBackend)); } mLastUserActivityTimes.fill(0); } InputDispatcher::~InputDispatcher() { std::scoped_lock _l(mLock); resetKeyRepeatLocked(); releasePendingEventLocked(); drainInboundQueueLocked(); mCommandQueue.clear(); while (!mConnectionsByToken.empty()) { std::shared_ptr connection = mConnectionsByToken.begin()->second; removeInputChannelLocked(connection->getToken(), /*notify=*/false); } } status_t InputDispatcher::start() { if (mThread) { return ALREADY_EXISTS; } mThread = std::make_unique( "InputDispatcher", [this]() { dispatchOnce(); }, [this]() { mLooper->wake(); }); return OK; } status_t InputDispatcher::stop() { if (mThread && mThread->isCallingThread()) { ALOGE("InputDispatcher cannot be stopped from its own thread!"); return INVALID_OPERATION; } mThread.reset(); return OK; } void InputDispatcher::dispatchOnce() { nsecs_t nextWakeupTime = LLONG_MAX; { // acquire lock std::scoped_lock _l(mLock); mDispatcherIsAlive.notify_all(); // Run a dispatch loop if there are no pending commands. // The dispatch loop might enqueue commands to run afterwards. if (!haveCommandsLocked()) { dispatchOnceInnerLocked(/*byref*/ nextWakeupTime); } // Run all pending commands if there are any. // If any commands were run then force the next poll to wake up immediately. if (runCommandsLockedInterruptable()) { nextWakeupTime = LLONG_MIN; } // If we are still waiting for ack on some events, // we might have to wake up earlier to check if an app is anr'ing. const nsecs_t nextAnrCheck = processAnrsLocked(); nextWakeupTime = std::min(nextWakeupTime, nextAnrCheck); // We are about to enter an infinitely long sleep, because we have no commands or // pending or queued events if (nextWakeupTime == LLONG_MAX) { mDispatcherEnteredIdle.notify_all(); } } // release lock // Wait for callback or timeout or wake. (make sure we round up, not down) nsecs_t currentTime = now(); int timeoutMillis = toMillisecondTimeoutDelay(currentTime, nextWakeupTime); mLooper->pollOnce(timeoutMillis); } /** * Raise ANR if there is no focused window. * Before the ANR is raised, do a final state check: * 1. The currently focused application must be the same one we are waiting for. * 2. Ensure we still don't have a focused window. */ void InputDispatcher::processNoFocusedWindowAnrLocked() { // Check if the application that we are waiting for is still focused. std::shared_ptr focusedApplication = getValueByKey(mFocusedApplicationHandlesByDisplay, mAwaitedApplicationDisplayId); if (focusedApplication == nullptr || focusedApplication->getApplicationToken() != mAwaitedFocusedApplication->getApplicationToken()) { // Unexpected because we should have reset the ANR timer when focused application changed ALOGE("Waited for a focused window, but focused application has already changed to %s", focusedApplication->getName().c_str()); return; // The focused application has changed. } const sp& focusedWindowHandle = getFocusedWindowHandleLocked(mAwaitedApplicationDisplayId); if (focusedWindowHandle != nullptr) { return; // We now have a focused window. No need for ANR. } onAnrLocked(mAwaitedFocusedApplication); } /** * Check if any of the connections' wait queues have events that are too old. * If we waited for events to be ack'ed for more than the window timeout, raise an ANR. * Return the time at which we should wake up next. */ nsecs_t InputDispatcher::processAnrsLocked() { const nsecs_t currentTime = now(); nsecs_t nextAnrCheck = LLONG_MAX; // Check if we are waiting for a focused window to appear. Raise ANR if waited too long if (mNoFocusedWindowTimeoutTime.has_value() && mAwaitedFocusedApplication != nullptr) { if (currentTime >= *mNoFocusedWindowTimeoutTime) { processNoFocusedWindowAnrLocked(); mAwaitedFocusedApplication.reset(); mNoFocusedWindowTimeoutTime = std::nullopt; return LLONG_MIN; } else { // Keep waiting. We will drop the event when mNoFocusedWindowTimeoutTime comes. nextAnrCheck = *mNoFocusedWindowTimeoutTime; } } // Check if any connection ANRs are due nextAnrCheck = std::min(nextAnrCheck, mAnrTracker.firstTimeout()); if (currentTime < nextAnrCheck) { // most likely scenario return nextAnrCheck; // everything is normal. Let's check again at nextAnrCheck } // If we reached here, we have an unresponsive connection. std::shared_ptr connection = getConnectionLocked(mAnrTracker.firstToken()); if (connection == nullptr) { ALOGE("Could not find connection for entry %" PRId64, mAnrTracker.firstTimeout()); return nextAnrCheck; } connection->responsive = false; // Stop waking up for this unresponsive connection mAnrTracker.eraseToken(connection->getToken()); onAnrLocked(connection); return LLONG_MIN; } std::chrono::nanoseconds InputDispatcher::getDispatchingTimeoutLocked( const std::shared_ptr& connection) { if (connection->monitor) { return mMonitorDispatchingTimeout; } const sp window = getWindowHandleLocked(connection->getToken()); if (window != nullptr) { return window->getDispatchingTimeout(DEFAULT_INPUT_DISPATCHING_TIMEOUT); } return DEFAULT_INPUT_DISPATCHING_TIMEOUT; } void InputDispatcher::dispatchOnceInnerLocked(nsecs_t& nextWakeupTime) { nsecs_t currentTime = now(); // Reset the key repeat timer whenever normal dispatch is suspended while the // device is in a non-interactive state. This is to ensure that we abort a key // repeat if the device is just coming out of sleep. if (!mDispatchEnabled) { resetKeyRepeatLocked(); } // If dispatching is frozen, do not process timeouts or try to deliver any new events. if (mDispatchFrozen) { if (DEBUG_FOCUS) { ALOGD("Dispatch frozen. Waiting some more."); } return; } // Ready to start a new event. // If we don't already have a pending event, go grab one. if (!mPendingEvent) { if (mInboundQueue.empty()) { // Synthesize a key repeat if appropriate. if (mKeyRepeatState.lastKeyEntry) { if (currentTime >= mKeyRepeatState.nextRepeatTime) { mPendingEvent = synthesizeKeyRepeatLocked(currentTime); } else { nextWakeupTime = std::min(nextWakeupTime, mKeyRepeatState.nextRepeatTime); } } // Nothing to do if there is no pending event. if (!mPendingEvent) { return; } } else { // Inbound queue has at least one entry. mPendingEvent = mInboundQueue.front(); mInboundQueue.pop_front(); traceInboundQueueLengthLocked(); } // Poke user activity for this event. if (mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER) { pokeUserActivityLocked(*mPendingEvent); } } // Now we have an event to dispatch. // All events are eventually dequeued and processed this way, even if we intend to drop them. ALOG_ASSERT(mPendingEvent != nullptr); bool done = false; DropReason dropReason = DropReason::NOT_DROPPED; if (!(mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER)) { dropReason = DropReason::POLICY; } else if (!mDispatchEnabled) { dropReason = DropReason::DISABLED; } if (mNextUnblockedEvent == mPendingEvent) { mNextUnblockedEvent = nullptr; } switch (mPendingEvent->type) { case EventEntry::Type::CONFIGURATION_CHANGED: { const ConfigurationChangedEntry& typedEntry = static_cast(*mPendingEvent); done = dispatchConfigurationChangedLocked(currentTime, typedEntry); dropReason = DropReason::NOT_DROPPED; // configuration changes are never dropped break; } case EventEntry::Type::DEVICE_RESET: { const DeviceResetEntry& typedEntry = static_cast(*mPendingEvent); done = dispatchDeviceResetLocked(currentTime, typedEntry); dropReason = DropReason::NOT_DROPPED; // device resets are never dropped break; } case EventEntry::Type::FOCUS: { std::shared_ptr typedEntry = std::static_pointer_cast(mPendingEvent); dispatchFocusLocked(currentTime, typedEntry); done = true; dropReason = DropReason::NOT_DROPPED; // focus events are never dropped break; } case EventEntry::Type::TOUCH_MODE_CHANGED: { const auto typedEntry = std::static_pointer_cast(mPendingEvent); dispatchTouchModeChangeLocked(currentTime, typedEntry); done = true; dropReason = DropReason::NOT_DROPPED; // touch mode events are never dropped break; } case EventEntry::Type::POINTER_CAPTURE_CHANGED: { const auto typedEntry = std::static_pointer_cast(mPendingEvent); dispatchPointerCaptureChangedLocked(currentTime, typedEntry, dropReason); done = true; break; } case EventEntry::Type::DRAG: { std::shared_ptr typedEntry = std::static_pointer_cast(mPendingEvent); dispatchDragLocked(currentTime, typedEntry); done = true; break; } case EventEntry::Type::KEY: { std::shared_ptr keyEntry = std::static_pointer_cast(mPendingEvent); if (dropReason == DropReason::NOT_DROPPED && isStaleEvent(currentTime, *keyEntry)) { dropReason = DropReason::STALE; } if (dropReason == DropReason::NOT_DROPPED && mNextUnblockedEvent) { dropReason = DropReason::BLOCKED; } done = dispatchKeyLocked(currentTime, keyEntry, &dropReason, nextWakeupTime); break; } case EventEntry::Type::MOTION: { std::shared_ptr motionEntry = std::static_pointer_cast(mPendingEvent); if (dropReason == DropReason::NOT_DROPPED && isStaleEvent(currentTime, *motionEntry)) { // The event is stale. However, only drop stale events if there isn't an ongoing // gesture. That would allow us to complete the processing of the current stroke. const auto touchStateIt = mTouchStatesByDisplay.find(motionEntry->displayId); if (touchStateIt != mTouchStatesByDisplay.end()) { const TouchState& touchState = touchStateIt->second; if (!touchState.hasTouchingPointers(motionEntry->deviceId) && !touchState.hasHoveringPointers(motionEntry->deviceId)) { dropReason = DropReason::STALE; } } } if (dropReason == DropReason::NOT_DROPPED && mNextUnblockedEvent) { if (!isFromSource(motionEntry->source, AINPUT_SOURCE_CLASS_POINTER)) { // Only drop events that are focus-dispatched. dropReason = DropReason::BLOCKED; } } done = dispatchMotionLocked(currentTime, motionEntry, &dropReason, nextWakeupTime); break; } case EventEntry::Type::SENSOR: { std::shared_ptr sensorEntry = std::static_pointer_cast(mPendingEvent); // Sensor timestamps use SYSTEM_TIME_BOOTTIME time base, so we can't use // 'currentTime' here, get SYSTEM_TIME_BOOTTIME instead. nsecs_t bootTime = systemTime(SYSTEM_TIME_BOOTTIME); if (dropReason == DropReason::NOT_DROPPED && isStaleEvent(bootTime, *sensorEntry)) { dropReason = DropReason::STALE; } dispatchSensorLocked(currentTime, sensorEntry, &dropReason, nextWakeupTime); done = true; break; } } if (done) { if (dropReason != DropReason::NOT_DROPPED) { dropInboundEventLocked(*mPendingEvent, dropReason); } mLastDropReason = dropReason; if (mTracer) { if (auto& traceTracker = getTraceTracker(*mPendingEvent); traceTracker != nullptr) { mTracer->eventProcessingComplete(*traceTracker, currentTime); } } releasePendingEventLocked(); nextWakeupTime = LLONG_MIN; // force next poll to wake up immediately } } bool InputDispatcher::isStaleEvent(nsecs_t currentTime, const EventEntry& entry) { return mPolicy.isStaleEvent(currentTime, entry.eventTime); } /** * Return true if the events preceding this incoming motion event should be dropped * Return false otherwise (the default behaviour) */ bool InputDispatcher::shouldPruneInboundQueueLocked(const MotionEntry& motionEntry) const { const bool isPointerDownEvent = motionEntry.action == AMOTION_EVENT_ACTION_DOWN && isFromSource(motionEntry.source, AINPUT_SOURCE_CLASS_POINTER); // Optimize case where the current application is unresponsive and the user // decides to touch a window in a different application. // If the application takes too long to catch up then we drop all events preceding // the touch into the other window. if (isPointerDownEvent && mAwaitedFocusedApplication != nullptr) { const ui::LogicalDisplayId displayId = motionEntry.displayId; const auto [x, y] = resolveTouchedPosition(motionEntry); const bool isStylus = isPointerFromStylus(motionEntry, /*pointerIndex=*/0); sp touchedWindowHandle = findTouchedWindowAtLocked(displayId, x, y, isStylus); if (touchedWindowHandle != nullptr && touchedWindowHandle->getApplicationToken() != mAwaitedFocusedApplication->getApplicationToken()) { // User touched a different application than the one we are waiting on. ALOGI("Pruning input queue because user touched a different application while waiting " "for %s", mAwaitedFocusedApplication->getName().c_str()); return true; } // Alternatively, maybe there's a spy window that could handle this event. const std::vector> touchedSpies = findTouchedSpyWindowsAtLocked(displayId, x, y, isStylus); for (const auto& windowHandle : touchedSpies) { const std::shared_ptr connection = getConnectionLocked(windowHandle->getToken()); if (connection != nullptr && connection->responsive) { // This spy window could take more input. Drop all events preceding this // event, so that the spy window can get a chance to receive the stream. ALOGW("Pruning the input queue because %s is unresponsive, but we have a " "responsive spy window that may handle the event.", mAwaitedFocusedApplication->getName().c_str()); return true; } } } return false; } bool InputDispatcher::enqueueInboundEventLocked(std::unique_ptr newEntry) { bool needWake = mInboundQueue.empty(); mInboundQueue.push_back(std::move(newEntry)); const EventEntry& entry = *(mInboundQueue.back()); traceInboundQueueLengthLocked(); switch (entry.type) { case EventEntry::Type::KEY: { LOG_ALWAYS_FATAL_IF((entry.policyFlags & POLICY_FLAG_TRUSTED) == 0, "Unexpected untrusted event."); const KeyEntry& keyEntry = static_cast(entry); if (mTracer) { ensureEventTraced(keyEntry); } // If a new up event comes in, and the pending event with same key code has been asked // to try again later because of the policy. We have to reset the intercept key wake up // time for it may have been handled in the policy and could be dropped. if (keyEntry.action == AKEY_EVENT_ACTION_UP && mPendingEvent && mPendingEvent->type == EventEntry::Type::KEY) { const KeyEntry& pendingKey = static_cast(*mPendingEvent); if (pendingKey.keyCode == keyEntry.keyCode && pendingKey.interceptKeyResult == KeyEntry::InterceptKeyResult::TRY_AGAIN_LATER) { pendingKey.interceptKeyResult = KeyEntry::InterceptKeyResult::UNKNOWN; pendingKey.interceptKeyWakeupTime = 0; needWake = true; } } break; } case EventEntry::Type::MOTION: { LOG_ALWAYS_FATAL_IF((entry.policyFlags & POLICY_FLAG_TRUSTED) == 0, "Unexpected untrusted event."); const auto& motionEntry = static_cast(entry); if (mTracer) { ensureEventTraced(motionEntry); } if (shouldPruneInboundQueueLocked(motionEntry)) { mNextUnblockedEvent = mInboundQueue.back(); needWake = true; } const bool isPointerDownEvent = motionEntry.action == AMOTION_EVENT_ACTION_DOWN && isFromSource(motionEntry.source, AINPUT_SOURCE_CLASS_POINTER); if (isPointerDownEvent && mKeyIsWaitingForEventsTimeout) { // Prevent waiting too long for unprocessed events: if we have a pending key event, // and some other events have not yet been processed, the dispatcher will wait for // these events to be processed before dispatching the key event. This is because // the unprocessed events may cause the focus to change (for example, by launching a // new window or tapping a different window). To prevent waiting too long, we force // the key to be sent to the currently focused window when a new tap comes in. ALOGD("Received a new pointer down event, stop waiting for events to process and " "just send the pending key event to the currently focused window."); mKeyIsWaitingForEventsTimeout = now(); needWake = true; } break; } case EventEntry::Type::FOCUS: { LOG_ALWAYS_FATAL("Focus events should be inserted using enqueueFocusEventLocked"); break; } case EventEntry::Type::TOUCH_MODE_CHANGED: case EventEntry::Type::CONFIGURATION_CHANGED: case EventEntry::Type::DEVICE_RESET: case EventEntry::Type::SENSOR: case EventEntry::Type::POINTER_CAPTURE_CHANGED: case EventEntry::Type::DRAG: { // nothing to do break; } } return needWake; } void InputDispatcher::addRecentEventLocked(std::shared_ptr entry) { // Do not store sensor event in recent queue to avoid flooding the queue. if (entry->type != EventEntry::Type::SENSOR) { mRecentQueue.push_back(entry); } if (mRecentQueue.size() > RECENT_QUEUE_MAX_SIZE) { mRecentQueue.pop_front(); } } sp InputDispatcher::findTouchedWindowAtLocked(ui::LogicalDisplayId displayId, float x, float y, bool isStylus, bool ignoreDragWindow) const { // Traverse windows from front to back to find touched window. const auto& windowHandles = getWindowHandlesLocked(displayId); for (const sp& windowHandle : windowHandles) { if (ignoreDragWindow && haveSameToken(windowHandle, mDragState->dragWindow)) { continue; } const WindowInfo& info = *windowHandle->getInfo(); if (!info.isSpy() && windowAcceptsTouchAt(info, displayId, x, y, isStylus, getTransformLocked(displayId))) { return windowHandle; } } return nullptr; } std::vector InputDispatcher::findOutsideTargetsLocked( ui::LogicalDisplayId displayId, const sp& touchedWindow, int32_t pointerId) const { if (touchedWindow == nullptr) { return {}; } // Traverse windows from front to back until we encounter the touched window. std::vector outsideTargets; const auto& windowHandles = getWindowHandlesLocked(displayId); for (const sp& windowHandle : windowHandles) { if (windowHandle == touchedWindow) { // Stop iterating once we found a touched window. Any WATCH_OUTSIDE_TOUCH window // below the touched window will not get ACTION_OUTSIDE event. return outsideTargets; } const WindowInfo& info = *windowHandle->getInfo(); if (info.inputConfig.test(WindowInfo::InputConfig::WATCH_OUTSIDE_TOUCH)) { std::bitset pointerIds; pointerIds.set(pointerId); addPointerWindowTargetLocked(windowHandle, InputTarget::DispatchMode::OUTSIDE, ftl::Flags(), pointerIds, /*firstDownTimeInTarget=*/std::nullopt, outsideTargets); } } return outsideTargets; } std::vector> InputDispatcher::findTouchedSpyWindowsAtLocked( ui::LogicalDisplayId displayId, float x, float y, bool isStylus) const { // Traverse windows from front to back and gather the touched spy windows. std::vector> spyWindows; const auto& windowHandles = getWindowHandlesLocked(displayId); for (const sp& windowHandle : windowHandles) { const WindowInfo& info = *windowHandle->getInfo(); if (!windowAcceptsTouchAt(info, displayId, x, y, isStylus, getTransformLocked(displayId))) { continue; } if (!info.isSpy()) { // The first touched non-spy window was found, so return the spy windows touched so far. return spyWindows; } spyWindows.push_back(windowHandle); } return spyWindows; } void InputDispatcher::dropInboundEventLocked(const EventEntry& entry, DropReason dropReason) { const char* reason; switch (dropReason) { case DropReason::POLICY: if (debugInboundEventDetails()) { ALOGD("Dropped event because policy consumed it."); } reason = "inbound event was dropped because the policy consumed it"; break; case DropReason::DISABLED: if (mLastDropReason != DropReason::DISABLED) { ALOGI("Dropped event because input dispatch is disabled."); } reason = "inbound event was dropped because input dispatch is disabled"; break; case DropReason::BLOCKED: LOG(INFO) << "Dropping because the current application is not responding and the user " "has started interacting with a different application: " << entry.getDescription(); reason = "inbound event was dropped because the current application is not responding " "and the user has started interacting with a different application"; break; case DropReason::STALE: ALOGI("Dropped event because it is stale."); reason = "inbound event was dropped because it is stale"; break; case DropReason::NO_POINTER_CAPTURE: ALOGI("Dropped event because there is no window with Pointer Capture."); reason = "inbound event was dropped because there is no window with Pointer Capture"; break; case DropReason::NOT_DROPPED: { LOG_ALWAYS_FATAL("Should not be dropping a NOT_DROPPED event"); return; } } switch (entry.type) { case EventEntry::Type::KEY: { const KeyEntry& keyEntry = static_cast(entry); CancelationOptions options(CancelationOptions::Mode::CANCEL_NON_POINTER_EVENTS, reason, keyEntry.traceTracker); options.displayId = keyEntry.displayId; options.deviceId = keyEntry.deviceId; synthesizeCancelationEventsForAllConnectionsLocked(options); break; } case EventEntry::Type::MOTION: { const MotionEntry& motionEntry = static_cast(entry); if (motionEntry.source & AINPUT_SOURCE_CLASS_POINTER) { CancelationOptions options(CancelationOptions::Mode::CANCEL_POINTER_EVENTS, reason, motionEntry.traceTracker); options.displayId = motionEntry.displayId; options.deviceId = motionEntry.deviceId; synthesizeCancelationEventsForAllConnectionsLocked(options); } else { CancelationOptions options(CancelationOptions::Mode::CANCEL_NON_POINTER_EVENTS, reason, motionEntry.traceTracker); options.displayId = motionEntry.displayId; options.deviceId = motionEntry.deviceId; synthesizeCancelationEventsForAllConnectionsLocked(options); } break; } case EventEntry::Type::SENSOR: { break; } case EventEntry::Type::POINTER_CAPTURE_CHANGED: case EventEntry::Type::DRAG: { break; } case EventEntry::Type::FOCUS: case EventEntry::Type::TOUCH_MODE_CHANGED: case EventEntry::Type::CONFIGURATION_CHANGED: case EventEntry::Type::DEVICE_RESET: { LOG_ALWAYS_FATAL("Should not drop %s events", ftl::enum_string(entry.type).c_str()); break; } } } bool InputDispatcher::haveCommandsLocked() const { return !mCommandQueue.empty(); } bool InputDispatcher::runCommandsLockedInterruptable() { if (mCommandQueue.empty()) { return false; } do { auto command = std::move(mCommandQueue.front()); mCommandQueue.pop_front(); // Commands are run with the lock held, but may release and re-acquire the lock from within. command(); } while (!mCommandQueue.empty()); return true; } void InputDispatcher::postCommandLocked(Command&& command) { mCommandQueue.push_back(command); } void InputDispatcher::drainInboundQueueLocked() { while (!mInboundQueue.empty()) { std::shared_ptr entry = mInboundQueue.front(); mInboundQueue.pop_front(); releaseInboundEventLocked(entry); } traceInboundQueueLengthLocked(); } void InputDispatcher::releasePendingEventLocked() { if (mPendingEvent) { releaseInboundEventLocked(mPendingEvent); mPendingEvent = nullptr; } } void InputDispatcher::releaseInboundEventLocked(std::shared_ptr entry) { const std::shared_ptr& injectionState = entry->injectionState; if (injectionState && injectionState->injectionResult == InputEventInjectionResult::PENDING) { if (DEBUG_DISPATCH_CYCLE) { ALOGD("Injected inbound event was dropped."); } setInjectionResult(*entry, InputEventInjectionResult::FAILED); } if (entry == mNextUnblockedEvent) { mNextUnblockedEvent = nullptr; } addRecentEventLocked(entry); } void InputDispatcher::resetKeyRepeatLocked() { if (mKeyRepeatState.lastKeyEntry) { mKeyRepeatState.lastKeyEntry = nullptr; } } std::shared_ptr InputDispatcher::synthesizeKeyRepeatLocked(nsecs_t currentTime) { std::shared_ptr entry = mKeyRepeatState.lastKeyEntry; uint32_t policyFlags = entry->policyFlags & (POLICY_FLAG_RAW_MASK | POLICY_FLAG_PASS_TO_USER | POLICY_FLAG_TRUSTED); std::shared_ptr newEntry = std::make_unique(mIdGenerator.nextId(), /*injectionState=*/nullptr, currentTime, entry->deviceId, entry->source, entry->displayId, policyFlags, entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState, entry->repeatCount + 1, entry->downTime); newEntry->syntheticRepeat = true; if (mTracer) { newEntry->traceTracker = mTracer->traceInboundEvent(*newEntry); } mKeyRepeatState.lastKeyEntry = newEntry; mKeyRepeatState.nextRepeatTime = currentTime + mConfig.keyRepeatDelay; return newEntry; } bool InputDispatcher::dispatchConfigurationChangedLocked(nsecs_t currentTime, const ConfigurationChangedEntry& entry) { if (DEBUG_OUTBOUND_EVENT_DETAILS) { ALOGD("dispatchConfigurationChanged - eventTime=%" PRId64, entry.eventTime); } // Reset key repeating in case a keyboard device was added or removed or something. resetKeyRepeatLocked(); // Enqueue a command to run outside the lock to tell the policy that the configuration changed. auto command = [this, eventTime = entry.eventTime]() REQUIRES(mLock) { scoped_unlock unlock(mLock); mPolicy.notifyConfigurationChanged(eventTime); }; postCommandLocked(std::move(command)); return true; } bool InputDispatcher::dispatchDeviceResetLocked(nsecs_t currentTime, const DeviceResetEntry& entry) { if (DEBUG_OUTBOUND_EVENT_DETAILS) { ALOGD("dispatchDeviceReset - eventTime=%" PRId64 ", deviceId=%d", entry.eventTime, entry.deviceId); } // Reset key repeating in case a keyboard device was disabled or enabled. if (mKeyRepeatState.lastKeyEntry && mKeyRepeatState.lastKeyEntry->deviceId == entry.deviceId) { resetKeyRepeatLocked(); } ScopedSyntheticEventTracer traceContext(mTracer); CancelationOptions options(CancelationOptions::Mode::CANCEL_ALL_EVENTS, "device was reset", traceContext.getTracker()); options.deviceId = entry.deviceId; synthesizeCancelationEventsForAllConnectionsLocked(options); // Remove all active pointers from this device for (auto& [_, touchState] : mTouchStatesByDisplay) { touchState.removeAllPointersForDevice(entry.deviceId); } return true; } void InputDispatcher::enqueueFocusEventLocked(const sp& windowToken, bool hasFocus, const std::string& reason) { if (mPendingEvent != nullptr) { // Move the pending event to the front of the queue. This will give the chance // for the pending event to get dispatched to the newly focused window mInboundQueue.push_front(mPendingEvent); mPendingEvent = nullptr; } std::unique_ptr focusEntry = std::make_unique(mIdGenerator.nextId(), now(), windowToken, hasFocus, reason); // This event should go to the front of the queue, but behind all other focus events // Find the last focus event, and insert right after it auto it = std::find_if(mInboundQueue.rbegin(), mInboundQueue.rend(), [](const std::shared_ptr& event) { return event->type == EventEntry::Type::FOCUS; }); // Maintain the order of focus events. Insert the entry after all other focus events. mInboundQueue.insert(it.base(), std::move(focusEntry)); } void InputDispatcher::dispatchFocusLocked(nsecs_t currentTime, std::shared_ptr entry) { std::shared_ptr connection = getConnectionLocked(entry->connectionToken); if (connection == nullptr) { return; // Connection has gone away } entry->dispatchInProgress = true; std::string message = std::string("Focus ") + (entry->hasFocus ? "entering " : "leaving ") + connection->getInputChannelName(); std::string reason = std::string("reason=").append(entry->reason); android_log_event_list(LOGTAG_INPUT_FOCUS) << message << reason << LOG_ID_EVENTS; dispatchEventLocked(currentTime, entry, {{connection}}); } void InputDispatcher::dispatchPointerCaptureChangedLocked( nsecs_t currentTime, const std::shared_ptr& entry, DropReason& dropReason) { dropReason = DropReason::NOT_DROPPED; const bool haveWindowWithPointerCapture = mWindowTokenWithPointerCapture != nullptr; sp token; if (entry->pointerCaptureRequest.isEnable()) { // Enable Pointer Capture. if (haveWindowWithPointerCapture && (entry->pointerCaptureRequest == mCurrentPointerCaptureRequest)) { // This can happen if pointer capture is disabled and re-enabled before we notify the // app of the state change, so there is no need to notify the app. ALOGI("Skipping dispatch of Pointer Capture being enabled: no state change."); return; } if (!mCurrentPointerCaptureRequest.isEnable()) { // This can happen if a window requests capture and immediately releases capture. ALOGW("No window requested Pointer Capture."); dropReason = DropReason::NO_POINTER_CAPTURE; return; } if (entry->pointerCaptureRequest.seq != mCurrentPointerCaptureRequest.seq) { ALOGI("Skipping dispatch of Pointer Capture being enabled: sequence number mismatch."); return; } token = mFocusResolver.getFocusedWindowToken(mFocusedDisplayId); LOG_ALWAYS_FATAL_IF(!token, "Cannot find focused window for Pointer Capture."); LOG_ALWAYS_FATAL_IF(token != entry->pointerCaptureRequest.window, "Unexpected requested window for Pointer Capture."); mWindowTokenWithPointerCapture = token; } else { // Disable Pointer Capture. // We do not check if the sequence number matches for requests to disable Pointer Capture // for two reasons: // 1. Pointer Capture can be disabled by a focus change, which means we can get two entries // to disable capture with the same sequence number: one generated by // disablePointerCaptureForcedLocked() and another as an acknowledgement of Pointer // Capture being disabled in InputReader. // 2. We respect any request to disable Pointer Capture generated by InputReader, since the // actual Pointer Capture state that affects events being generated by input devices is // in InputReader. if (!haveWindowWithPointerCapture) { // Pointer capture was already forcefully disabled because of focus change. dropReason = DropReason::NOT_DROPPED; return; } token = mWindowTokenWithPointerCapture; mWindowTokenWithPointerCapture = nullptr; if (mCurrentPointerCaptureRequest.isEnable()) { setPointerCaptureLocked(nullptr); } } auto connection = getConnectionLocked(token); if (connection == nullptr) { // Window has gone away, clean up Pointer Capture state. mWindowTokenWithPointerCapture = nullptr; if (mCurrentPointerCaptureRequest.isEnable()) { setPointerCaptureLocked(nullptr); } return; } entry->dispatchInProgress = true; dispatchEventLocked(currentTime, entry, {{connection}}); dropReason = DropReason::NOT_DROPPED; } void InputDispatcher::dispatchTouchModeChangeLocked( nsecs_t currentTime, const std::shared_ptr& entry) { const std::vector>& windowHandles = getWindowHandlesLocked(entry->displayId); if (windowHandles.empty()) { return; } const std::vector inputTargets = getInputTargetsFromWindowHandlesLocked(windowHandles); if (inputTargets.empty()) { return; } entry->dispatchInProgress = true; dispatchEventLocked(currentTime, entry, inputTargets); } std::vector InputDispatcher::getInputTargetsFromWindowHandlesLocked( const std::vector>& windowHandles) const { std::vector inputTargets; for (const sp& handle : windowHandles) { const sp& token = handle->getToken(); if (token == nullptr) { continue; } std::shared_ptr connection = getConnectionLocked(token); if (connection == nullptr) { continue; // Connection has gone away } inputTargets.emplace_back(connection); } return inputTargets; } bool InputDispatcher::dispatchKeyLocked(nsecs_t currentTime, std::shared_ptr entry, DropReason* dropReason, nsecs_t& nextWakeupTime) { // Preprocessing. if (!entry->dispatchInProgress) { if (!entry->syntheticRepeat && entry->action == AKEY_EVENT_ACTION_DOWN && (entry->policyFlags & POLICY_FLAG_TRUSTED) && (!(entry->policyFlags & POLICY_FLAG_DISABLE_KEY_REPEAT))) { if (mKeyRepeatState.lastKeyEntry && mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode && // We have seen two identical key downs in a row which indicates that the device // driver is automatically generating key repeats itself. We take note of the // repeat here, but we disable our own next key repeat timer since it is clear that // we will not need to synthesize key repeats ourselves. mKeyRepeatState.lastKeyEntry->deviceId == entry->deviceId) { // Make sure we don't get key down from a different device. If a different // device Id has same key pressed down, the new device Id will replace the // current one to hold the key repeat with repeat count reset. // In the future when got a KEY_UP on the device id, drop it and do not // stop the key repeat on current device. entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1; resetKeyRepeatLocked(); mKeyRepeatState.nextRepeatTime = LLONG_MAX; // don't generate repeats ourselves } else { // Not a repeat. Save key down state in case we do see a repeat later. resetKeyRepeatLocked(); mKeyRepeatState.nextRepeatTime = entry->eventTime + mConfig.keyRepeatTimeout; } mKeyRepeatState.lastKeyEntry = entry; } else if (entry->action == AKEY_EVENT_ACTION_UP && mKeyRepeatState.lastKeyEntry && mKeyRepeatState.lastKeyEntry->deviceId != entry->deviceId) { // The key on device 'deviceId' is still down, do not stop key repeat if (debugInboundEventDetails()) { ALOGD("deviceId=%d got KEY_UP as stale", entry->deviceId); } } else if (!entry->syntheticRepeat) { resetKeyRepeatLocked(); } if (entry->repeatCount == 1) { entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS; } else { entry->flags &= ~AKEY_EVENT_FLAG_LONG_PRESS; } entry->dispatchInProgress = true; logOutboundKeyDetails("dispatchKey - ", *entry); } // Handle case where the policy asked us to try again later last time. if (entry->interceptKeyResult == KeyEntry::InterceptKeyResult::TRY_AGAIN_LATER) { if (currentTime < entry->interceptKeyWakeupTime) { nextWakeupTime = std::min(nextWakeupTime, entry->interceptKeyWakeupTime); return false; // wait until next wakeup } entry->interceptKeyResult = KeyEntry::InterceptKeyResult::UNKNOWN; entry->interceptKeyWakeupTime = 0; } // Give the policy a chance to intercept the key. if (entry->interceptKeyResult == KeyEntry::InterceptKeyResult::UNKNOWN) { if (entry->policyFlags & POLICY_FLAG_PASS_TO_USER) { sp focusedWindowToken = mFocusResolver.getFocusedWindowToken(getTargetDisplayId(*entry)); auto command = [this, focusedWindowToken, entry]() REQUIRES(mLock) { doInterceptKeyBeforeDispatchingCommand(focusedWindowToken, *entry); }; postCommandLocked(std::move(command)); return false; // wait for the command to run } else { entry->interceptKeyResult = KeyEntry::InterceptKeyResult::CONTINUE; } } else if (entry->interceptKeyResult == KeyEntry::InterceptKeyResult::SKIP) { if (*dropReason == DropReason::NOT_DROPPED) { *dropReason = DropReason::POLICY; } } // Clean up if dropping the event. if (*dropReason != DropReason::NOT_DROPPED) { setInjectionResult(*entry, *dropReason == DropReason::POLICY ? InputEventInjectionResult::SUCCEEDED : InputEventInjectionResult::FAILED); mReporter->reportDroppedKey(entry->id); // Poke user activity for consumed keys, as it may have not been reported due to // the focused window requesting user activity to be disabled if (*dropReason == DropReason::POLICY && mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER) { pokeUserActivityLocked(*entry); } return true; } // Identify targets. InputEventInjectionResult injectionResult; sp focusedWindow = findFocusedWindowTargetLocked(currentTime, *entry, nextWakeupTime, /*byref*/ injectionResult); if (injectionResult == InputEventInjectionResult::PENDING) { return false; } setInjectionResult(*entry, injectionResult); if (injectionResult != InputEventInjectionResult::SUCCEEDED) { return true; } LOG_ALWAYS_FATAL_IF(focusedWindow == nullptr); std::vector inputTargets; addWindowTargetLocked(focusedWindow, InputTarget::DispatchMode::AS_IS, InputTarget::Flags::FOREGROUND, getDownTime(*entry), inputTargets); // Add monitor channels from event's or focused display. addGlobalMonitoringTargetsLocked(inputTargets, getTargetDisplayId(*entry)); if (mTracer) { ensureEventTraced(*entry); for (const auto& target : inputTargets) { mTracer->dispatchToTargetHint(*entry->traceTracker, target); } } // Dispatch the key. dispatchEventLocked(currentTime, entry, inputTargets); return true; } void InputDispatcher::logOutboundKeyDetails(const char* prefix, const KeyEntry& entry) { if (DEBUG_OUTBOUND_EVENT_DETAILS) { ALOGD("%seventTime=%" PRId64 ", deviceId=%d, source=0x%x, displayId=%s, " "policyFlags=0x%x, action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, " "metaState=0x%x, repeatCount=%d, downTime=%" PRId64, prefix, entry.eventTime, entry.deviceId, entry.source, entry.displayId.toString().c_str(), entry.policyFlags, entry.action, entry.flags, entry.keyCode, entry.scanCode, entry.metaState, entry.repeatCount, entry.downTime); } } void InputDispatcher::dispatchSensorLocked(nsecs_t currentTime, const std::shared_ptr& entry, DropReason* dropReason, nsecs_t& nextWakeupTime) { if (DEBUG_OUTBOUND_EVENT_DETAILS) { ALOGD("notifySensorEvent eventTime=%" PRId64 ", hwTimestamp=%" PRId64 ", deviceId=%d, " "source=0x%x, sensorType=%s", entry->eventTime, entry->hwTimestamp, entry->deviceId, entry->source, ftl::enum_string(entry->sensorType).c_str()); } auto command = [this, entry]() REQUIRES(mLock) { scoped_unlock unlock(mLock); if (entry->accuracyChanged) { mPolicy.notifySensorAccuracy(entry->deviceId, entry->sensorType, entry->accuracy); } mPolicy.notifySensorEvent(entry->deviceId, entry->sensorType, entry->accuracy, entry->hwTimestamp, entry->values); }; postCommandLocked(std::move(command)); } bool InputDispatcher::flushSensor(int deviceId, InputDeviceSensorType sensorType) { if (DEBUG_OUTBOUND_EVENT_DETAILS) { ALOGD("flushSensor deviceId=%d, sensorType=%s", deviceId, ftl::enum_string(sensorType).c_str()); } { // acquire lock std::scoped_lock _l(mLock); for (auto it = mInboundQueue.begin(); it != mInboundQueue.end(); it++) { std::shared_ptr entry = *it; if (entry->type == EventEntry::Type::SENSOR) { it = mInboundQueue.erase(it); releaseInboundEventLocked(entry); } } } return true; } bool InputDispatcher::dispatchMotionLocked(nsecs_t currentTime, std::shared_ptr entry, DropReason* dropReason, nsecs_t& nextWakeupTime) { ATRACE_CALL(); // Preprocessing. if (!entry->dispatchInProgress) { entry->dispatchInProgress = true; logOutboundMotionDetails("dispatchMotion - ", *entry); } // Clean up if dropping the event. if (*dropReason != DropReason::NOT_DROPPED) { setInjectionResult(*entry, *dropReason == DropReason::POLICY ? InputEventInjectionResult::SUCCEEDED : InputEventInjectionResult::FAILED); return true; } const bool isPointerEvent = isFromSource(entry->source, AINPUT_SOURCE_CLASS_POINTER); // Identify targets. std::vector inputTargets; InputEventInjectionResult injectionResult; if (isPointerEvent) { // Pointer event. (eg. touchscreen) if (mDragState && (entry->action & AMOTION_EVENT_ACTION_MASK) == AMOTION_EVENT_ACTION_POINTER_DOWN) { // If drag and drop ongoing and pointer down occur: pilfer drag window pointers pilferPointersLocked(mDragState->dragWindow->getToken()); } inputTargets = findTouchedWindowTargetsLocked(currentTime, *entry, /*byref*/ injectionResult); LOG_ALWAYS_FATAL_IF(injectionResult != InputEventInjectionResult::SUCCEEDED && !inputTargets.empty()); } else { // Non touch event. (eg. trackball) sp focusedWindow = findFocusedWindowTargetLocked(currentTime, *entry, nextWakeupTime, injectionResult); if (injectionResult == InputEventInjectionResult::SUCCEEDED) { LOG_ALWAYS_FATAL_IF(focusedWindow == nullptr); addWindowTargetLocked(focusedWindow, InputTarget::DispatchMode::AS_IS, InputTarget::Flags::FOREGROUND, getDownTime(*entry), inputTargets); } } if (injectionResult == InputEventInjectionResult::PENDING) { return false; } setInjectionResult(*entry, injectionResult); if (injectionResult == InputEventInjectionResult::TARGET_MISMATCH) { return true; } if (injectionResult != InputEventInjectionResult::SUCCEEDED) { CancelationOptions::Mode mode( isPointerEvent ? CancelationOptions::Mode::CANCEL_POINTER_EVENTS : CancelationOptions::Mode::CANCEL_NON_POINTER_EVENTS); CancelationOptions options(mode, "input event injection failed", entry->traceTracker); options.displayId = entry->displayId; synthesizeCancelationEventsForMonitorsLocked(options); return true; } // Add monitor channels from event's or focused display. addGlobalMonitoringTargetsLocked(inputTargets, getTargetDisplayId(*entry)); if (mTracer) { ensureEventTraced(*entry); for (const auto& target : inputTargets) { mTracer->dispatchToTargetHint(*entry->traceTracker, target); } } // Dispatch the motion. dispatchEventLocked(currentTime, entry, inputTargets); return true; } void InputDispatcher::enqueueDragEventLocked(const sp& windowHandle, bool isExiting, const int32_t rawX, const int32_t rawY) { const vec2 xy = windowHandle->getInfo()->transform.transform(vec2(rawX, rawY)); std::unique_ptr dragEntry = std::make_unique(mIdGenerator.nextId(), now(), windowHandle->getToken(), isExiting, xy.x, xy.y); enqueueInboundEventLocked(std::move(dragEntry)); } void InputDispatcher::dispatchDragLocked(nsecs_t currentTime, std::shared_ptr entry) { std::shared_ptr connection = getConnectionLocked(entry->connectionToken); if (connection == nullptr) { return; // Connection has gone away } entry->dispatchInProgress = true; dispatchEventLocked(currentTime, entry, {{connection}}); } void InputDispatcher::logOutboundMotionDetails(const char* prefix, const MotionEntry& entry) { if (DEBUG_OUTBOUND_EVENT_DETAILS) { ALOGD("%seventTime=%" PRId64 ", deviceId=%d, source=%s, displayId=%s, policyFlags=0x%x, " "action=%s, actionButton=0x%x, flags=0x%x, " "metaState=0x%x, buttonState=0x%x," "edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%" PRId64, prefix, entry.eventTime, entry.deviceId, inputEventSourceToString(entry.source).c_str(), entry.displayId.toString().c_str(), entry.policyFlags, MotionEvent::actionToString(entry.action).c_str(), entry.actionButton, entry.flags, entry.metaState, entry.buttonState, entry.edgeFlags, entry.xPrecision, entry.yPrecision, entry.downTime); for (uint32_t i = 0; i < entry.getPointerCount(); i++) { ALOGD(" Pointer %d: id=%d, toolType=%s, " "x=%f, y=%f, pressure=%f, size=%f, " "touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, " "orientation=%f", i, entry.pointerProperties[i].id, ftl::enum_string(entry.pointerProperties[i].toolType).c_str(), entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X), entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y), entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE), entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION)); } } } void InputDispatcher::dispatchEventLocked(nsecs_t currentTime, std::shared_ptr eventEntry, const std::vector& inputTargets) { ATRACE_CALL(); if (DEBUG_DISPATCH_CYCLE) { ALOGD("dispatchEventToCurrentInputTargets"); } processInteractionsLocked(*eventEntry, inputTargets); ALOG_ASSERT(eventEntry->dispatchInProgress); // should already have been set to true pokeUserActivityLocked(*eventEntry); for (const InputTarget& inputTarget : inputTargets) { std::shared_ptr connection = inputTarget.connection; prepareDispatchCycleLocked(currentTime, connection, eventEntry, inputTarget); } } void InputDispatcher::cancelEventsForAnrLocked(const std::shared_ptr& connection) { // We will not be breaking any connections here, even if the policy wants us to abort dispatch. // If the policy decides to close the app, we will get a channel removal event via // unregisterInputChannel, and will clean up the connection that way. We are already not // sending new pointers to the connection when it blocked, but focused events will continue to // pile up. ALOGW("Canceling events for %s because it is unresponsive", connection->getInputChannelName().c_str()); if (connection->status != Connection::Status::NORMAL) { return; } ScopedSyntheticEventTracer traceContext(mTracer); CancelationOptions options(CancelationOptions::Mode::CANCEL_ALL_EVENTS, "application not responding", traceContext.getTracker()); sp windowHandle; if (!connection->monitor) { windowHandle = getWindowHandleLocked(connection->getToken()); if (windowHandle == nullptr) { // The window that is receiving this ANR was removed, so there is no need to generate // cancellations, because the cancellations would have already been generated when // the window was removed. return; } } synthesizeCancelationEventsForConnectionLocked(connection, options, windowHandle); } void InputDispatcher::resetNoFocusedWindowTimeoutLocked() { if (DEBUG_FOCUS) { ALOGD("Resetting ANR timeouts."); } // Reset input target wait timeout. mNoFocusedWindowTimeoutTime = std::nullopt; mAwaitedFocusedApplication.reset(); } /** * Get the display id that the given event should go to. If this event specifies a valid display id, * then it should be dispatched to that display. Otherwise, the event goes to the focused display. * Focused display is the display that the user most recently interacted with. */ ui::LogicalDisplayId InputDispatcher::getTargetDisplayId(const EventEntry& entry) { ui::LogicalDisplayId displayId{ui::LogicalDisplayId::INVALID}; switch (entry.type) { case EventEntry::Type::KEY: { const KeyEntry& keyEntry = static_cast(entry); displayId = keyEntry.displayId; break; } case EventEntry::Type::MOTION: { const MotionEntry& motionEntry = static_cast(entry); displayId = motionEntry.displayId; break; } case EventEntry::Type::TOUCH_MODE_CHANGED: case EventEntry::Type::POINTER_CAPTURE_CHANGED: case EventEntry::Type::FOCUS: case EventEntry::Type::CONFIGURATION_CHANGED: case EventEntry::Type::DEVICE_RESET: case EventEntry::Type::SENSOR: case EventEntry::Type::DRAG: { ALOGE("%s events do not have a target display", ftl::enum_string(entry.type).c_str()); return ui::LogicalDisplayId::INVALID; } } return displayId == ui::LogicalDisplayId::INVALID ? mFocusedDisplayId : displayId; } bool InputDispatcher::shouldWaitToSendKeyLocked(nsecs_t currentTime, const char* focusedWindowName) { if (mAnrTracker.empty()) { // already processed all events that we waited for mKeyIsWaitingForEventsTimeout = std::nullopt; return false; } if (!mKeyIsWaitingForEventsTimeout.has_value()) { // Start the timer // Wait to send key because there are unprocessed events that may cause focus to change mKeyIsWaitingForEventsTimeout = currentTime + std::chrono::duration_cast( mPolicy.getKeyWaitingForEventsTimeout()) .count(); return true; } // We still have pending events, and already started the timer if (currentTime < *mKeyIsWaitingForEventsTimeout) { return true; // Still waiting } // Waited too long, and some connection still hasn't processed all motions // Just send the key to the focused window ALOGW("Dispatching key to %s even though there are other unprocessed events", focusedWindowName); mKeyIsWaitingForEventsTimeout = std::nullopt; return false; } sp InputDispatcher::findFocusedWindowTargetLocked( nsecs_t currentTime, const EventEntry& entry, nsecs_t& nextWakeupTime, InputEventInjectionResult& outInjectionResult) { outInjectionResult = InputEventInjectionResult::FAILED; // Default result ui::LogicalDisplayId displayId = getTargetDisplayId(entry); sp focusedWindowHandle = getFocusedWindowHandleLocked(displayId); std::shared_ptr focusedApplicationHandle = getValueByKey(mFocusedApplicationHandlesByDisplay, displayId); // If there is no currently focused window and no focused application // then drop the event. if (focusedWindowHandle == nullptr && focusedApplicationHandle == nullptr) { ALOGI("Dropping %s event because there is no focused window or focused application in " "display %s.", ftl::enum_string(entry.type).c_str(), displayId.toString().c_str()); return nullptr; } // Drop key events if requested by input feature if (focusedWindowHandle != nullptr && shouldDropInput(entry, focusedWindowHandle)) { return nullptr; } // Compatibility behavior: raise ANR if there is a focused application, but no focused window. // Only start counting when we have a focused event to dispatch. The ANR is canceled if we // start interacting with another application via touch (app switch). This code can be removed // if the "no focused window ANR" is moved to the policy. Input doesn't know whether // an app is expected to have a focused window. if (focusedWindowHandle == nullptr && focusedApplicationHandle != nullptr) { if (!mNoFocusedWindowTimeoutTime.has_value()) { // We just discovered that there's no focused window. Start the ANR timer std::chrono::nanoseconds timeout = focusedApplicationHandle->getDispatchingTimeout( DEFAULT_INPUT_DISPATCHING_TIMEOUT); mNoFocusedWindowTimeoutTime = currentTime + timeout.count(); mAwaitedFocusedApplication = focusedApplicationHandle; mAwaitedApplicationDisplayId = displayId; ALOGW("Waiting because no window has focus but %s may eventually add a " "window when it finishes starting up. Will wait for %" PRId64 "ms", mAwaitedFocusedApplication->getName().c_str(), millis(timeout)); nextWakeupTime = std::min(nextWakeupTime, *mNoFocusedWindowTimeoutTime); outInjectionResult = InputEventInjectionResult::PENDING; return nullptr; } else if (currentTime > *mNoFocusedWindowTimeoutTime) { // Already raised ANR. Drop the event ALOGE("Dropping %s event because there is no focused window", ftl::enum_string(entry.type).c_str()); return nullptr; } else { // Still waiting for the focused window outInjectionResult = InputEventInjectionResult::PENDING; return nullptr; } } // we have a valid, non-null focused window resetNoFocusedWindowTimeoutLocked(); // Verify targeted injection. if (const auto err = verifyTargetedInjection(focusedWindowHandle, entry); err) { ALOGW("Dropping injected event: %s", (*err).c_str()); outInjectionResult = InputEventInjectionResult::TARGET_MISMATCH; return nullptr; } if (focusedWindowHandle->getInfo()->inputConfig.test( WindowInfo::InputConfig::PAUSE_DISPATCHING)) { ALOGI("Waiting because %s is paused", focusedWindowHandle->getName().c_str()); outInjectionResult = InputEventInjectionResult::PENDING; return nullptr; } // If the event is a key event, then we must wait for all previous events to // complete before delivering it because previous events may have the // side-effect of transferring focus to a different window and we want to // ensure that the following keys are sent to the new window. // // Suppose the user touches a button in a window then immediately presses "A". // If the button causes a pop-up window to appear then we want to ensure that // the "A" key is delivered to the new pop-up window. This is because users // often anticipate pending UI changes when typing on a keyboard. // To obtain this behavior, we must serialize key events with respect to all // prior input events. if (entry.type == EventEntry::Type::KEY) { if (shouldWaitToSendKeyLocked(currentTime, focusedWindowHandle->getName().c_str())) { nextWakeupTime = std::min(nextWakeupTime, *mKeyIsWaitingForEventsTimeout); outInjectionResult = InputEventInjectionResult::PENDING; return nullptr; } } outInjectionResult = InputEventInjectionResult::SUCCEEDED; return focusedWindowHandle; } /** * Given a list of monitors, remove the ones we cannot find a connection for, and the ones * that are currently unresponsive. */ std::vector InputDispatcher::selectResponsiveMonitorsLocked( const std::vector& monitors) const { std::vector responsiveMonitors; std::copy_if(monitors.begin(), monitors.end(), std::back_inserter(responsiveMonitors), [](const Monitor& monitor) REQUIRES(mLock) { std::shared_ptr connection = monitor.connection; if (!connection->responsive) { ALOGW("Unresponsive monitor %s will not get the new gesture", connection->getInputChannelName().c_str()); return false; } return true; }); return responsiveMonitors; } std::vector InputDispatcher::findTouchedWindowTargetsLocked( nsecs_t currentTime, const MotionEntry& entry, InputEventInjectionResult& outInjectionResult) { ATRACE_CALL(); std::vector targets; // For security reasons, we defer updating the touch state until we are sure that // event injection will be allowed. const ui::LogicalDisplayId displayId = entry.displayId; const int32_t action = entry.action; const int32_t maskedAction = MotionEvent::getActionMasked(action); // Update the touch state as needed based on the properties of the touch event. outInjectionResult = InputEventInjectionResult::PENDING; // Copy current touch state into tempTouchState. // This state will be used to update mTouchStatesByDisplay at the end of this function. // If no state for the specified display exists, then our initial state will be empty. const TouchState* oldState = nullptr; TouchState tempTouchState; if (const auto it = mTouchStatesByDisplay.find(displayId); it != mTouchStatesByDisplay.end()) { oldState = &(it->second); tempTouchState = *oldState; } bool isSplit = shouldSplitTouch(tempTouchState, entry); const bool isHoverAction = (maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE || maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER || maskedAction == AMOTION_EVENT_ACTION_HOVER_EXIT); // A DOWN could be generated from POINTER_DOWN if the initial pointers did not land into any // touchable windows. const bool wasDown = oldState != nullptr && oldState->isDown(entry.deviceId); const bool isDown = (maskedAction == AMOTION_EVENT_ACTION_DOWN) || (maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN && !wasDown); const bool newGesture = isDown || maskedAction == AMOTION_EVENT_ACTION_SCROLL || maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER || maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE; const bool isFromMouse = isFromSource(entry.source, AINPUT_SOURCE_MOUSE); if (newGesture) { isSplit = false; } if (isDown && tempTouchState.hasHoveringPointers(entry.deviceId)) { // Compatibility behaviour: ACTION_DOWN causes HOVER_EXIT to get generated. tempTouchState.clearHoveringPointers(entry.deviceId); } if (isHoverAction) { if (wasDown) { // Started hovering, but the device is already down: reject the hover event LOG(ERROR) << "Got hover event " << entry.getDescription() << " but the device is already down " << oldState->dump(); outInjectionResult = InputEventInjectionResult::FAILED; return {}; } // For hover actions, we will treat 'tempTouchState' as a new state, so let's erase // all of the existing hovering pointers and recompute. tempTouchState.clearHoveringPointers(entry.deviceId); } if (newGesture || (isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN)) { /* Case 1: New splittable pointer going down, or need target for hover or scroll. */ const auto [x, y] = resolveTouchedPosition(entry); const int32_t pointerIndex = MotionEvent::getActionIndex(action); const PointerProperties& pointer = entry.pointerProperties[pointerIndex]; // Outside targets should be added upon first dispatched DOWN event. That means, this should // be a pointer that would generate ACTION_DOWN, *and* touch should not already be down. const bool isStylus = isPointerFromStylus(entry, pointerIndex); sp newTouchedWindowHandle = findTouchedWindowAtLocked(displayId, x, y, isStylus); if (isDown) { targets += findOutsideTargetsLocked(displayId, newTouchedWindowHandle, pointer.id); } // Handle the case where we did not find a window. if (newTouchedWindowHandle == nullptr) { ALOGD("No new touched window at (%.1f, %.1f) in display %s", x, y, displayId.toString().c_str()); // Try to assign the pointer to the first foreground window we find, if there is one. newTouchedWindowHandle = tempTouchState.getFirstForegroundWindowHandle(entry.deviceId); } // Verify targeted injection. if (const auto err = verifyTargetedInjection(newTouchedWindowHandle, entry); err) { ALOGW("Dropping injected touch event: %s", (*err).c_str()); outInjectionResult = os::InputEventInjectionResult::TARGET_MISMATCH; newTouchedWindowHandle = nullptr; return {}; } // Figure out whether splitting will be allowed for this window. if (newTouchedWindowHandle != nullptr) { if (newTouchedWindowHandle->getInfo()->supportsSplitTouch()) { // New window supports splitting, but we should never split mouse events. isSplit = !isFromMouse; } else if (isSplit) { // New window does not support splitting but we have already split events. // Ignore the new window. LOG(INFO) << "Skipping " << newTouchedWindowHandle->getName() << " because it doesn't support split touch"; newTouchedWindowHandle = nullptr; } } else { // No window is touched, so set split to true. This will allow the next pointer down to // be delivered to a new window which supports split touch. Pointers from a mouse device // should never be split. isSplit = !isFromMouse; } std::vector> newTouchedWindows = findTouchedSpyWindowsAtLocked(displayId, x, y, isStylus); if (newTouchedWindowHandle != nullptr) { // Process the foreground window first so that it is the first to receive the event. newTouchedWindows.insert(newTouchedWindows.begin(), newTouchedWindowHandle); } if (newTouchedWindows.empty()) { ALOGI("Dropping event because there is no touchable window at (%.1f, %.1f) on display " "%s.", x, y, displayId.toString().c_str()); outInjectionResult = InputEventInjectionResult::FAILED; return {}; } for (const sp& windowHandle : newTouchedWindows) { if (!canWindowReceiveMotionLocked(windowHandle, entry)) { continue; } if (isHoverAction) { // The "windowHandle" is the target of this hovering pointer. tempTouchState.addHoveringPointerToWindow(windowHandle, entry.deviceId, pointer); } // Set target flags. ftl::Flags targetFlags; if (canReceiveForegroundTouches(*windowHandle->getInfo())) { // There should only be one touched window that can be "foreground" for the pointer. targetFlags |= InputTarget::Flags::FOREGROUND; } if (isSplit) { targetFlags |= InputTarget::Flags::SPLIT; } if (isWindowObscuredAtPointLocked(windowHandle, x, y)) { targetFlags |= InputTarget::Flags::WINDOW_IS_OBSCURED; } else if (isWindowObscuredLocked(windowHandle)) { targetFlags |= InputTarget::Flags::WINDOW_IS_PARTIALLY_OBSCURED; } // Update the temporary touch state. if (!isHoverAction) { const bool isDownOrPointerDown = maskedAction == AMOTION_EVENT_ACTION_DOWN || maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN; Result addResult = tempTouchState.addOrUpdateWindow(windowHandle, InputTarget::DispatchMode::AS_IS, targetFlags, entry.deviceId, {pointer}, isDownOrPointerDown ? std::make_optional( entry.eventTime) : std::nullopt); if (!addResult.ok()) { LOG(ERROR) << "Error while processing " << entry << " for " << windowHandle->getName(); logDispatchStateLocked(); } // If this is the pointer going down and the touched window has a wallpaper // then also add the touched wallpaper windows so they are locked in for the // duration of the touch gesture. We do not collect wallpapers during HOVER_MOVE or // SCROLL because the wallpaper engine only supports touch events. We would need to // add a mechanism similar to View.onGenericMotionEvent to enable wallpapers to // handle these events. if (isDownOrPointerDown && targetFlags.test(InputTarget::Flags::FOREGROUND) && windowHandle->getInfo()->inputConfig.test( gui::WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER)) { sp wallpaper = findWallpaperWindowBelow(windowHandle); if (wallpaper != nullptr) { ftl::Flags wallpaperFlags = InputTarget::Flags::WINDOW_IS_OBSCURED | InputTarget::Flags::WINDOW_IS_PARTIALLY_OBSCURED; if (isSplit) { wallpaperFlags |= InputTarget::Flags::SPLIT; } tempTouchState.addOrUpdateWindow(wallpaper, InputTarget::DispatchMode::AS_IS, wallpaperFlags, entry.deviceId, {pointer}, entry.eventTime); } } } } // If a window is already pilfering some pointers, give it this new pointer as well and // make it pilfering. This will prevent other non-spy windows from getting this pointer, // which is a specific behaviour that we want. for (TouchedWindow& touchedWindow : tempTouchState.windows) { if (touchedWindow.hasTouchingPointer(entry.deviceId, pointer.id) && touchedWindow.hasPilferingPointers(entry.deviceId)) { // This window is already pilfering some pointers, and this new pointer is also // going to it. Therefore, take over this pointer and don't give it to anyone // else. touchedWindow.addPilferingPointer(entry.deviceId, pointer.id); } } // Restrict all pilfered pointers to the pilfering windows. tempTouchState.cancelPointersForNonPilferingWindows(); } else { /* Case 2: Pointer move, up, cancel or non-splittable pointer down. */ // If the pointer is not currently down, then ignore the event. if (!tempTouchState.isDown(entry.deviceId) && maskedAction != AMOTION_EVENT_ACTION_HOVER_EXIT) { if (DEBUG_DROPPED_EVENTS_VERBOSE) { LOG(INFO) << "Dropping event because the pointer for device " << entry.deviceId << " is not down or we previously dropped the pointer down event in " << "display " << displayId << ": " << entry.getDescription(); } outInjectionResult = InputEventInjectionResult::FAILED; return {}; } // If the pointer is not currently hovering, then ignore the event. if (maskedAction == AMOTION_EVENT_ACTION_HOVER_EXIT) { const int32_t pointerId = entry.pointerProperties[0].id; if (oldState == nullptr || oldState->getWindowsWithHoveringPointer(entry.deviceId, pointerId).empty()) { LOG(INFO) << "Dropping event because the hovering pointer is not in any windows in " "display " << displayId << ": " << entry.getDescription(); outInjectionResult = InputEventInjectionResult::FAILED; return {}; } tempTouchState.removeHoveringPointer(entry.deviceId, pointerId); } addDragEventLocked(entry); // Check whether touches should slip outside of the current foreground window. if (maskedAction == AMOTION_EVENT_ACTION_MOVE && entry.getPointerCount() == 1 && tempTouchState.isSlippery(entry.deviceId)) { const auto [x, y] = resolveTouchedPosition(entry); const bool isStylus = isPointerFromStylus(entry, /*pointerIndex=*/0); sp oldTouchedWindowHandle = tempTouchState.getFirstForegroundWindowHandle(entry.deviceId); LOG_ALWAYS_FATAL_IF(oldTouchedWindowHandle == nullptr); sp newTouchedWindowHandle = findTouchedWindowAtLocked(displayId, x, y, isStylus); // Verify targeted injection. if (const auto err = verifyTargetedInjection(newTouchedWindowHandle, entry); err) { ALOGW("Dropping injected event: %s", (*err).c_str()); outInjectionResult = os::InputEventInjectionResult::TARGET_MISMATCH; return {}; } // Do not slide events to the window which can not receive motion event if (newTouchedWindowHandle != nullptr && !canWindowReceiveMotionLocked(newTouchedWindowHandle, entry)) { newTouchedWindowHandle = nullptr; } if (newTouchedWindowHandle != nullptr && !haveSameToken(oldTouchedWindowHandle, newTouchedWindowHandle)) { ALOGI("Touch is slipping out of window %s into window %s in display %s", oldTouchedWindowHandle->getName().c_str(), newTouchedWindowHandle->getName().c_str(), displayId.toString().c_str()); // Make a slippery exit from the old window. std::bitset pointerIds; const PointerProperties& pointer = entry.pointerProperties[0]; pointerIds.set(pointer.id); const TouchedWindow& touchedWindow = tempTouchState.getTouchedWindow(oldTouchedWindowHandle); addPointerWindowTargetLocked(oldTouchedWindowHandle, InputTarget::DispatchMode::SLIPPERY_EXIT, ftl::Flags(), pointerIds, touchedWindow.getDownTimeInTarget(entry.deviceId), targets); // Make a slippery entrance into the new window. if (newTouchedWindowHandle->getInfo()->supportsSplitTouch()) { isSplit = !isFromMouse; } ftl::Flags targetFlags; if (canReceiveForegroundTouches(*newTouchedWindowHandle->getInfo())) { targetFlags |= InputTarget::Flags::FOREGROUND; } if (isSplit) { targetFlags |= InputTarget::Flags::SPLIT; } if (isWindowObscuredAtPointLocked(newTouchedWindowHandle, x, y)) { targetFlags |= InputTarget::Flags::WINDOW_IS_OBSCURED; } else if (isWindowObscuredLocked(newTouchedWindowHandle)) { targetFlags |= InputTarget::Flags::WINDOW_IS_PARTIALLY_OBSCURED; } tempTouchState.addOrUpdateWindow(newTouchedWindowHandle, InputTarget::DispatchMode::SLIPPERY_ENTER, targetFlags, entry.deviceId, {pointer}, entry.eventTime); // Check if the wallpaper window should deliver the corresponding event. slipWallpaperTouch(targetFlags, oldTouchedWindowHandle, newTouchedWindowHandle, tempTouchState, entry.deviceId, pointer, targets); tempTouchState.removeTouchingPointerFromWindow(entry.deviceId, pointer.id, oldTouchedWindowHandle); } } // Update the pointerIds for non-splittable when it received pointer down. if (!isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN) { // If no split, we suppose all touched windows should receive pointer down. const int32_t pointerIndex = MotionEvent::getActionIndex(action); std::vector touchingPointers{entry.pointerProperties[pointerIndex]}; for (TouchedWindow& touchedWindow : tempTouchState.windows) { // Ignore drag window for it should just track one pointer. if (mDragState && mDragState->dragWindow == touchedWindow.windowHandle) { continue; } touchedWindow.addTouchingPointers(entry.deviceId, touchingPointers); } } } // Update dispatching for hover enter and exit. { std::vector hoveringWindows = getHoveringWindowsLocked(oldState, tempTouchState, entry); // Hardcode to single hovering pointer for now. std::bitset pointerIds; pointerIds.set(entry.pointerProperties[0].id); for (const TouchedWindow& touchedWindow : hoveringWindows) { addPointerWindowTargetLocked(touchedWindow.windowHandle, touchedWindow.dispatchMode, touchedWindow.targetFlags, pointerIds, touchedWindow.getDownTimeInTarget(entry.deviceId), targets); } } // Ensure that all touched windows are valid for injection. if (entry.injectionState != nullptr) { std::string errs; for (const TouchedWindow& touchedWindow : tempTouchState.windows) { const auto err = verifyTargetedInjection(touchedWindow.windowHandle, entry); if (err) errs += "\n - " + *err; } if (!errs.empty()) { ALOGW("Dropping targeted injection: At least one touched window is not owned by uid " "%s:%s", entry.injectionState->targetUid->toString().c_str(), errs.c_str()); outInjectionResult = InputEventInjectionResult::TARGET_MISMATCH; return {}; } } // Check whether windows listening for outside touches are owned by the same UID. If the owner // has a different UID, then we will not reveal coordinate information to this window. if (maskedAction == AMOTION_EVENT_ACTION_DOWN) { sp foregroundWindowHandle = tempTouchState.getFirstForegroundWindowHandle(entry.deviceId); if (foregroundWindowHandle) { const auto foregroundWindowUid = foregroundWindowHandle->getInfo()->ownerUid; for (InputTarget& target : targets) { if (target.dispatchMode == InputTarget::DispatchMode::OUTSIDE) { sp targetWindow = getWindowHandleLocked(target.connection->getToken()); if (targetWindow->getInfo()->ownerUid != foregroundWindowUid) { target.flags |= InputTarget::Flags::ZERO_COORDS; } } } } } // If this is a touchpad navigation gesture, it needs to only be sent to trusted targets, as we // only want the system UI to handle these gestures. const bool isTouchpadNavGesture = isFromSource(entry.source, AINPUT_SOURCE_MOUSE) && entry.classification == MotionClassification::MULTI_FINGER_SWIPE; if (isTouchpadNavGesture) { filterUntrustedTargets(/* byref */ tempTouchState, /* byref */ targets); } // Output targets from the touch state. for (const TouchedWindow& touchedWindow : tempTouchState.windows) { std::vector touchingPointers = touchedWindow.getTouchingPointers(entry.deviceId); if (touchingPointers.empty()) { continue; } addPointerWindowTargetLocked(touchedWindow.windowHandle, touchedWindow.dispatchMode, touchedWindow.targetFlags, getPointerIds(touchingPointers), touchedWindow.getDownTimeInTarget(entry.deviceId), targets); } // During targeted injection, only allow owned targets to receive events std::erase_if(targets, [&](const InputTarget& target) { LOG_ALWAYS_FATAL_IF(target.windowHandle == nullptr); const auto err = verifyTargetedInjection(target.windowHandle, entry); if (err) { LOG(WARNING) << "Dropping injected event from " << target.windowHandle->getName() << ": " << (*err); return true; } return false; }); if (targets.empty()) { LOG(INFO) << "Dropping event because no targets were found: " << entry.getDescription(); outInjectionResult = InputEventInjectionResult::FAILED; return {}; } // If we only have windows getting ACTION_OUTSIDE, then drop the event, because there is no // window that is actually receiving the entire gesture. if (std::all_of(targets.begin(), targets.end(), [](const InputTarget& target) { return target.dispatchMode == InputTarget::DispatchMode::OUTSIDE; })) { LOG(INFO) << "Dropping event because all windows would just receive ACTION_OUTSIDE: " << entry.getDescription(); outInjectionResult = InputEventInjectionResult::FAILED; return {}; } outInjectionResult = InputEventInjectionResult::SUCCEEDED; // Now that we have generated all of the input targets for this event, reset the dispatch // mode for all touched window to AS_IS. for (TouchedWindow& touchedWindow : tempTouchState.windows) { touchedWindow.dispatchMode = InputTarget::DispatchMode::AS_IS; } // Update final pieces of touch state if the injector had permission. if (maskedAction == AMOTION_EVENT_ACTION_UP) { // Pointer went up. tempTouchState.removeTouchingPointer(entry.deviceId, entry.pointerProperties[0].id); } else if (maskedAction == AMOTION_EVENT_ACTION_CANCEL) { // All pointers up or canceled. tempTouchState.removeAllPointersForDevice(entry.deviceId); } else if (maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) { // One pointer went up. const int32_t pointerIndex = MotionEvent::getActionIndex(action); const uint32_t pointerId = entry.pointerProperties[pointerIndex].id; tempTouchState.removeTouchingPointer(entry.deviceId, pointerId); } // Save changes unless the action was scroll in which case the temporary touch // state was only valid for this one action. if (maskedAction != AMOTION_EVENT_ACTION_SCROLL) { if (displayId >= ui::LogicalDisplayId::DEFAULT) { tempTouchState.clearWindowsWithoutPointers(); mTouchStatesByDisplay[displayId] = tempTouchState; } else { mTouchStatesByDisplay.erase(displayId); } } if (tempTouchState.windows.empty()) { mTouchStatesByDisplay.erase(displayId); } return targets; } void InputDispatcher::finishDragAndDrop(ui::LogicalDisplayId displayId, float x, float y) { // Prevent stylus interceptor windows from affecting drag and drop behavior for now, until we // have an explicit reason to support it. constexpr bool isStylus = false; sp dropWindow = findTouchedWindowAtLocked(displayId, x, y, isStylus, /*ignoreDragWindow=*/true); if (dropWindow) { vec2 local = dropWindow->getInfo()->transform.transform(x, y); sendDropWindowCommandLocked(dropWindow->getToken(), local.x, local.y); } else { ALOGW("No window found when drop."); sendDropWindowCommandLocked(nullptr, 0, 0); } mDragState.reset(); } void InputDispatcher::addDragEventLocked(const MotionEntry& entry) { if (!mDragState || mDragState->dragWindow->getInfo()->displayId != entry.displayId) { return; } if (!mDragState->isStartDrag) { mDragState->isStartDrag = true; mDragState->isStylusButtonDownAtStart = (entry.buttonState & AMOTION_EVENT_BUTTON_STYLUS_PRIMARY) != 0; } // Find the pointer index by id. int32_t pointerIndex = 0; for (; static_cast(pointerIndex) < entry.getPointerCount(); pointerIndex++) { const PointerProperties& pointerProperties = entry.pointerProperties[pointerIndex]; if (pointerProperties.id == mDragState->pointerId) { break; } } if (uint32_t(pointerIndex) == entry.getPointerCount()) { LOG_ALWAYS_FATAL("Should find a valid pointer index by id %d", mDragState->pointerId); } const int32_t maskedAction = entry.action & AMOTION_EVENT_ACTION_MASK; const int32_t x = entry.pointerCoords[pointerIndex].getX(); const int32_t y = entry.pointerCoords[pointerIndex].getY(); switch (maskedAction) { case AMOTION_EVENT_ACTION_MOVE: { // Handle the special case : stylus button no longer pressed. bool isStylusButtonDown = (entry.buttonState & AMOTION_EVENT_BUTTON_STYLUS_PRIMARY) != 0; if (mDragState->isStylusButtonDownAtStart && !isStylusButtonDown) { finishDragAndDrop(entry.displayId, x, y); return; } // Prevent stylus interceptor windows from affecting drag and drop behavior for now, // until we have an explicit reason to support it. constexpr bool isStylus = false; sp hoverWindowHandle = findTouchedWindowAtLocked(entry.displayId, x, y, isStylus, /*ignoreDragWindow=*/true); // enqueue drag exit if needed. if (hoverWindowHandle != mDragState->dragHoverWindowHandle && !haveSameToken(hoverWindowHandle, mDragState->dragHoverWindowHandle)) { if (mDragState->dragHoverWindowHandle != nullptr) { enqueueDragEventLocked(mDragState->dragHoverWindowHandle, /*isExiting=*/true, x, y); } mDragState->dragHoverWindowHandle = hoverWindowHandle; } // enqueue drag location if needed. if (hoverWindowHandle != nullptr) { enqueueDragEventLocked(hoverWindowHandle, /*isExiting=*/false, x, y); } break; } case AMOTION_EVENT_ACTION_POINTER_UP: if (MotionEvent::getActionIndex(entry.action) != pointerIndex) { break; } // The drag pointer is up. [[fallthrough]]; case AMOTION_EVENT_ACTION_UP: finishDragAndDrop(entry.displayId, x, y); break; case AMOTION_EVENT_ACTION_CANCEL: { ALOGD("Receiving cancel when drag and drop."); sendDropWindowCommandLocked(nullptr, 0, 0); mDragState.reset(); break; } } } std::optional InputDispatcher::createInputTargetLocked( const sp& windowHandle, InputTarget::DispatchMode dispatchMode, ftl::Flags targetFlags, std::optional firstDownTimeInTarget) const { std::shared_ptr connection = getConnectionLocked(windowHandle->getToken()); if (connection == nullptr) { ALOGW("Not creating InputTarget for %s, no input channel", windowHandle->getName().c_str()); return {}; } InputTarget inputTarget{connection}; inputTarget.windowHandle = windowHandle; inputTarget.dispatchMode = dispatchMode; inputTarget.flags = targetFlags; inputTarget.globalScaleFactor = windowHandle->getInfo()->globalScaleFactor; inputTarget.firstDownTimeInTarget = firstDownTimeInTarget; const auto& displayInfoIt = mDisplayInfos.find(windowHandle->getInfo()->displayId); if (displayInfoIt != mDisplayInfos.end()) { inputTarget.displayTransform = displayInfoIt->second.transform; } else { // DisplayInfo not found for this window on display windowHandle->getInfo()->displayId. // TODO(b/198444055): Make this an error message after 'setInputWindows' API is removed. } return inputTarget; } void InputDispatcher::addWindowTargetLocked(const sp& windowHandle, InputTarget::DispatchMode dispatchMode, ftl::Flags targetFlags, std::optional firstDownTimeInTarget, std::vector& inputTargets) const { std::vector::iterator it = std::find_if(inputTargets.begin(), inputTargets.end(), [&windowHandle](const InputTarget& inputTarget) { return inputTarget.connection->getToken() == windowHandle->getToken(); }); const WindowInfo* windowInfo = windowHandle->getInfo(); if (it == inputTargets.end()) { std::optional target = createInputTargetLocked(windowHandle, dispatchMode, targetFlags, firstDownTimeInTarget); if (!target) { return; } inputTargets.push_back(*target); it = inputTargets.end() - 1; } if (it->flags != targetFlags) { LOG(ERROR) << "Flags don't match! targetFlags=" << targetFlags.string() << ", it=" << *it; } if (it->globalScaleFactor != windowInfo->globalScaleFactor) { LOG(ERROR) << "Mismatch! it->globalScaleFactor=" << it->globalScaleFactor << ", windowInfo->globalScaleFactor=" << windowInfo->globalScaleFactor; } } void InputDispatcher::addPointerWindowTargetLocked( const sp& windowHandle, InputTarget::DispatchMode dispatchMode, ftl::Flags targetFlags, std::bitset pointerIds, std::optional firstDownTimeInTarget, std::vector& inputTargets) const REQUIRES(mLock) { if (pointerIds.none()) { for (const auto& target : inputTargets) { LOG(INFO) << "Target: " << target; } LOG(FATAL) << "No pointers specified for " << windowHandle->getName(); return; } std::vector::iterator it = std::find_if(inputTargets.begin(), inputTargets.end(), [&windowHandle](const InputTarget& inputTarget) { return inputTarget.connection->getToken() == windowHandle->getToken(); }); // This is a hack, because the actual entry could potentially be an ACTION_DOWN event that // causes a HOVER_EXIT to be generated. That means that the same entry of ACTION_DOWN would // have DISPATCH_AS_HOVER_EXIT and DISPATCH_AS_IS. And therefore, we have to create separate // input targets for hovering pointers and for touching pointers. // If we picked an existing input target above, but it's for HOVER_EXIT - let's use a new // target instead. if (it != inputTargets.end() && it->dispatchMode == InputTarget::DispatchMode::HOVER_EXIT) { // Force the code below to create a new input target it = inputTargets.end(); } const WindowInfo* windowInfo = windowHandle->getInfo(); if (it == inputTargets.end()) { std::optional target = createInputTargetLocked(windowHandle, dispatchMode, targetFlags, firstDownTimeInTarget); if (!target) { return; } inputTargets.push_back(*target); it = inputTargets.end() - 1; } if (it->dispatchMode != dispatchMode) { LOG(ERROR) << __func__ << ": DispatchMode doesn't match! ignoring new mode=" << ftl::enum_string(dispatchMode) << ", it=" << *it; } if (it->flags != targetFlags) { LOG(ERROR) << __func__ << ": Flags don't match! new targetFlags=" << targetFlags.string() << ", it=" << *it; } if (it->globalScaleFactor != windowInfo->globalScaleFactor) { LOG(ERROR) << __func__ << ": Mismatch! it->globalScaleFactor=" << it->globalScaleFactor << ", windowInfo->globalScaleFactor=" << windowInfo->globalScaleFactor; } Result result = it->addPointers(pointerIds, windowInfo->transform); if (!result.ok()) { logDispatchStateLocked(); LOG(FATAL) << result.error().message(); } } void InputDispatcher::addGlobalMonitoringTargetsLocked(std::vector& inputTargets, ui::LogicalDisplayId displayId) { auto monitorsIt = mGlobalMonitorsByDisplay.find(displayId); if (monitorsIt == mGlobalMonitorsByDisplay.end()) return; for (const Monitor& monitor : selectResponsiveMonitorsLocked(monitorsIt->second)) { InputTarget target{monitor.connection}; // target.firstDownTimeInTarget is not set for global monitors. It is only required in split // touch and global monitoring works as intended even without setting firstDownTimeInTarget if (const auto& it = mDisplayInfos.find(displayId); it != mDisplayInfos.end()) { target.displayTransform = it->second.transform; } target.setDefaultPointerTransform(target.displayTransform); inputTargets.push_back(target); } } /** * Indicate whether one window handle should be considered as obscuring * another window handle. We only check a few preconditions. Actually * checking the bounds is left to the caller. */ static bool canBeObscuredBy(const sp& windowHandle, const sp& otherHandle) { // Compare by token so cloned layers aren't counted if (haveSameToken(windowHandle, otherHandle)) { return false; } auto info = windowHandle->getInfo(); auto otherInfo = otherHandle->getInfo(); if (otherInfo->inputConfig.test(WindowInfo::InputConfig::NOT_VISIBLE)) { return false; } else if (otherInfo->alpha == 0 && otherInfo->inputConfig.test(WindowInfo::InputConfig::NOT_TOUCHABLE)) { // Those act as if they were invisible, so we don't need to flag them. // We do want to potentially flag touchable windows even if they have 0 // opacity, since they can consume touches and alter the effects of the // user interaction (eg. apps that rely on // Flags::WINDOW_IS_PARTIALLY_OBSCURED should still be told about those // windows), hence we also check for FLAG_NOT_TOUCHABLE. return false; } else if (info->ownerUid == otherInfo->ownerUid) { // If ownerUid is the same we don't generate occlusion events as there // is no security boundary within an uid. return false; } else if (otherInfo->inputConfig.test(gui::WindowInfo::InputConfig::TRUSTED_OVERLAY)) { return false; } else if (otherInfo->displayId != info->displayId) { return false; } return true; } /** * Returns touch occlusion information in the form of TouchOcclusionInfo. To check if the touch is * untrusted, one should check: * * 1. If result.hasBlockingOcclusion is true. * If it's, it means the touch should be blocked due to a window with occlusion mode of * BLOCK_UNTRUSTED. * * 2. If result.obscuringOpacity > mMaximumObscuringOpacityForTouch. * If it is (and 1 is false), then the touch should be blocked because a stack of windows * (possibly only one) with occlusion mode of USE_OPACITY from one UID resulted in a composed * obscuring opacity above the threshold. Note that if there was no window of occlusion mode * USE_OPACITY, result.obscuringOpacity would've been 0 and since * mMaximumObscuringOpacityForTouch >= 0, the condition above would never be true. * * If neither of those is true, then it means the touch can be allowed. */ InputDispatcher::TouchOcclusionInfo InputDispatcher::computeTouchOcclusionInfoLocked( const sp& windowHandle, float x, float y) const { const WindowInfo* windowInfo = windowHandle->getInfo(); ui::LogicalDisplayId displayId = windowInfo->displayId; const std::vector>& windowHandles = getWindowHandlesLocked(displayId); TouchOcclusionInfo info; info.hasBlockingOcclusion = false; info.obscuringOpacity = 0; info.obscuringUid = gui::Uid::INVALID; std::map opacityByUid; for (const sp& otherHandle : windowHandles) { if (windowHandle == otherHandle) { break; // All future windows are below us. Exit early. } const WindowInfo* otherInfo = otherHandle->getInfo(); if (canBeObscuredBy(windowHandle, otherHandle) && windowOccludesTouchAt(*otherInfo, displayId, x, y, getTransformLocked(displayId)) && !haveSameApplicationToken(windowInfo, otherInfo)) { if (DEBUG_TOUCH_OCCLUSION) { info.debugInfo.push_back( dumpWindowForTouchOcclusion(otherInfo, /*isTouchedWindow=*/false)); } // canBeObscuredBy() has returned true above, which means this window is untrusted, so // we perform the checks below to see if the touch can be propagated or not based on the // window's touch occlusion mode if (otherInfo->touchOcclusionMode == TouchOcclusionMode::BLOCK_UNTRUSTED) { info.hasBlockingOcclusion = true; info.obscuringUid = otherInfo->ownerUid; info.obscuringPackage = otherInfo->packageName; break; } if (otherInfo->touchOcclusionMode == TouchOcclusionMode::USE_OPACITY) { const auto uid = otherInfo->ownerUid; float opacity = (opacityByUid.find(uid) == opacityByUid.end()) ? 0 : opacityByUid[uid]; // Given windows A and B: // opacity(A, B) = 1 - [1 - opacity(A)] * [1 - opacity(B)] opacity = 1 - (1 - opacity) * (1 - otherInfo->alpha); opacityByUid[uid] = opacity; if (opacity > info.obscuringOpacity) { info.obscuringOpacity = opacity; info.obscuringUid = uid; info.obscuringPackage = otherInfo->packageName; } } } } if (DEBUG_TOUCH_OCCLUSION) { info.debugInfo.push_back(dumpWindowForTouchOcclusion(windowInfo, /*isTouchedWindow=*/true)); } return info; } std::string InputDispatcher::dumpWindowForTouchOcclusion(const WindowInfo* info, bool isTouchedWindow) const { return StringPrintf(INDENT2 "* %spackage=%s/%s, id=%" PRId32 ", mode=%s, alpha=%.2f, " "frame=[%" PRId32 ",%" PRId32 "][%" PRId32 ",%" PRId32 "], touchableRegion=%s, window={%s}, inputConfig={%s}, " "hasToken=%s, applicationInfo.name=%s, applicationInfo.token=%s\n", isTouchedWindow ? "[TOUCHED] " : "", info->packageName.c_str(), info->ownerUid.toString().c_str(), info->id, toString(info->touchOcclusionMode).c_str(), info->alpha, info->frame.left, info->frame.top, info->frame.right, info->frame.bottom, dumpRegion(info->touchableRegion).c_str(), info->name.c_str(), info->inputConfig.string().c_str(), toString(info->token != nullptr), info->applicationInfo.name.c_str(), binderToString(info->applicationInfo.token).c_str()); } bool InputDispatcher::isTouchTrustedLocked(const TouchOcclusionInfo& occlusionInfo) const { if (occlusionInfo.hasBlockingOcclusion) { ALOGW("Untrusted touch due to occlusion by %s/%s", occlusionInfo.obscuringPackage.c_str(), occlusionInfo.obscuringUid.toString().c_str()); return false; } if (occlusionInfo.obscuringOpacity > mMaximumObscuringOpacityForTouch) { ALOGW("Untrusted touch due to occlusion by %s/%s (obscuring opacity = " "%.2f, maximum allowed = %.2f)", occlusionInfo.obscuringPackage.c_str(), occlusionInfo.obscuringUid.toString().c_str(), occlusionInfo.obscuringOpacity, mMaximumObscuringOpacityForTouch); return false; } return true; } bool InputDispatcher::isWindowObscuredAtPointLocked(const sp& windowHandle, float x, float y) const { ui::LogicalDisplayId displayId = windowHandle->getInfo()->displayId; const std::vector>& windowHandles = getWindowHandlesLocked(displayId); for (const sp& otherHandle : windowHandles) { if (windowHandle == otherHandle) { break; // All future windows are below us. Exit early. } const WindowInfo* otherInfo = otherHandle->getInfo(); if (canBeObscuredBy(windowHandle, otherHandle) && windowOccludesTouchAt(*otherInfo, displayId, x, y, getTransformLocked(displayId))) { return true; } } return false; } bool InputDispatcher::isWindowObscuredLocked(const sp& windowHandle) const { ui::LogicalDisplayId displayId = windowHandle->getInfo()->displayId; const std::vector>& windowHandles = getWindowHandlesLocked(displayId); const WindowInfo* windowInfo = windowHandle->getInfo(); for (const sp& otherHandle : windowHandles) { if (windowHandle == otherHandle) { break; // All future windows are below us. Exit early. } const WindowInfo* otherInfo = otherHandle->getInfo(); if (canBeObscuredBy(windowHandle, otherHandle) && otherInfo->overlaps(windowInfo)) { return true; } } return false; } std::string InputDispatcher::getApplicationWindowLabel( const InputApplicationHandle* applicationHandle, const sp& windowHandle) { if (applicationHandle != nullptr) { if (windowHandle != nullptr) { return applicationHandle->getName() + " - " + windowHandle->getName(); } else { return applicationHandle->getName(); } } else if (windowHandle != nullptr) { return windowHandle->getInfo()->applicationInfo.name + " - " + windowHandle->getName(); } else { return ""; } } void InputDispatcher::pokeUserActivityLocked(const EventEntry& eventEntry) { if (!isUserActivityEvent(eventEntry)) { // Not poking user activity if the event type does not represent a user activity return; } const int32_t eventType = getUserActivityEventType(eventEntry); if (input_flags::rate_limit_user_activity_poke_in_dispatcher()) { // Note that we're directly getting the time diff between the current event and the previous // event. This is assuming that the first user event always happens at a timestamp that is // greater than `mMinTimeBetweenUserActivityPokes` (otherwise, the first user event will // wrongly be dropped). In real life, `mMinTimeBetweenUserActivityPokes` is a much smaller // value than the potential first user activity event time, so this is ok. std::chrono::nanoseconds timeSinceLastEvent = std::chrono::nanoseconds(eventEntry.eventTime - mLastUserActivityTimes[eventType]); if (timeSinceLastEvent < mMinTimeBetweenUserActivityPokes) { return; } } ui::LogicalDisplayId displayId = getTargetDisplayId(eventEntry); sp focusedWindowHandle = getFocusedWindowHandleLocked(displayId); const WindowInfo* windowDisablingUserActivityInfo = nullptr; if (focusedWindowHandle != nullptr) { const WindowInfo* info = focusedWindowHandle->getInfo(); if (info->inputConfig.test(WindowInfo::InputConfig::DISABLE_USER_ACTIVITY)) { windowDisablingUserActivityInfo = info; } } switch (eventEntry.type) { case EventEntry::Type::MOTION: { const MotionEntry& motionEntry = static_cast(eventEntry); if (motionEntry.action == AMOTION_EVENT_ACTION_CANCEL) { return; } if (windowDisablingUserActivityInfo != nullptr) { if (DEBUG_DISPATCH_CYCLE) { ALOGD("Not poking user activity: disabled by window '%s'.", windowDisablingUserActivityInfo->name.c_str()); } return; } break; } case EventEntry::Type::KEY: { const KeyEntry& keyEntry = static_cast(eventEntry); if (keyEntry.flags & AKEY_EVENT_FLAG_CANCELED) { return; } // Don't inhibit events that were intercepted or are not passed to // the apps, like system shortcuts if (windowDisablingUserActivityInfo != nullptr && keyEntry.interceptKeyResult != KeyEntry::InterceptKeyResult::SKIP) { if (DEBUG_DISPATCH_CYCLE) { ALOGD("Not poking user activity: disabled by window '%s'.", windowDisablingUserActivityInfo->name.c_str()); } return; } break; } default: { LOG_ALWAYS_FATAL("%s events are not user activity", ftl::enum_string(eventEntry.type).c_str()); break; } } mLastUserActivityTimes[eventType] = eventEntry.eventTime; auto command = [this, eventTime = eventEntry.eventTime, eventType, displayId]() REQUIRES(mLock) { scoped_unlock unlock(mLock); mPolicy.pokeUserActivity(eventTime, eventType, displayId); }; postCommandLocked(std::move(command)); } void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime, const std::shared_ptr& connection, std::shared_ptr eventEntry, const InputTarget& inputTarget) { ATRACE_NAME_IF(ATRACE_ENABLED(), StringPrintf("prepareDispatchCycleLocked(inputChannel=%s, id=0x%" PRIx32 ")", connection->getInputChannelName().c_str(), eventEntry->id)); if (DEBUG_DISPATCH_CYCLE) { ALOGD("channel '%s' ~ prepareDispatchCycle - flags=%s, " "globalScaleFactor=%f, pointerIds=%s %s", connection->getInputChannelName().c_str(), inputTarget.flags.string().c_str(), inputTarget.globalScaleFactor, bitsetToString(inputTarget.getPointerIds()).c_str(), inputTarget.getPointerInfoString().c_str()); } // Skip this event if the connection status is not normal. // We don't want to enqueue additional outbound events if the connection is broken. if (connection->status != Connection::Status::NORMAL) { if (DEBUG_DISPATCH_CYCLE) { ALOGD("channel '%s' ~ Dropping event because the channel status is %s", connection->getInputChannelName().c_str(), ftl::enum_string(connection->status).c_str()); } return; } // Split a motion event if needed. if (inputTarget.flags.test(InputTarget::Flags::SPLIT)) { LOG_ALWAYS_FATAL_IF(eventEntry->type != EventEntry::Type::MOTION, "Entry type %s should not have Flags::SPLIT", ftl::enum_string(eventEntry->type).c_str()); const MotionEntry& originalMotionEntry = static_cast(*eventEntry); if (inputTarget.getPointerIds().count() != originalMotionEntry.getPointerCount()) { if (!inputTarget.firstDownTimeInTarget.has_value()) { logDispatchStateLocked(); LOG(FATAL) << "Splitting motion events requires a down time to be set for the " "target on connection " << connection->getInputChannelName() << " for " << originalMotionEntry.getDescription(); } std::unique_ptr splitMotionEntry = splitMotionEvent(originalMotionEntry, inputTarget.getPointerIds(), inputTarget.firstDownTimeInTarget.value()); if (!splitMotionEntry) { return; // split event was dropped } if (splitMotionEntry->action == AMOTION_EVENT_ACTION_CANCEL) { std::string reason = std::string("reason=pointer cancel on split window"); android_log_event_list(LOGTAG_INPUT_CANCEL) << connection->getInputChannelName().c_str() << reason << LOG_ID_EVENTS; } if (DEBUG_FOCUS) { ALOGD("channel '%s' ~ Split motion event.", connection->getInputChannelName().c_str()); logOutboundMotionDetails(" ", *splitMotionEntry); } enqueueDispatchEntryAndStartDispatchCycleLocked(currentTime, connection, std::move(splitMotionEntry), inputTarget); return; } } // Not splitting. Enqueue dispatch entries for the event as is. enqueueDispatchEntryAndStartDispatchCycleLocked(currentTime, connection, eventEntry, inputTarget); } void InputDispatcher::enqueueDispatchEntryAndStartDispatchCycleLocked( nsecs_t currentTime, const std::shared_ptr& connection, std::shared_ptr eventEntry, const InputTarget& inputTarget) { ATRACE_NAME_IF(ATRACE_ENABLED(), StringPrintf("enqueueDispatchEntryAndStartDispatchCycleLocked(inputChannel=%s, " "id=0x%" PRIx32 ")", connection->getInputChannelName().c_str(), eventEntry->id)); const bool wasEmpty = connection->outboundQueue.empty(); enqueueDispatchEntryLocked(connection, eventEntry, inputTarget); // If the outbound queue was previously empty, start the dispatch cycle going. if (wasEmpty && !connection->outboundQueue.empty()) { startDispatchCycleLocked(currentTime, connection); } } void InputDispatcher::enqueueDispatchEntryLocked(const std::shared_ptr& connection, std::shared_ptr eventEntry, const InputTarget& inputTarget) { const bool isKeyOrMotion = eventEntry->type == EventEntry::Type::KEY || eventEntry->type == EventEntry::Type::MOTION; if (isKeyOrMotion && !inputTarget.windowHandle && !connection->monitor) { LOG(FATAL) << "All InputTargets for non-monitors must be associated with a window; target: " << inputTarget << " connection: " << connection->getInputChannelName() << " entry: " << eventEntry->getDescription(); } // This is a new event. // Enqueue a new dispatch entry onto the outbound queue for this connection. std::unique_ptr dispatchEntry = createDispatchEntry(mIdGenerator, inputTarget, eventEntry, inputTarget.flags, mWindowInfosVsyncId, mTracer.get()); // Use the eventEntry from dispatchEntry since the entry may have changed and can now be a // different EventEntry than what was passed in. eventEntry = dispatchEntry->eventEntry; // Apply target flags and update the connection's input state. switch (eventEntry->type) { case EventEntry::Type::KEY: { const KeyEntry& keyEntry = static_cast(*eventEntry); if (!connection->inputState.trackKey(keyEntry, keyEntry.flags)) { LOG(WARNING) << "channel " << connection->getInputChannelName() << "~ dropping inconsistent event: " << *dispatchEntry; return; // skip the inconsistent event } break; } case EventEntry::Type::MOTION: { std::shared_ptr resolvedMotion = std::static_pointer_cast(eventEntry); { // Determine the resolved motion entry. const MotionEntry& motionEntry = static_cast(*eventEntry); int32_t resolvedAction = motionEntry.action; int32_t resolvedFlags = motionEntry.flags; if (inputTarget.dispatchMode == InputTarget::DispatchMode::OUTSIDE) { resolvedAction = AMOTION_EVENT_ACTION_OUTSIDE; } else if (inputTarget.dispatchMode == InputTarget::DispatchMode::HOVER_EXIT) { resolvedAction = AMOTION_EVENT_ACTION_HOVER_EXIT; } else if (inputTarget.dispatchMode == InputTarget::DispatchMode::HOVER_ENTER) { resolvedAction = AMOTION_EVENT_ACTION_HOVER_ENTER; } else if (inputTarget.dispatchMode == InputTarget::DispatchMode::SLIPPERY_EXIT) { resolvedAction = AMOTION_EVENT_ACTION_CANCEL; } else if (inputTarget.dispatchMode == InputTarget::DispatchMode::SLIPPERY_ENTER) { resolvedAction = AMOTION_EVENT_ACTION_DOWN; } if (resolvedAction == AMOTION_EVENT_ACTION_HOVER_MOVE && !connection->inputState.isHovering(motionEntry.deviceId, motionEntry.source, motionEntry.displayId)) { if (DEBUG_DISPATCH_CYCLE) { LOG(DEBUG) << "channel '" << connection->getInputChannelName().c_str() << "' ~ enqueueDispatchEntryLocked: filling in missing hover " "enter event"; } resolvedAction = AMOTION_EVENT_ACTION_HOVER_ENTER; } if (resolvedAction == AMOTION_EVENT_ACTION_CANCEL) { resolvedFlags |= AMOTION_EVENT_FLAG_CANCELED; } if (dispatchEntry->targetFlags.test(InputTarget::Flags::WINDOW_IS_OBSCURED)) { resolvedFlags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED; } if (dispatchEntry->targetFlags.test( InputTarget::Flags::WINDOW_IS_PARTIALLY_OBSCURED)) { resolvedFlags |= AMOTION_EVENT_FLAG_WINDOW_IS_PARTIALLY_OBSCURED; } if (dispatchEntry->targetFlags.test(InputTarget::Flags::NO_FOCUS_CHANGE)) { resolvedFlags |= AMOTION_EVENT_FLAG_NO_FOCUS_CHANGE; } dispatchEntry->resolvedFlags = resolvedFlags; if (resolvedAction != motionEntry.action) { std::optional> usingProperties; std::optional> usingCoords; if (resolvedAction == AMOTION_EVENT_ACTION_HOVER_EXIT || resolvedAction == AMOTION_EVENT_ACTION_CANCEL) { // This is a HOVER_EXIT or an ACTION_CANCEL event that was synthesized by // the dispatcher, and therefore the coordinates of this event are currently // incorrect. These events should use the coordinates of the last dispatched // ACTION_MOVE or HOVER_MOVE. We need to query InputState to get this data. const bool hovering = resolvedAction == AMOTION_EVENT_ACTION_HOVER_EXIT; std::optional, std::vector>> pointerInfo = connection->inputState.getPointersOfLastEvent(motionEntry, hovering); if (pointerInfo) { usingProperties = pointerInfo->first; usingCoords = pointerInfo->second; } } { // Generate a new MotionEntry with a new eventId using the resolved action // and flags, and set it as the resolved entry. auto newEntry = std::make_shared< MotionEntry>(mIdGenerator.nextId(), motionEntry.injectionState, motionEntry.eventTime, motionEntry.deviceId, motionEntry.source, motionEntry.displayId, motionEntry.policyFlags, resolvedAction, motionEntry.actionButton, resolvedFlags, motionEntry.metaState, motionEntry.buttonState, motionEntry.classification, motionEntry.edgeFlags, motionEntry.xPrecision, motionEntry.yPrecision, motionEntry.xCursorPosition, motionEntry.yCursorPosition, motionEntry.downTime, usingProperties.value_or( motionEntry.pointerProperties), usingCoords.value_or(motionEntry.pointerCoords)); if (mTracer) { ensureEventTraced(motionEntry); newEntry->traceTracker = mTracer->traceDerivedEvent(*newEntry, *motionEntry.traceTracker); } resolvedMotion = newEntry; } if (ATRACE_ENABLED()) { std::string message = StringPrintf("Transmute MotionEvent(id=0x%" PRIx32 ") to MotionEvent(id=0x%" PRIx32 ").", motionEntry.id, resolvedMotion->id); ATRACE_NAME(message.c_str()); } // Set the resolved motion entry in the DispatchEntry. dispatchEntry->eventEntry = resolvedMotion; eventEntry = resolvedMotion; } } // Check if we need to cancel any of the ongoing gestures. We don't support multiple // devices being active at the same time in the same window, so if a new device is // active, cancel the gesture from the old device. std::unique_ptr cancelEvent = connection->inputState.cancelConflictingInputStream(*resolvedMotion); if (cancelEvent != nullptr) { LOG(INFO) << "Canceling pointers for device " << resolvedMotion->deviceId << " in " << connection->getInputChannelName() << " with event " << cancelEvent->getDescription(); if (mTracer) { static_cast(*cancelEvent).traceTracker = mTracer->traceDerivedEvent(*cancelEvent, *resolvedMotion->traceTracker); } std::unique_ptr cancelDispatchEntry = createDispatchEntry(mIdGenerator, inputTarget, std::move(cancelEvent), ftl::Flags(), mWindowInfosVsyncId, mTracer.get()); // Send these cancel events to the queue before sending the event from the new // device. connection->outboundQueue.emplace_back(std::move(cancelDispatchEntry)); } if (!connection->inputState.trackMotion(*resolvedMotion, dispatchEntry->resolvedFlags)) { LOG(WARNING) << "channel " << connection->getInputChannelName() << "~ dropping inconsistent event: " << *dispatchEntry; return; // skip the inconsistent event } if ((dispatchEntry->resolvedFlags & AMOTION_EVENT_FLAG_NO_FOCUS_CHANGE) && (resolvedMotion->policyFlags & POLICY_FLAG_TRUSTED)) { // Skip reporting pointer down outside focus to the policy. break; } dispatchPointerDownOutsideFocus(resolvedMotion->source, resolvedMotion->action, inputTarget.connection->getToken()); break; } case EventEntry::Type::FOCUS: case EventEntry::Type::TOUCH_MODE_CHANGED: case EventEntry::Type::POINTER_CAPTURE_CHANGED: case EventEntry::Type::DRAG: { break; } case EventEntry::Type::SENSOR: { LOG_ALWAYS_FATAL("SENSOR events should not go to apps via input channel"); break; } case EventEntry::Type::CONFIGURATION_CHANGED: case EventEntry::Type::DEVICE_RESET: { LOG_ALWAYS_FATAL("%s events should not go to apps", ftl::enum_string(eventEntry->type).c_str()); break; } } // Remember that we are waiting for this dispatch to complete. if (dispatchEntry->hasForegroundTarget()) { incrementPendingForegroundDispatches(*eventEntry); } // Enqueue the dispatch entry. connection->outboundQueue.emplace_back(std::move(dispatchEntry)); traceOutboundQueueLength(*connection); } /** * This function is for debugging and metrics collection. It has two roles. * * The first role is to log input interaction with windows, which helps determine what the user was * interacting with. For example, if user is touching launcher, we will see an input_interaction log * that user started interacting with launcher window, as well as any other window that received * that gesture, such as the wallpaper or other spy windows. A new input_interaction is only logged * when the set of tokens that received the event changes. It is not logged again as long as the * user is interacting with the same windows. * * The second role is to track input device activity for metrics collection. For each input event, * we report the set of UIDs that the input device interacted with to the policy. Unlike for the * input_interaction logs, the device interaction is reported even when the set of interaction * tokens do not change. * * For these purposes, we do not count ACTION_OUTSIDE, ACTION_UP and ACTION_CANCEL actions as * interaction. This includes up and cancel events for both keys and motions. */ void InputDispatcher::processInteractionsLocked(const EventEntry& entry, const std::vector& targets) { int32_t deviceId; nsecs_t eventTime; // Skip ACTION_UP events, and all events other than keys and motions if (entry.type == EventEntry::Type::KEY) { const KeyEntry& keyEntry = static_cast(entry); if (keyEntry.action == AKEY_EVENT_ACTION_UP) { return; } deviceId = keyEntry.deviceId; eventTime = keyEntry.eventTime; } else if (entry.type == EventEntry::Type::MOTION) { const MotionEntry& motionEntry = static_cast(entry); if (motionEntry.action == AMOTION_EVENT_ACTION_UP || motionEntry.action == AMOTION_EVENT_ACTION_CANCEL || MotionEvent::getActionMasked(motionEntry.action) == AMOTION_EVENT_ACTION_POINTER_UP) { return; } deviceId = motionEntry.deviceId; eventTime = motionEntry.eventTime; } else { return; // Not a key or a motion } std::set interactionUids; std::unordered_set, StrongPointerHash> newConnectionTokens; std::vector> newConnections; for (const InputTarget& target : targets) { if (target.dispatchMode == InputTarget::DispatchMode::OUTSIDE) { continue; // Skip windows that receive ACTION_OUTSIDE } sp token = target.connection->getToken(); newConnectionTokens.insert(std::move(token)); newConnections.emplace_back(target.connection); if (target.windowHandle) { interactionUids.emplace(target.windowHandle->getInfo()->ownerUid); } } auto command = [this, deviceId, eventTime, uids = std::move(interactionUids)]() REQUIRES(mLock) { scoped_unlock unlock(mLock); mPolicy.notifyDeviceInteraction(deviceId, eventTime, uids); }; postCommandLocked(std::move(command)); if (newConnectionTokens == mInteractionConnectionTokens) { return; // no change } mInteractionConnectionTokens = newConnectionTokens; std::string targetList; for (const std::shared_ptr& connection : newConnections) { targetList += connection->getInputChannelName() + ", "; } std::string message = "Interaction with: " + targetList; if (targetList.empty()) { message += ""; } android_log_event_list(LOGTAG_INPUT_INTERACTION) << message << LOG_ID_EVENTS; } void InputDispatcher::dispatchPointerDownOutsideFocus(uint32_t source, int32_t action, const sp& token) { int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK; uint32_t maskedSource = source & AINPUT_SOURCE_CLASS_MASK; if (maskedSource != AINPUT_SOURCE_CLASS_POINTER || maskedAction != AMOTION_EVENT_ACTION_DOWN) { return; } sp focusedToken = mFocusResolver.getFocusedWindowToken(mFocusedDisplayId); if (focusedToken == token) { // ignore since token is focused return; } auto command = [this, token]() REQUIRES(mLock) { scoped_unlock unlock(mLock); mPolicy.onPointerDownOutsideFocus(token); }; postCommandLocked(std::move(command)); } status_t InputDispatcher::publishMotionEvent(Connection& connection, DispatchEntry& dispatchEntry) const { const EventEntry& eventEntry = *(dispatchEntry.eventEntry); const MotionEntry& motionEntry = static_cast(eventEntry); PointerCoords scaledCoords[MAX_POINTERS]; const PointerCoords* usingCoords = motionEntry.pointerCoords.data(); // TODO(b/316355518): Do not modify coords before dispatch. // Set the X and Y offset and X and Y scale depending on the input source. if ((motionEntry.source & AINPUT_SOURCE_CLASS_POINTER) && !(dispatchEntry.targetFlags.test(InputTarget::Flags::ZERO_COORDS))) { float globalScaleFactor = dispatchEntry.globalScaleFactor; if (globalScaleFactor != 1.0f) { for (uint32_t i = 0; i < motionEntry.getPointerCount(); i++) { scaledCoords[i] = motionEntry.pointerCoords[i]; // Don't apply window scale here since we don't want scale to affect raw // coordinates. The scale will be sent back to the client and applied // later when requesting relative coordinates. scaledCoords[i].scale(globalScaleFactor, /*windowXScale=*/1, /*windowYScale=*/1); } usingCoords = scaledCoords; } } std::array hmac = getSignature(motionEntry, dispatchEntry); // Publish the motion event. return connection.inputPublisher .publishMotionEvent(dispatchEntry.seq, motionEntry.id, motionEntry.deviceId, motionEntry.source, motionEntry.displayId, std::move(hmac), motionEntry.action, motionEntry.actionButton, dispatchEntry.resolvedFlags, motionEntry.edgeFlags, motionEntry.metaState, motionEntry.buttonState, motionEntry.classification, dispatchEntry.transform, motionEntry.xPrecision, motionEntry.yPrecision, motionEntry.xCursorPosition, motionEntry.yCursorPosition, dispatchEntry.rawTransform, motionEntry.downTime, motionEntry.eventTime, motionEntry.getPointerCount(), motionEntry.pointerProperties.data(), usingCoords); } void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime, const std::shared_ptr& connection) { ATRACE_NAME_IF(ATRACE_ENABLED(), StringPrintf("startDispatchCycleLocked(inputChannel=%s)", connection->getInputChannelName().c_str())); if (DEBUG_DISPATCH_CYCLE) { ALOGD("channel '%s' ~ startDispatchCycle", connection->getInputChannelName().c_str()); } while (connection->status == Connection::Status::NORMAL && !connection->outboundQueue.empty()) { std::unique_ptr& dispatchEntry = connection->outboundQueue.front(); dispatchEntry->deliveryTime = currentTime; const std::chrono::nanoseconds timeout = getDispatchingTimeoutLocked(connection); dispatchEntry->timeoutTime = currentTime + timeout.count(); // Publish the event. status_t status; const EventEntry& eventEntry = *(dispatchEntry->eventEntry); switch (eventEntry.type) { case EventEntry::Type::KEY: { const KeyEntry& keyEntry = static_cast(eventEntry); std::array hmac = getSignature(keyEntry, *dispatchEntry); if (DEBUG_OUTBOUND_EVENT_DETAILS) { LOG(INFO) << "Publishing " << *dispatchEntry << " to " << connection->getInputChannelName(); } // Publish the key event. status = connection->inputPublisher .publishKeyEvent(dispatchEntry->seq, keyEntry.id, keyEntry.deviceId, keyEntry.source, keyEntry.displayId, std::move(hmac), keyEntry.action, dispatchEntry->resolvedFlags, keyEntry.keyCode, keyEntry.scanCode, keyEntry.metaState, keyEntry.repeatCount, keyEntry.downTime, keyEntry.eventTime); if (mTracer) { ensureEventTraced(keyEntry); mTracer->traceEventDispatch(*dispatchEntry, *keyEntry.traceTracker); } break; } case EventEntry::Type::MOTION: { if (DEBUG_OUTBOUND_EVENT_DETAILS) { LOG(INFO) << "Publishing " << *dispatchEntry << " to " << connection->getInputChannelName(); } const MotionEntry& motionEntry = static_cast(eventEntry); status = publishMotionEvent(*connection, *dispatchEntry); if (mTracer) { ensureEventTraced(motionEntry); mTracer->traceEventDispatch(*dispatchEntry, *motionEntry.traceTracker); } break; } case EventEntry::Type::FOCUS: { const FocusEntry& focusEntry = static_cast(eventEntry); status = connection->inputPublisher.publishFocusEvent(dispatchEntry->seq, focusEntry.id, focusEntry.hasFocus); break; } case EventEntry::Type::TOUCH_MODE_CHANGED: { const TouchModeEntry& touchModeEntry = static_cast(eventEntry); status = connection->inputPublisher .publishTouchModeEvent(dispatchEntry->seq, touchModeEntry.id, touchModeEntry.inTouchMode); break; } case EventEntry::Type::POINTER_CAPTURE_CHANGED: { const auto& captureEntry = static_cast(eventEntry); status = connection->inputPublisher .publishCaptureEvent(dispatchEntry->seq, captureEntry.id, captureEntry.pointerCaptureRequest.isEnable()); break; } case EventEntry::Type::DRAG: { const DragEntry& dragEntry = static_cast(eventEntry); status = connection->inputPublisher.publishDragEvent(dispatchEntry->seq, dragEntry.id, dragEntry.x, dragEntry.y, dragEntry.isExiting); break; } case EventEntry::Type::CONFIGURATION_CHANGED: case EventEntry::Type::DEVICE_RESET: case EventEntry::Type::SENSOR: { LOG_ALWAYS_FATAL("Should never start dispatch cycles for %s events", ftl::enum_string(eventEntry.type).c_str()); return; } } // Check the result. if (status) { if (status == WOULD_BLOCK) { if (connection->waitQueue.empty()) { ALOGE("channel '%s' ~ Could not publish event because the pipe is full. " "This is unexpected because the wait queue is empty, so the pipe " "should be empty and we shouldn't have any problems writing an " "event to it, status=%s(%d)", connection->getInputChannelName().c_str(), statusToString(status).c_str(), status); abortBrokenDispatchCycleLocked(currentTime, connection, /*notify=*/true); } else { // Pipe is full and we are waiting for the app to finish process some events // before sending more events to it. if (DEBUG_DISPATCH_CYCLE) { ALOGD("channel '%s' ~ Could not publish event because the pipe is full, " "waiting for the application to catch up", connection->getInputChannelName().c_str()); } } } else { ALOGE("channel '%s' ~ Could not publish event due to an unexpected error, " "status=%s(%d)", connection->getInputChannelName().c_str(), statusToString(status).c_str(), status); abortBrokenDispatchCycleLocked(currentTime, connection, /*notify=*/true); } return; } // Re-enqueue the event on the wait queue. const nsecs_t timeoutTime = dispatchEntry->timeoutTime; connection->waitQueue.emplace_back(std::move(dispatchEntry)); connection->outboundQueue.erase(connection->outboundQueue.begin()); traceOutboundQueueLength(*connection); if (connection->responsive) { mAnrTracker.insert(timeoutTime, connection->getToken()); } traceWaitQueueLength(*connection); } } std::array InputDispatcher::sign(const VerifiedInputEvent& event) const { size_t size; switch (event.type) { case VerifiedInputEvent::Type::KEY: { size = sizeof(VerifiedKeyEvent); break; } case VerifiedInputEvent::Type::MOTION: { size = sizeof(VerifiedMotionEvent); break; } } const uint8_t* start = reinterpret_cast(&event); return mHmacKeyManager.sign(start, size); } const std::array InputDispatcher::getSignature( const MotionEntry& motionEntry, const DispatchEntry& dispatchEntry) const { const int32_t actionMasked = MotionEvent::getActionMasked(motionEntry.action); if (actionMasked != AMOTION_EVENT_ACTION_UP && actionMasked != AMOTION_EVENT_ACTION_DOWN) { // Only sign events up and down events as the purely move events // are tied to their up/down counterparts so signing would be redundant. return INVALID_HMAC; } VerifiedMotionEvent verifiedEvent = verifiedMotionEventFromMotionEntry(motionEntry, dispatchEntry.rawTransform); verifiedEvent.actionMasked = actionMasked; verifiedEvent.flags = dispatchEntry.resolvedFlags & VERIFIED_MOTION_EVENT_FLAGS; return sign(verifiedEvent); } const std::array InputDispatcher::getSignature( const KeyEntry& keyEntry, const DispatchEntry& dispatchEntry) const { VerifiedKeyEvent verifiedEvent = verifiedKeyEventFromKeyEntry(keyEntry); verifiedEvent.flags = dispatchEntry.resolvedFlags & VERIFIED_KEY_EVENT_FLAGS; return sign(verifiedEvent); } void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime, const std::shared_ptr& connection, uint32_t seq, bool handled, nsecs_t consumeTime) { if (DEBUG_DISPATCH_CYCLE) { ALOGD("channel '%s' ~ finishDispatchCycle - seq=%u, handled=%s", connection->getInputChannelName().c_str(), seq, toString(handled)); } if (connection->status != Connection::Status::NORMAL) { return; } // Notify other system components and prepare to start the next dispatch cycle. auto command = [this, currentTime, connection, seq, handled, consumeTime]() REQUIRES(mLock) { doDispatchCycleFinishedCommand(currentTime, connection, seq, handled, consumeTime); }; postCommandLocked(std::move(command)); } void InputDispatcher::abortBrokenDispatchCycleLocked(nsecs_t currentTime, const std::shared_ptr& connection, bool notify) { if (DEBUG_DISPATCH_CYCLE) { LOG(INFO) << "channel '" << connection->getInputChannelName() << "'~ " << __func__ << " - notify=" << toString(notify); } // Clear the dispatch queues. drainDispatchQueue(connection->outboundQueue); traceOutboundQueueLength(*connection); drainDispatchQueue(connection->waitQueue); traceWaitQueueLength(*connection); // The connection appears to be unrecoverably broken. // Ignore already broken or zombie connections. if (connection->status == Connection::Status::NORMAL) { connection->status = Connection::Status::BROKEN; if (notify) { // Notify other system components. ALOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!", connection->getInputChannelName().c_str()); auto command = [this, connection]() REQUIRES(mLock) { scoped_unlock unlock(mLock); mPolicy.notifyInputChannelBroken(connection->getToken()); }; postCommandLocked(std::move(command)); } } } void InputDispatcher::drainDispatchQueue(std::deque>& queue) { while (!queue.empty()) { releaseDispatchEntry(std::move(queue.front())); queue.pop_front(); } } void InputDispatcher::releaseDispatchEntry(std::unique_ptr dispatchEntry) { if (dispatchEntry->hasForegroundTarget()) { decrementPendingForegroundDispatches(*(dispatchEntry->eventEntry)); } } int InputDispatcher::handleReceiveCallback(int events, sp connectionToken) { std::scoped_lock _l(mLock); std::shared_ptr connection = getConnectionLocked(connectionToken); if (connection == nullptr) { ALOGW("Received looper callback for unknown input channel token %p. events=0x%x", connectionToken.get(), events); return 0; // remove the callback } bool notify; if (!(events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP))) { if (!(events & ALOOPER_EVENT_INPUT)) { ALOGW("channel '%s' ~ Received spurious callback for unhandled poll event. " "events=0x%x", connection->getInputChannelName().c_str(), events); return 1; } nsecs_t currentTime = now(); bool gotOne = false; status_t status = OK; for (;;) { Result result = connection->inputPublisher.receiveConsumerResponse(); if (!result.ok()) { status = result.error().code(); break; } if (std::holds_alternative(*result)) { const InputPublisher::Finished& finish = std::get(*result); finishDispatchCycleLocked(currentTime, connection, finish.seq, finish.handled, finish.consumeTime); } else if (std::holds_alternative(*result)) { if (shouldReportMetricsForConnection(*connection)) { const InputPublisher::Timeline& timeline = std::get(*result); mLatencyTracker.trackGraphicsLatency(timeline.inputEventId, connection->getToken(), std::move(timeline.graphicsTimeline)); } } gotOne = true; } if (gotOne) { runCommandsLockedInterruptable(); if (status == WOULD_BLOCK) { return 1; } } notify = status != DEAD_OBJECT || !connection->monitor; if (notify) { ALOGE("channel '%s' ~ Failed to receive finished signal. status=%s(%d)", connection->getInputChannelName().c_str(), statusToString(status).c_str(), status); } } else { // Monitor channels are never explicitly unregistered. // We do it automatically when the remote endpoint is closed so don't warn about them. const bool stillHaveWindowHandle = getWindowHandleLocked(connection->getToken()) != nullptr; notify = !connection->monitor && stillHaveWindowHandle; if (notify) { ALOGW("channel '%s' ~ Consumer closed input channel or an error occurred. events=0x%x", connection->getInputChannelName().c_str(), events); } } // Remove the channel. removeInputChannelLocked(connection->getToken(), notify); return 0; // remove the callback } void InputDispatcher::synthesizeCancelationEventsForAllConnectionsLocked( const CancelationOptions& options) { // Cancel windows (i.e. non-monitors). // A channel must have at least one window to receive any input. If a window was removed, the // event streams directed to the window will already have been canceled during window removal. // So there is no need to generate cancellations for connections without any windows. const auto [cancelPointers, cancelNonPointers] = expandCancellationMode(options.mode); // Generate cancellations for touched windows first. This is to avoid generating cancellations // through a non-touched window if there are more than one window for an input channel. if (cancelPointers) { for (const auto& [displayId, touchState] : mTouchStatesByDisplay) { if (options.displayId.has_value() && options.displayId != displayId) { continue; } for (const auto& touchedWindow : touchState.windows) { synthesizeCancelationEventsForWindowLocked(touchedWindow.windowHandle, options); } } } // Follow up by generating cancellations for all windows, because we don't explicitly track // the windows that have an ongoing focus event stream. if (cancelNonPointers) { for (const auto& [_, handles] : mWindowHandlesByDisplay) { for (const auto& windowHandle : handles) { synthesizeCancelationEventsForWindowLocked(windowHandle, options); } } } // Cancel monitors. synthesizeCancelationEventsForMonitorsLocked(options); } void InputDispatcher::synthesizeCancelationEventsForMonitorsLocked( const CancelationOptions& options) { for (const auto& [_, monitors] : mGlobalMonitorsByDisplay) { for (const Monitor& monitor : monitors) { synthesizeCancelationEventsForConnectionLocked(monitor.connection, options, /*window=*/nullptr); } } } void InputDispatcher::synthesizeCancelationEventsForWindowLocked( const sp& windowHandle, const CancelationOptions& options, const std::shared_ptr& connection) { if (windowHandle == nullptr) { LOG(FATAL) << __func__ << ": Window handle must not be null"; } if (connection) { // The connection can be optionally provided to avoid multiple lookups. if (windowHandle->getToken() != connection->getToken()) { LOG(FATAL) << __func__ << ": Wrong connection provided for window: " << windowHandle->getName(); } } std::shared_ptr resolvedConnection = connection ? connection : getConnectionLocked(windowHandle->getToken()); if (!resolvedConnection) { LOG(DEBUG) << __func__ << "No connection found for window: " << windowHandle->getName(); return; } synthesizeCancelationEventsForConnectionLocked(resolvedConnection, options, windowHandle); } void InputDispatcher::synthesizeCancelationEventsForConnectionLocked( const std::shared_ptr& connection, const CancelationOptions& options, const sp& window) { if (!connection->monitor && window == nullptr) { LOG(FATAL) << __func__ << ": Cannot send event to non-monitor channel without a window - channel: " << connection->getInputChannelName(); } if (connection->status != Connection::Status::NORMAL) { return; } nsecs_t currentTime = now(); std::vector> cancelationEvents = connection->inputState.synthesizeCancelationEvents(currentTime, options); if (cancelationEvents.empty()) { return; } if (DEBUG_OUTBOUND_EVENT_DETAILS) { ALOGD("channel '%s' ~ Synthesized %zu cancelation events to bring channel back in sync " "with reality: %s, mode=%s.", connection->getInputChannelName().c_str(), cancelationEvents.size(), options.reason, ftl::enum_string(options.mode).c_str()); } std::string reason = std::string("reason=").append(options.reason); android_log_event_list(LOGTAG_INPUT_CANCEL) << connection->getInputChannelName().c_str() << reason << LOG_ID_EVENTS; const bool wasEmpty = connection->outboundQueue.empty(); // The target to use if we don't find a window associated with the channel. const InputTarget fallbackTarget{connection}; const auto& token = connection->getToken(); for (size_t i = 0; i < cancelationEvents.size(); i++) { std::unique_ptr cancelationEventEntry = std::move(cancelationEvents[i]); std::vector targets{}; switch (cancelationEventEntry->type) { case EventEntry::Type::KEY: { if (mTracer) { static_cast(*cancelationEventEntry).traceTracker = mTracer->traceDerivedEvent(*cancelationEventEntry, *options.traceTracker); } const auto& keyEntry = static_cast(*cancelationEventEntry); if (window) { addWindowTargetLocked(window, InputTarget::DispatchMode::AS_IS, /*targetFlags=*/{}, keyEntry.downTime, targets); } else { targets.emplace_back(fallbackTarget); } logOutboundKeyDetails("cancel - ", keyEntry); break; } case EventEntry::Type::MOTION: { if (mTracer) { static_cast(*cancelationEventEntry).traceTracker = mTracer->traceDerivedEvent(*cancelationEventEntry, *options.traceTracker); } const auto& motionEntry = static_cast(*cancelationEventEntry); if (window) { std::bitset pointerIds; for (uint32_t pointerIndex = 0; pointerIndex < motionEntry.getPointerCount(); pointerIndex++) { pointerIds.set(motionEntry.pointerProperties[pointerIndex].id); } if (mDragState && mDragState->dragWindow->getToken() == token && pointerIds.test(mDragState->pointerId)) { LOG(INFO) << __func__ << ": Canceling drag and drop because the pointers for the drag " "window are being canceled."; sendDropWindowCommandLocked(nullptr, /*x=*/0, /*y=*/0); mDragState.reset(); } addPointerWindowTargetLocked(window, InputTarget::DispatchMode::AS_IS, ftl::Flags(), pointerIds, motionEntry.downTime, targets); } else { targets.emplace_back(fallbackTarget); const auto it = mDisplayInfos.find(motionEntry.displayId); if (it != mDisplayInfos.end()) { targets.back().displayTransform = it->second.transform; targets.back().setDefaultPointerTransform(it->second.transform); } } logOutboundMotionDetails("cancel - ", motionEntry); break; } case EventEntry::Type::FOCUS: case EventEntry::Type::TOUCH_MODE_CHANGED: case EventEntry::Type::POINTER_CAPTURE_CHANGED: case EventEntry::Type::DRAG: { LOG_ALWAYS_FATAL("Canceling %s events is not supported", ftl::enum_string(cancelationEventEntry->type).c_str()); break; } case EventEntry::Type::CONFIGURATION_CHANGED: case EventEntry::Type::DEVICE_RESET: case EventEntry::Type::SENSOR: { LOG_ALWAYS_FATAL("%s event should not be found inside Connections's queue", ftl::enum_string(cancelationEventEntry->type).c_str()); break; } } if (targets.size() != 1) LOG(FATAL) << __func__ << ": InputTarget not created"; if (mTracer) { mTracer->dispatchToTargetHint(*options.traceTracker, targets[0]); } enqueueDispatchEntryLocked(connection, std::move(cancelationEventEntry), targets[0]); } // If the outbound queue was previously empty, start the dispatch cycle going. if (wasEmpty && !connection->outboundQueue.empty()) { startDispatchCycleLocked(currentTime, connection); } } void InputDispatcher::synthesizePointerDownEventsForConnectionLocked( const nsecs_t downTime, const std::shared_ptr& connection, ftl::Flags targetFlags, const std::unique_ptr& traceTracker) { if (connection->status != Connection::Status::NORMAL) { return; } std::vector> downEvents = connection->inputState.synthesizePointerDownEvents(downTime); if (downEvents.empty()) { return; } if (DEBUG_OUTBOUND_EVENT_DETAILS) { ALOGD("channel '%s' ~ Synthesized %zu down events to ensure consistent event stream.", connection->getInputChannelName().c_str(), downEvents.size()); } const auto [_, touchedWindowState, displayId] = findTouchStateWindowAndDisplayLocked(connection->getToken()); if (touchedWindowState == nullptr) { LOG(FATAL) << __func__ << ": Touch state is out of sync: No touched window for token"; } const auto& windowHandle = touchedWindowState->windowHandle; const bool wasEmpty = connection->outboundQueue.empty(); for (std::unique_ptr& downEventEntry : downEvents) { std::vector targets{}; switch (downEventEntry->type) { case EventEntry::Type::MOTION: { if (mTracer) { static_cast(*downEventEntry).traceTracker = mTracer->traceDerivedEvent(*downEventEntry, *traceTracker); } const auto& motionEntry = static_cast(*downEventEntry); if (windowHandle != nullptr) { std::bitset pointerIds; for (uint32_t pointerIndex = 0; pointerIndex < motionEntry.getPointerCount(); pointerIndex++) { pointerIds.set(motionEntry.pointerProperties[pointerIndex].id); } addPointerWindowTargetLocked(windowHandle, InputTarget::DispatchMode::AS_IS, targetFlags, pointerIds, motionEntry.downTime, targets); } else { targets.emplace_back(connection, targetFlags); const auto it = mDisplayInfos.find(motionEntry.displayId); if (it != mDisplayInfos.end()) { targets.back().displayTransform = it->second.transform; targets.back().setDefaultPointerTransform(it->second.transform); } } logOutboundMotionDetails("down - ", motionEntry); break; } case EventEntry::Type::KEY: case EventEntry::Type::FOCUS: case EventEntry::Type::TOUCH_MODE_CHANGED: case EventEntry::Type::CONFIGURATION_CHANGED: case EventEntry::Type::DEVICE_RESET: case EventEntry::Type::POINTER_CAPTURE_CHANGED: case EventEntry::Type::SENSOR: case EventEntry::Type::DRAG: { LOG_ALWAYS_FATAL("%s event should not be found inside Connections's queue", ftl::enum_string(downEventEntry->type).c_str()); break; } } if (targets.size() != 1) LOG(FATAL) << __func__ << ": InputTarget not created"; if (mTracer) { mTracer->dispatchToTargetHint(*traceTracker, targets[0]); } enqueueDispatchEntryLocked(connection, std::move(downEventEntry), targets[0]); } // If the outbound queue was previously empty, start the dispatch cycle going. if (wasEmpty && !connection->outboundQueue.empty()) { startDispatchCycleLocked(downTime, connection); } } std::unique_ptr InputDispatcher::splitMotionEvent( const MotionEntry& originalMotionEntry, std::bitset pointerIds, nsecs_t splitDownTime) { const auto& [action, pointerProperties, pointerCoords] = MotionEvent::split(originalMotionEntry.action, originalMotionEntry.flags, /*historySize=*/0, originalMotionEntry.pointerProperties, originalMotionEntry.pointerCoords, pointerIds); if (pointerIds.count() != pointerCoords.size()) { // TODO(b/329107108): Determine why some IDs in pointerIds were not in originalMotionEntry. // This is bad. We are missing some of the pointers that we expected to deliver. // Most likely this indicates that we received an ACTION_MOVE events that has // different pointer ids than we expected based on the previous ACTION_DOWN // or ACTION_POINTER_DOWN events that caused us to decide to split the pointers // in this way. ALOGW("Dropping split motion event because the pointer count is %zu but " "we expected there to be %zu pointers. This probably means we received " "a broken sequence of pointer ids from the input device: %s", pointerCoords.size(), pointerIds.count(), originalMotionEntry.getDescription().c_str()); return nullptr; } // TODO(b/327503168): Move this check inside MotionEvent::split once all callers handle it // correctly. if (action == AMOTION_EVENT_ACTION_DOWN && splitDownTime != originalMotionEntry.eventTime) { logDispatchStateLocked(); LOG_ALWAYS_FATAL("Split motion event has mismatching downTime and eventTime for " "ACTION_DOWN, motionEntry=%s, splitDownTime=%" PRId64, originalMotionEntry.getDescription().c_str(), splitDownTime); } int32_t newId = mIdGenerator.nextId(); ATRACE_NAME_IF(ATRACE_ENABLED(), StringPrintf("Split MotionEvent(id=0x%" PRIx32 ") to MotionEvent(id=0x%" PRIx32 ").", originalMotionEntry.id, newId)); std::unique_ptr splitMotionEntry = std::make_unique(newId, originalMotionEntry.injectionState, originalMotionEntry.eventTime, originalMotionEntry.deviceId, originalMotionEntry.source, originalMotionEntry.displayId, originalMotionEntry.policyFlags, action, originalMotionEntry.actionButton, originalMotionEntry.flags, originalMotionEntry.metaState, originalMotionEntry.buttonState, originalMotionEntry.classification, originalMotionEntry.edgeFlags, originalMotionEntry.xPrecision, originalMotionEntry.yPrecision, originalMotionEntry.xCursorPosition, originalMotionEntry.yCursorPosition, splitDownTime, pointerProperties, pointerCoords); if (mTracer) { splitMotionEntry->traceTracker = mTracer->traceDerivedEvent(*splitMotionEntry, *originalMotionEntry.traceTracker); } return splitMotionEntry; } void InputDispatcher::notifyInputDevicesChanged(const NotifyInputDevicesChangedArgs& args) { std::scoped_lock _l(mLock); mLatencyTracker.setInputDevices(args.inputDeviceInfos); } void InputDispatcher::notifyConfigurationChanged(const NotifyConfigurationChangedArgs& args) { if (debugInboundEventDetails()) { ALOGD("notifyConfigurationChanged - eventTime=%" PRId64, args.eventTime); } bool needWake = false; { // acquire lock std::scoped_lock _l(mLock); std::unique_ptr newEntry = std::make_unique(args.id, args.eventTime); needWake = enqueueInboundEventLocked(std::move(newEntry)); } // release lock if (needWake) { mLooper->wake(); } } void InputDispatcher::notifyKey(const NotifyKeyArgs& args) { ALOGD_IF(debugInboundEventDetails(), "notifyKey - id=%" PRIx32 ", eventTime=%" PRId64 ", deviceId=%d, source=%s, displayId=%s, policyFlags=0x%x, action=%s, flags=0x%x, " "keyCode=%s, scanCode=0x%x, metaState=0x%x, " "downTime=%" PRId64, args.id, args.eventTime, args.deviceId, inputEventSourceToString(args.source).c_str(), args.displayId.toString().c_str(), args.policyFlags, KeyEvent::actionToString(args.action), args.flags, KeyEvent::getLabel(args.keyCode), args.scanCode, args.metaState, args.downTime); Result keyCheck = validateKeyEvent(args.action); if (!keyCheck.ok()) { LOG(ERROR) << "invalid key event: " << keyCheck.error(); return; } uint32_t policyFlags = args.policyFlags; int32_t flags = args.flags; int32_t metaState = args.metaState; // InputDispatcher tracks and generates key repeats on behalf of // whatever notifies it, so repeatCount should always be set to 0 constexpr int32_t repeatCount = 0; if ((policyFlags & POLICY_FLAG_VIRTUAL) || (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY)) { policyFlags |= POLICY_FLAG_VIRTUAL; flags |= AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY; } if (policyFlags & POLICY_FLAG_FUNCTION) { metaState |= AMETA_FUNCTION_ON; } policyFlags |= POLICY_FLAG_TRUSTED; int32_t keyCode = args.keyCode; KeyEvent event; event.initialize(args.id, args.deviceId, args.source, args.displayId, INVALID_HMAC, args.action, flags, keyCode, args.scanCode, metaState, repeatCount, args.downTime, args.eventTime); android::base::Timer t; mPolicy.interceptKeyBeforeQueueing(event, /*byref*/ policyFlags); if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) { ALOGW("Excessive delay in interceptKeyBeforeQueueing; took %s ms", std::to_string(t.duration().count()).c_str()); } bool needWake = false; { // acquire lock mLock.lock(); if (shouldSendKeyToInputFilterLocked(args)) { mLock.unlock(); policyFlags |= POLICY_FLAG_FILTERED; if (!mPolicy.filterInputEvent(event, policyFlags)) { return; // event was consumed by the filter } mLock.lock(); } std::unique_ptr newEntry = std::make_unique(args.id, /*injectionState=*/nullptr, args.eventTime, args.deviceId, args.source, args.displayId, policyFlags, args.action, flags, keyCode, args.scanCode, metaState, repeatCount, args.downTime); if (mTracer) { newEntry->traceTracker = mTracer->traceInboundEvent(*newEntry); } needWake = enqueueInboundEventLocked(std::move(newEntry)); mLock.unlock(); } // release lock if (needWake) { mLooper->wake(); } } bool InputDispatcher::shouldSendKeyToInputFilterLocked(const NotifyKeyArgs& args) { return mInputFilterEnabled; } void InputDispatcher::notifyMotion(const NotifyMotionArgs& args) { if (debugInboundEventDetails()) { ALOGD("notifyMotion - id=%" PRIx32 " eventTime=%" PRId64 ", deviceId=%d, source=%s, " "displayId=%s, policyFlags=0x%x, " "action=%s, actionButton=0x%x, flags=0x%x, metaState=0x%x, buttonState=0x%x, " "edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, xCursorPosition=%f, " "yCursorPosition=%f, downTime=%" PRId64, args.id, args.eventTime, args.deviceId, inputEventSourceToString(args.source).c_str(), args.displayId.toString().c_str(), args.policyFlags, MotionEvent::actionToString(args.action).c_str(), args.actionButton, args.flags, args.metaState, args.buttonState, args.edgeFlags, args.xPrecision, args.yPrecision, args.xCursorPosition, args.yCursorPosition, args.downTime); for (uint32_t i = 0; i < args.getPointerCount(); i++) { ALOGD(" Pointer %d: id=%d, toolType=%s, x=%f, y=%f, pressure=%f, size=%f, " "touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, orientation=%f", i, args.pointerProperties[i].id, ftl::enum_string(args.pointerProperties[i].toolType).c_str(), args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X), args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y), args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE), args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION)); } } Result motionCheck = validateMotionEvent(args.action, args.actionButton, args.getPointerCount(), args.pointerProperties.data()); if (!motionCheck.ok()) { LOG(FATAL) << "Invalid event: " << args.dump() << "; reason: " << motionCheck.error(); return; } if (DEBUG_VERIFY_EVENTS) { auto [it, _] = mVerifiersByDisplay.try_emplace(args.displayId, StringPrintf("display %s", args.displayId.toString().c_str())); Result result = it->second.processMovement(args.deviceId, args.source, args.action, args.getPointerCount(), args.pointerProperties.data(), args.pointerCoords.data(), args.flags); if (!result.ok()) { LOG(FATAL) << "Bad stream: " << result.error() << " caused by " << args.dump(); } } uint32_t policyFlags = args.policyFlags; policyFlags |= POLICY_FLAG_TRUSTED; android::base::Timer t; mPolicy.interceptMotionBeforeQueueing(args.displayId, args.source, args.action, args.eventTime, policyFlags); if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) { ALOGW("Excessive delay in interceptMotionBeforeQueueing; took %s ms", std::to_string(t.duration().count()).c_str()); } bool needWake = false; { // acquire lock mLock.lock(); if (!(policyFlags & POLICY_FLAG_PASS_TO_USER)) { // Set the flag anyway if we already have an ongoing gesture. That would allow us to // complete the processing of the current stroke. const auto touchStateIt = mTouchStatesByDisplay.find(args.displayId); if (touchStateIt != mTouchStatesByDisplay.end()) { const TouchState& touchState = touchStateIt->second; if (touchState.hasTouchingPointers(args.deviceId) || touchState.hasHoveringPointers(args.deviceId)) { policyFlags |= POLICY_FLAG_PASS_TO_USER; } } } if (shouldSendMotionToInputFilterLocked(args)) { ui::Transform displayTransform; if (const auto it = mDisplayInfos.find(args.displayId); it != mDisplayInfos.end()) { displayTransform = it->second.transform; } mLock.unlock(); MotionEvent event; event.initialize(args.id, args.deviceId, args.source, args.displayId, INVALID_HMAC, args.action, args.actionButton, args.flags, args.edgeFlags, args.metaState, args.buttonState, args.classification, displayTransform, args.xPrecision, args.yPrecision, args.xCursorPosition, args.yCursorPosition, displayTransform, args.downTime, args.eventTime, args.getPointerCount(), args.pointerProperties.data(), args.pointerCoords.data()); policyFlags |= POLICY_FLAG_FILTERED; if (!mPolicy.filterInputEvent(event, policyFlags)) { return; // event was consumed by the filter } mLock.lock(); } // Just enqueue a new motion event. std::unique_ptr newEntry = std::make_unique(args.id, /*injectionState=*/nullptr, args.eventTime, args.deviceId, args.source, args.displayId, policyFlags, args.action, args.actionButton, args.flags, args.metaState, args.buttonState, args.classification, args.edgeFlags, args.xPrecision, args.yPrecision, args.xCursorPosition, args.yCursorPosition, args.downTime, args.pointerProperties, args.pointerCoords); if (mTracer) { newEntry->traceTracker = mTracer->traceInboundEvent(*newEntry); } if (args.id != android::os::IInputConstants::INVALID_INPUT_EVENT_ID && IdGenerator::getSource(args.id) == IdGenerator::Source::INPUT_READER && !mInputFilterEnabled) { const bool isDown = args.action == AMOTION_EVENT_ACTION_DOWN; std::set sources = getUsageSourcesForMotionArgs(args); mLatencyTracker.trackListener(args.id, isDown, args.eventTime, args.readTime, args.deviceId, sources); } needWake = enqueueInboundEventLocked(std::move(newEntry)); mLock.unlock(); } // release lock if (needWake) { mLooper->wake(); } } void InputDispatcher::notifySensor(const NotifySensorArgs& args) { if (debugInboundEventDetails()) { ALOGD("notifySensor - id=%" PRIx32 " eventTime=%" PRId64 ", deviceId=%d, source=0x%x, " " sensorType=%s", args.id, args.eventTime, args.deviceId, args.source, ftl::enum_string(args.sensorType).c_str()); } bool needWake = false; { // acquire lock mLock.lock(); // Just enqueue a new sensor event. std::unique_ptr newEntry = std::make_unique(args.id, args.eventTime, args.deviceId, args.source, /* policyFlags=*/0, args.hwTimestamp, args.sensorType, args.accuracy, args.accuracyChanged, args.values); needWake = enqueueInboundEventLocked(std::move(newEntry)); mLock.unlock(); } // release lock if (needWake) { mLooper->wake(); } } void InputDispatcher::notifyVibratorState(const NotifyVibratorStateArgs& args) { if (debugInboundEventDetails()) { ALOGD("notifyVibratorState - eventTime=%" PRId64 ", device=%d, isOn=%d", args.eventTime, args.deviceId, args.isOn); } mPolicy.notifyVibratorState(args.deviceId, args.isOn); } bool InputDispatcher::shouldSendMotionToInputFilterLocked(const NotifyMotionArgs& args) { return mInputFilterEnabled; } void InputDispatcher::notifySwitch(const NotifySwitchArgs& args) { if (debugInboundEventDetails()) { ALOGD("notifySwitch - eventTime=%" PRId64 ", policyFlags=0x%x, switchValues=0x%08x, " "switchMask=0x%08x", args.eventTime, args.policyFlags, args.switchValues, args.switchMask); } uint32_t policyFlags = args.policyFlags; policyFlags |= POLICY_FLAG_TRUSTED; mPolicy.notifySwitch(args.eventTime, args.switchValues, args.switchMask, policyFlags); } void InputDispatcher::notifyDeviceReset(const NotifyDeviceResetArgs& args) { // TODO(b/308677868) Remove device reset from the InputListener interface if (debugInboundEventDetails()) { ALOGD("notifyDeviceReset - eventTime=%" PRId64 ", deviceId=%d", args.eventTime, args.deviceId); } bool needWake = false; { // acquire lock std::scoped_lock _l(mLock); std::unique_ptr newEntry = std::make_unique(args.id, args.eventTime, args.deviceId); needWake = enqueueInboundEventLocked(std::move(newEntry)); for (auto& [_, verifier] : mVerifiersByDisplay) { verifier.resetDevice(args.deviceId); } } // release lock if (needWake) { mLooper->wake(); } } void InputDispatcher::notifyPointerCaptureChanged(const NotifyPointerCaptureChangedArgs& args) { if (debugInboundEventDetails()) { ALOGD("notifyPointerCaptureChanged - eventTime=%" PRId64 ", enabled=%s", args.eventTime, args.request.isEnable() ? "true" : "false"); } bool needWake = false; { // acquire lock std::scoped_lock _l(mLock); auto entry = std::make_unique(args.id, args.eventTime, args.request); needWake = enqueueInboundEventLocked(std::move(entry)); } // release lock if (needWake) { mLooper->wake(); } } InputEventInjectionResult InputDispatcher::injectInputEvent(const InputEvent* event, std::optional targetUid, InputEventInjectionSync syncMode, std::chrono::milliseconds timeout, uint32_t policyFlags) { Result eventValidation = validateInputEvent(*event); if (!eventValidation.ok()) { LOG(INFO) << "Injection failed: invalid event: " << eventValidation.error(); return InputEventInjectionResult::FAILED; } if (debugInboundEventDetails()) { LOG(INFO) << __func__ << ": targetUid=" << toString(targetUid, &uidString) << ", syncMode=" << ftl::enum_string(syncMode) << ", timeout=" << timeout.count() << "ms, policyFlags=0x" << std::hex << policyFlags << std::dec << ", event=" << *event; } nsecs_t endTime = now() + std::chrono::duration_cast(timeout).count(); policyFlags |= POLICY_FLAG_INJECTED | POLICY_FLAG_TRUSTED; // For all injected events, set device id = VIRTUAL_KEYBOARD_ID. The only exception is events // that have gone through the InputFilter. If the event passed through the InputFilter, assign // the provided device id. If the InputFilter is accessibility, and it modifies or synthesizes // the injected event, it is responsible for setting POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY. // For those events, we will set FLAG_IS_ACCESSIBILITY_EVENT to allow apps to distinguish them // from events that originate from actual hardware. DeviceId resolvedDeviceId = VIRTUAL_KEYBOARD_ID; if (policyFlags & POLICY_FLAG_FILTERED) { resolvedDeviceId = event->getDeviceId(); } const bool isAsync = syncMode == InputEventInjectionSync::NONE; auto injectionState = std::make_shared(targetUid, isAsync); std::queue> injectedEntries; switch (event->getType()) { case InputEventType::KEY: { const KeyEvent& incomingKey = static_cast(*event); const int32_t action = incomingKey.getAction(); int32_t flags = incomingKey.getFlags(); if (policyFlags & POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY) { flags |= AKEY_EVENT_FLAG_IS_ACCESSIBILITY_EVENT; } int32_t keyCode = incomingKey.getKeyCode(); int32_t metaState = incomingKey.getMetaState(); KeyEvent keyEvent; keyEvent.initialize(incomingKey.getId(), resolvedDeviceId, incomingKey.getSource(), incomingKey.getDisplayId(), INVALID_HMAC, action, flags, keyCode, incomingKey.getScanCode(), metaState, incomingKey.getRepeatCount(), incomingKey.getDownTime(), incomingKey.getEventTime()); if (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY) { policyFlags |= POLICY_FLAG_VIRTUAL; } if (!(policyFlags & POLICY_FLAG_FILTERED)) { android::base::Timer t; mPolicy.interceptKeyBeforeQueueing(keyEvent, /*byref*/ policyFlags); if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) { ALOGW("Excessive delay in interceptKeyBeforeQueueing; took %s ms", std::to_string(t.duration().count()).c_str()); } } mLock.lock(); std::unique_ptr injectedEntry = std::make_unique(incomingKey.getId(), injectionState, incomingKey.getEventTime(), resolvedDeviceId, incomingKey.getSource(), incomingKey.getDisplayId(), policyFlags, action, flags, keyCode, incomingKey.getScanCode(), metaState, incomingKey.getRepeatCount(), incomingKey.getDownTime()); if (mTracer) { injectedEntry->traceTracker = mTracer->traceInboundEvent(*injectedEntry); } injectedEntries.push(std::move(injectedEntry)); break; } case InputEventType::MOTION: { const MotionEvent& motionEvent = static_cast(*event); const bool isPointerEvent = isFromSource(event->getSource(), AINPUT_SOURCE_CLASS_POINTER); // If a pointer event has no displayId specified, inject it to the default display. const ui::LogicalDisplayId displayId = isPointerEvent && (event->getDisplayId() == ui::LogicalDisplayId::INVALID) ? ui::LogicalDisplayId::DEFAULT : event->getDisplayId(); int32_t flags = motionEvent.getFlags(); if (!(policyFlags & POLICY_FLAG_FILTERED)) { nsecs_t eventTime = motionEvent.getEventTime(); android::base::Timer t; mPolicy.interceptMotionBeforeQueueing(displayId, motionEvent.getSource(), motionEvent.getAction(), eventTime, /*byref*/ policyFlags); if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) { ALOGW("Excessive delay in interceptMotionBeforeQueueing; took %s ms", std::to_string(t.duration().count()).c_str()); } } if (policyFlags & POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY) { flags |= AMOTION_EVENT_FLAG_IS_ACCESSIBILITY_EVENT; } mLock.lock(); { // Verify all injected streams, whether the injection is coming from apps or from // input filter. Print an error if the stream becomes inconsistent with this event. // An inconsistent injected event sent could cause a crash in the later stages of // dispatching pipeline. auto [it, _] = mInputFilterVerifiersByDisplay.try_emplace(displayId, std::string("Injection on ") + displayId.toString()); InputVerifier& verifier = it->second; Result result = verifier.processMovement(resolvedDeviceId, motionEvent.getSource(), motionEvent.getAction(), motionEvent.getPointerCount(), motionEvent.getPointerProperties(), motionEvent.getSamplePointerCoords(), flags); if (!result.ok()) { logDispatchStateLocked(); LOG(ERROR) << "Inconsistent event: " << motionEvent << ", reason: " << result.error(); } } const nsecs_t* sampleEventTimes = motionEvent.getSampleEventTimes(); const size_t pointerCount = motionEvent.getPointerCount(); const std::vector pointerProperties(motionEvent.getPointerProperties(), motionEvent.getPointerProperties() + pointerCount); const PointerCoords* samplePointerCoords = motionEvent.getSamplePointerCoords(); std::unique_ptr injectedEntry = std::make_unique(motionEvent.getId(), injectionState, *sampleEventTimes, resolvedDeviceId, motionEvent.getSource(), displayId, policyFlags, motionEvent.getAction(), motionEvent.getActionButton(), flags, motionEvent.getMetaState(), motionEvent.getButtonState(), motionEvent.getClassification(), motionEvent.getEdgeFlags(), motionEvent.getXPrecision(), motionEvent.getYPrecision(), motionEvent.getRawXCursorPosition(), motionEvent.getRawYCursorPosition(), motionEvent.getDownTime(), pointerProperties, std::vector(samplePointerCoords, samplePointerCoords + pointerCount)); transformMotionEntryForInjectionLocked(*injectedEntry, motionEvent.getTransform()); if (mTracer) { injectedEntry->traceTracker = mTracer->traceInboundEvent(*injectedEntry); } injectedEntries.push(std::move(injectedEntry)); for (size_t i = motionEvent.getHistorySize(); i > 0; i--) { sampleEventTimes += 1; samplePointerCoords += motionEvent.getPointerCount(); std::unique_ptr nextInjectedEntry = std::make_unique< MotionEntry>(motionEvent.getId(), injectionState, *sampleEventTimes, resolvedDeviceId, motionEvent.getSource(), displayId, policyFlags, motionEvent.getAction(), motionEvent.getActionButton(), flags, motionEvent.getMetaState(), motionEvent.getButtonState(), motionEvent.getClassification(), motionEvent.getEdgeFlags(), motionEvent.getXPrecision(), motionEvent.getYPrecision(), motionEvent.getRawXCursorPosition(), motionEvent.getRawYCursorPosition(), motionEvent.getDownTime(), pointerProperties, std::vector(samplePointerCoords, samplePointerCoords + pointerCount)); transformMotionEntryForInjectionLocked(*nextInjectedEntry, motionEvent.getTransform()); if (mTracer) { nextInjectedEntry->traceTracker = mTracer->traceInboundEvent(*nextInjectedEntry); } injectedEntries.push(std::move(nextInjectedEntry)); } break; } default: LOG(WARNING) << "Cannot inject " << ftl::enum_string(event->getType()) << " events"; return InputEventInjectionResult::FAILED; } bool needWake = false; while (!injectedEntries.empty()) { if (DEBUG_INJECTION) { LOG(INFO) << "Injecting " << injectedEntries.front()->getDescription(); } needWake |= enqueueInboundEventLocked(std::move(injectedEntries.front())); injectedEntries.pop(); } mLock.unlock(); if (needWake) { mLooper->wake(); } InputEventInjectionResult injectionResult; { // acquire lock std::unique_lock _l(mLock); if (syncMode == InputEventInjectionSync::NONE) { injectionResult = InputEventInjectionResult::SUCCEEDED; } else { for (;;) { injectionResult = injectionState->injectionResult; if (injectionResult != InputEventInjectionResult::PENDING) { break; } nsecs_t remainingTimeout = endTime - now(); if (remainingTimeout <= 0) { if (DEBUG_INJECTION) { ALOGD("injectInputEvent - Timed out waiting for injection result " "to become available."); } injectionResult = InputEventInjectionResult::TIMED_OUT; break; } mInjectionResultAvailable.wait_for(_l, std::chrono::nanoseconds(remainingTimeout)); } if (injectionResult == InputEventInjectionResult::SUCCEEDED && syncMode == InputEventInjectionSync::WAIT_FOR_FINISHED) { while (injectionState->pendingForegroundDispatches != 0) { if (DEBUG_INJECTION) { ALOGD("injectInputEvent - Waiting for %d pending foreground dispatches.", injectionState->pendingForegroundDispatches); } nsecs_t remainingTimeout = endTime - now(); if (remainingTimeout <= 0) { if (DEBUG_INJECTION) { ALOGD("injectInputEvent - Timed out waiting for pending foreground " "dispatches to finish."); } injectionResult = InputEventInjectionResult::TIMED_OUT; break; } mInjectionSyncFinished.wait_for(_l, std::chrono::nanoseconds(remainingTimeout)); } } } } // release lock if (DEBUG_INJECTION) { LOG(INFO) << "injectInputEvent - Finished with result " << ftl::enum_string(injectionResult); } return injectionResult; } std::unique_ptr InputDispatcher::verifyInputEvent(const InputEvent& event) { std::array calculatedHmac; std::unique_ptr result; switch (event.getType()) { case InputEventType::KEY: { const KeyEvent& keyEvent = static_cast(event); VerifiedKeyEvent verifiedKeyEvent = verifiedKeyEventFromKeyEvent(keyEvent); result = std::make_unique(verifiedKeyEvent); calculatedHmac = sign(verifiedKeyEvent); break; } case InputEventType::MOTION: { const MotionEvent& motionEvent = static_cast(event); VerifiedMotionEvent verifiedMotionEvent = verifiedMotionEventFromMotionEvent(motionEvent); result = std::make_unique(verifiedMotionEvent); calculatedHmac = sign(verifiedMotionEvent); break; } default: { LOG(ERROR) << "Cannot verify events of type " << ftl::enum_string(event.getType()); return nullptr; } } if (calculatedHmac == INVALID_HMAC) { return nullptr; } if (0 != CRYPTO_memcmp(calculatedHmac.data(), event.getHmac().data(), calculatedHmac.size())) { return nullptr; } return result; } void InputDispatcher::setInjectionResult(const EventEntry& entry, InputEventInjectionResult injectionResult) { if (!entry.injectionState) { // Not an injected event. return; } InjectionState& injectionState = *entry.injectionState; if (DEBUG_INJECTION) { LOG(INFO) << "Setting input event injection result to " << ftl::enum_string(injectionResult); } if (injectionState.injectionIsAsync && !(entry.policyFlags & POLICY_FLAG_FILTERED)) { // Log the outcome since the injector did not wait for the injection result. switch (injectionResult) { case InputEventInjectionResult::SUCCEEDED: ALOGV("Asynchronous input event injection succeeded."); break; case InputEventInjectionResult::TARGET_MISMATCH: ALOGV("Asynchronous input event injection target mismatch."); break; case InputEventInjectionResult::FAILED: ALOGW("Asynchronous input event injection failed."); break; case InputEventInjectionResult::TIMED_OUT: ALOGW("Asynchronous input event injection timed out."); break; case InputEventInjectionResult::PENDING: ALOGE("Setting result to 'PENDING' for asynchronous injection"); break; } } injectionState.injectionResult = injectionResult; mInjectionResultAvailable.notify_all(); } void InputDispatcher::transformMotionEntryForInjectionLocked( MotionEntry& entry, const ui::Transform& injectedTransform) const { // Input injection works in the logical display coordinate space, but the input pipeline works // display space, so we need to transform the injected events accordingly. const auto it = mDisplayInfos.find(entry.displayId); if (it == mDisplayInfos.end()) return; const auto& transformToDisplay = it->second.transform.inverse() * injectedTransform; if (entry.xCursorPosition != AMOTION_EVENT_INVALID_CURSOR_POSITION && entry.yCursorPosition != AMOTION_EVENT_INVALID_CURSOR_POSITION) { const vec2 cursor = MotionEvent::calculateTransformedXY(entry.source, transformToDisplay, {entry.xCursorPosition, entry.yCursorPosition}); entry.xCursorPosition = cursor.x; entry.yCursorPosition = cursor.y; } for (uint32_t i = 0; i < entry.getPointerCount(); i++) { entry.pointerCoords[i] = MotionEvent::calculateTransformedCoords(entry.source, entry.flags, transformToDisplay, entry.pointerCoords[i]); } } void InputDispatcher::incrementPendingForegroundDispatches(const EventEntry& entry) { if (entry.injectionState) { entry.injectionState->pendingForegroundDispatches += 1; } } void InputDispatcher::decrementPendingForegroundDispatches(const EventEntry& entry) { if (entry.injectionState) { entry.injectionState->pendingForegroundDispatches -= 1; if (entry.injectionState->pendingForegroundDispatches == 0) { mInjectionSyncFinished.notify_all(); } } } const std::vector>& InputDispatcher::getWindowHandlesLocked( ui::LogicalDisplayId displayId) const { static const std::vector> EMPTY_WINDOW_HANDLES; auto it = mWindowHandlesByDisplay.find(displayId); return it != mWindowHandlesByDisplay.end() ? it->second : EMPTY_WINDOW_HANDLES; } sp InputDispatcher::getWindowHandleLocked( const sp& windowHandleToken, std::optional displayId) const { if (windowHandleToken == nullptr) { return nullptr; } if (!displayId) { // Look through all displays. for (const auto& [_, windowHandles] : mWindowHandlesByDisplay) { for (const sp& windowHandle : windowHandles) { if (windowHandle->getToken() == windowHandleToken) { return windowHandle; } } } return nullptr; } // Only look through the requested display. for (const sp& windowHandle : getWindowHandlesLocked(*displayId)) { if (windowHandle->getToken() == windowHandleToken) { return windowHandle; } } return nullptr; } sp InputDispatcher::getWindowHandleLocked( const sp& windowHandle) const { for (const auto& [displayId, windowHandles] : mWindowHandlesByDisplay) { for (const sp& handle : windowHandles) { if (handle->getId() == windowHandle->getId() && handle->getToken() == windowHandle->getToken()) { if (windowHandle->getInfo()->displayId != displayId) { ALOGE("Found window %s in display %s" ", but it should belong to display %s", windowHandle->getName().c_str(), displayId.toString().c_str(), windowHandle->getInfo()->displayId.toString().c_str()); } return handle; } } } return nullptr; } sp InputDispatcher::getFocusedWindowHandleLocked( ui::LogicalDisplayId displayId) const { sp focusedToken = mFocusResolver.getFocusedWindowToken(displayId); return getWindowHandleLocked(focusedToken, displayId); } ui::Transform InputDispatcher::getTransformLocked(ui::LogicalDisplayId displayId) const { auto displayInfoIt = mDisplayInfos.find(displayId); return displayInfoIt != mDisplayInfos.end() ? displayInfoIt->second.transform : kIdentityTransform; } bool InputDispatcher::canWindowReceiveMotionLocked(const sp& window, const MotionEntry& motionEntry) const { const WindowInfo& info = *window->getInfo(); // Skip spy window targets that are not valid for targeted injection. if (const auto err = verifyTargetedInjection(window, motionEntry); err) { return false; } if (info.inputConfig.test(WindowInfo::InputConfig::PAUSE_DISPATCHING)) { ALOGI("Not sending touch event to %s because it is paused", window->getName().c_str()); return false; } if (info.inputConfig.test(WindowInfo::InputConfig::NO_INPUT_CHANNEL)) { ALOGW("Not sending touch gesture to %s because it has config NO_INPUT_CHANNEL", window->getName().c_str()); return false; } std::shared_ptr connection = getConnectionLocked(window->getToken()); if (connection == nullptr) { ALOGW("Not sending touch to %s because there's no corresponding connection", window->getName().c_str()); return false; } if (!connection->responsive) { ALOGW("Not sending touch to %s because it is not responsive", window->getName().c_str()); return false; } // Drop events that can't be trusted due to occlusion const auto [x, y] = resolveTouchedPosition(motionEntry); TouchOcclusionInfo occlusionInfo = computeTouchOcclusionInfoLocked(window, x, y); if (!isTouchTrustedLocked(occlusionInfo)) { if (DEBUG_TOUCH_OCCLUSION) { ALOGD("Stack of obscuring windows during untrusted touch (%.1f, %.1f):", x, y); for (const auto& log : occlusionInfo.debugInfo) { ALOGD("%s", log.c_str()); } } ALOGW("Dropping untrusted touch event due to %s/%s", occlusionInfo.obscuringPackage.c_str(), occlusionInfo.obscuringUid.toString().c_str()); return false; } // Drop touch events if requested by input feature if (shouldDropInput(motionEntry, window)) { return false; } // Ignore touches if stylus is down anywhere on screen if (info.inputConfig.test(WindowInfo::InputConfig::GLOBAL_STYLUS_BLOCKS_TOUCH) && isStylusActiveInDisplay(info.displayId, mTouchStatesByDisplay)) { LOG(INFO) << "Dropping touch from " << window->getName() << " because stylus is active"; return false; } return true; } void InputDispatcher::updateWindowHandlesForDisplayLocked( const std::vector>& windowInfoHandles, ui::LogicalDisplayId displayId) { if (windowInfoHandles.empty()) { // Remove all handles on a display if there are no windows left. mWindowHandlesByDisplay.erase(displayId); return; } // Since we compare the pointer of input window handles across window updates, we need // to make sure the handle object for the same window stays unchanged across updates. const std::vector>& oldHandles = getWindowHandlesLocked(displayId); std::unordered_map> oldHandlesById; for (const sp& handle : oldHandles) { oldHandlesById[handle->getId()] = handle; } std::vector> newHandles; for (const sp& handle : windowInfoHandles) { const WindowInfo* info = handle->getInfo(); if (getConnectionLocked(handle->getToken()) == nullptr) { const bool noInputChannel = info->inputConfig.test(WindowInfo::InputConfig::NO_INPUT_CHANNEL); const bool canReceiveInput = !info->inputConfig.test(WindowInfo::InputConfig::NOT_TOUCHABLE) || !info->inputConfig.test(WindowInfo::InputConfig::NOT_FOCUSABLE); if (canReceiveInput && !noInputChannel) { ALOGV("Window handle %s has no registered input channel", handle->getName().c_str()); continue; } } if (info->displayId != displayId) { ALOGE("Window %s updated by wrong display %s, should belong to display %s", handle->getName().c_str(), displayId.toString().c_str(), info->displayId.toString().c_str()); continue; } if ((oldHandlesById.find(handle->getId()) != oldHandlesById.end()) && (oldHandlesById.at(handle->getId())->getToken() == handle->getToken())) { const sp& oldHandle = oldHandlesById.at(handle->getId()); oldHandle->updateFrom(handle); newHandles.push_back(oldHandle); } else { newHandles.push_back(handle); } } // Insert or replace mWindowHandlesByDisplay[displayId] = newHandles; } /** * Called from InputManagerService, update window handle list by displayId that can receive input. * A window handle contains information about InputChannel, Touch Region, Types, Focused,... * If set an empty list, remove all handles from the specific display. * For focused handle, check if need to change and send a cancel event to previous one. * For removed handle, check if need to send a cancel event if already in touch. */ void InputDispatcher::setInputWindowsLocked( const std::vector>& windowInfoHandles, ui::LogicalDisplayId displayId) { if (DEBUG_FOCUS) { std::string windowList; for (const sp& iwh : windowInfoHandles) { windowList += iwh->getName() + " "; } LOG(INFO) << "setInputWindows displayId=" << displayId << " " << windowList; } ScopedSyntheticEventTracer traceContext(mTracer); // Check preconditions for new input windows for (const sp& window : windowInfoHandles) { const WindowInfo& info = *window->getInfo(); // Ensure all tokens are null if the window has feature NO_INPUT_CHANNEL const bool noInputWindow = info.inputConfig.test(WindowInfo::InputConfig::NO_INPUT_CHANNEL); if (noInputWindow && window->getToken() != nullptr) { ALOGE("%s has feature NO_INPUT_WINDOW, but a non-null token. Clearing", window->getName().c_str()); window->releaseChannel(); } // Ensure all spy windows are trusted overlays LOG_ALWAYS_FATAL_IF(info.isSpy() && !info.inputConfig.test( WindowInfo::InputConfig::TRUSTED_OVERLAY), "%s has feature SPY, but is not a trusted overlay.", window->getName().c_str()); // Ensure all stylus interceptors are trusted overlays LOG_ALWAYS_FATAL_IF(info.interceptsStylus() && !info.inputConfig.test( WindowInfo::InputConfig::TRUSTED_OVERLAY), "%s has feature INTERCEPTS_STYLUS, but is not a trusted overlay.", window->getName().c_str()); } // Copy old handles for release if they are no longer present. const std::vector> oldWindowHandles = getWindowHandlesLocked(displayId); const sp removedFocusedWindowHandle = getFocusedWindowHandleLocked(displayId); updateWindowHandlesForDisplayLocked(windowInfoHandles, displayId); const std::vector>& windowHandles = getWindowHandlesLocked(displayId); std::optional changes = mFocusResolver.setInputWindows(displayId, windowHandles); if (changes) { onFocusChangedLocked(*changes, traceContext.getTracker(), removedFocusedWindowHandle); } if (const auto& it = mTouchStatesByDisplay.find(displayId); it != mTouchStatesByDisplay.end()) { TouchState& state = it->second; for (size_t i = 0; i < state.windows.size();) { TouchedWindow& touchedWindow = state.windows[i]; if (getWindowHandleLocked(touchedWindow.windowHandle) != nullptr) { i++; continue; } LOG(INFO) << "Touched window was removed: " << touchedWindow.windowHandle->getName() << " in display %" << displayId; CancelationOptions options(CancelationOptions::Mode::CANCEL_POINTER_EVENTS, "touched window was removed", traceContext.getTracker()); synthesizeCancelationEventsForWindowLocked(touchedWindow.windowHandle, options); // Since we are about to drop the touch, cancel the events for the wallpaper as // well. if (touchedWindow.targetFlags.test(InputTarget::Flags::FOREGROUND) && touchedWindow.windowHandle->getInfo()->inputConfig.test( gui::WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER)) { for (const DeviceId deviceId : touchedWindow.getTouchingDeviceIds()) { if (const auto& ww = state.getWallpaperWindow(deviceId); ww != nullptr) { options.deviceId = deviceId; synthesizeCancelationEventsForWindowLocked(ww, options); } } } state.windows.erase(state.windows.begin() + i); } // If drag window is gone, it would receive a cancel event and broadcast the DRAG_END. We // could just clear the state here. if (mDragState && mDragState->dragWindow->getInfo()->displayId == displayId && std::find(windowHandles.begin(), windowHandles.end(), mDragState->dragWindow) == windowHandles.end()) { ALOGI("Drag window went away: %s", mDragState->dragWindow->getName().c_str()); sendDropWindowCommandLocked(nullptr, 0, 0); mDragState.reset(); } } // Release information for windows that are no longer present. // This ensures that unused input channels are released promptly. // Otherwise, they might stick around until the window handle is destroyed // which might not happen until the next GC. for (const sp& oldWindowHandle : oldWindowHandles) { if (getWindowHandleLocked(oldWindowHandle) == nullptr) { if (DEBUG_FOCUS) { ALOGD("Window went away: %s", oldWindowHandle->getName().c_str()); } oldWindowHandle->releaseChannel(); } } } void InputDispatcher::setFocusedApplication( ui::LogicalDisplayId displayId, const std::shared_ptr& inputApplicationHandle) { if (DEBUG_FOCUS) { ALOGD("setFocusedApplication displayId=%s %s", displayId.toString().c_str(), inputApplicationHandle ? inputApplicationHandle->getName().c_str() : ""); } { // acquire lock std::scoped_lock _l(mLock); setFocusedApplicationLocked(displayId, inputApplicationHandle); } // release lock // Wake up poll loop since it may need to make new input dispatching choices. mLooper->wake(); } void InputDispatcher::setFocusedApplicationLocked( ui::LogicalDisplayId displayId, const std::shared_ptr& inputApplicationHandle) { std::shared_ptr oldFocusedApplicationHandle = getValueByKey(mFocusedApplicationHandlesByDisplay, displayId); if (sharedPointersEqual(oldFocusedApplicationHandle, inputApplicationHandle)) { return; // This application is already focused. No need to wake up or change anything. } // Set the new application handle. if (inputApplicationHandle != nullptr) { mFocusedApplicationHandlesByDisplay[displayId] = inputApplicationHandle; } else { mFocusedApplicationHandlesByDisplay.erase(displayId); } // No matter what the old focused application was, stop waiting on it because it is // no longer focused. resetNoFocusedWindowTimeoutLocked(); } void InputDispatcher::setMinTimeBetweenUserActivityPokes(std::chrono::milliseconds interval) { if (interval.count() < 0) { LOG_ALWAYS_FATAL("Minimum time between user activity pokes should be >= 0"); } std::scoped_lock _l(mLock); mMinTimeBetweenUserActivityPokes = interval; } /** * Sets the focused display, which is responsible for receiving focus-dispatched input events where * the display not specified. * * We track any unreleased events for each window. If a window loses the ability to receive the * released event, we will send a cancel event to it. So when the focused display is changed, we * cancel all the unreleased display-unspecified events for the focused window on the old focused * display. The display-specified events won't be affected. */ void InputDispatcher::setFocusedDisplay(ui::LogicalDisplayId displayId) { if (DEBUG_FOCUS) { ALOGD("setFocusedDisplay displayId=%s", displayId.toString().c_str()); } { // acquire lock std::scoped_lock _l(mLock); ScopedSyntheticEventTracer traceContext(mTracer); if (mFocusedDisplayId != displayId) { sp oldFocusedWindowToken = mFocusResolver.getFocusedWindowToken(mFocusedDisplayId); if (oldFocusedWindowToken != nullptr) { const auto windowHandle = getWindowHandleLocked(oldFocusedWindowToken, mFocusedDisplayId); if (windowHandle == nullptr) { LOG(FATAL) << __func__ << ": Previously focused token did not have a window"; } CancelationOptions options(CancelationOptions::Mode::CANCEL_NON_POINTER_EVENTS, "The display which contains this window no longer has focus.", traceContext.getTracker()); options.displayId = ui::LogicalDisplayId::INVALID; synthesizeCancelationEventsForWindowLocked(windowHandle, options); } mFocusedDisplayId = displayId; // Enqueue a command to run outside the lock to tell the policy that the focused display // changed. auto command = [this]() REQUIRES(mLock) { scoped_unlock unlock(mLock); mPolicy.notifyFocusedDisplayChanged(mFocusedDisplayId); }; postCommandLocked(std::move(command)); // Only a window on the focused display can have Pointer Capture, so disable the active // Pointer Capture session if there is one, since the focused display changed. disablePointerCaptureForcedLocked(); // Find new focused window and validate sp newFocusedWindowToken = mFocusResolver.getFocusedWindowToken(displayId); sendFocusChangedCommandLocked(oldFocusedWindowToken, newFocusedWindowToken); if (newFocusedWindowToken == nullptr) { ALOGW("Focused display #%s does not have a focused window.", displayId.toString().c_str()); if (mFocusResolver.hasFocusedWindowTokens()) { ALOGE("But another display has a focused window\n%s", mFocusResolver.dumpFocusedWindows().c_str()); } } } } // release lock // Wake up poll loop since it may need to make new input dispatching choices. mLooper->wake(); } void InputDispatcher::setInputDispatchMode(bool enabled, bool frozen) { if (DEBUG_FOCUS) { ALOGD("setInputDispatchMode: enabled=%d, frozen=%d", enabled, frozen); } bool changed; { // acquire lock std::scoped_lock _l(mLock); if (mDispatchEnabled != enabled || mDispatchFrozen != frozen) { if (mDispatchFrozen && !frozen) { resetNoFocusedWindowTimeoutLocked(); } if (mDispatchEnabled && !enabled) { resetAndDropEverythingLocked("dispatcher is being disabled"); } mDispatchEnabled = enabled; mDispatchFrozen = frozen; changed = true; } else { changed = false; } } // release lock if (changed) { // Wake up poll loop since it may need to make new input dispatching choices. mLooper->wake(); } } void InputDispatcher::setInputFilterEnabled(bool enabled) { if (DEBUG_FOCUS) { ALOGD("setInputFilterEnabled: enabled=%d", enabled); } { // acquire lock std::scoped_lock _l(mLock); if (mInputFilterEnabled == enabled) { return; } mInputFilterEnabled = enabled; resetAndDropEverythingLocked("input filter is being enabled or disabled"); } // release lock // Wake up poll loop since there might be work to do to drop everything. mLooper->wake(); } bool InputDispatcher::setInTouchMode(bool inTouchMode, gui::Pid pid, gui::Uid uid, bool hasPermission, ui::LogicalDisplayId displayId) { bool needWake = false; { std::scoped_lock lock(mLock); ALOGD_IF(DEBUG_TOUCH_MODE, "Request to change touch mode to %s (calling pid=%s, uid=%s, " "hasPermission=%s, target displayId=%s, mTouchModePerDisplay[displayId]=%s)", toString(inTouchMode), pid.toString().c_str(), uid.toString().c_str(), toString(hasPermission), displayId.toString().c_str(), mTouchModePerDisplay.count(displayId) == 0 ? "not set" : std::to_string(mTouchModePerDisplay[displayId]).c_str()); auto touchModeIt = mTouchModePerDisplay.find(displayId); if (touchModeIt != mTouchModePerDisplay.end() && touchModeIt->second == inTouchMode) { return false; } if (!hasPermission) { if (!focusedWindowIsOwnedByLocked(pid, uid) && !recentWindowsAreOwnedByLocked(pid, uid)) { ALOGD("Touch mode switch rejected, caller (pid=%s, uid=%s) doesn't own the focused " "window nor none of the previously interacted window", pid.toString().c_str(), uid.toString().c_str()); return false; } } mTouchModePerDisplay[displayId] = inTouchMode; auto entry = std::make_unique(mIdGenerator.nextId(), now(), inTouchMode, displayId); needWake = enqueueInboundEventLocked(std::move(entry)); } // release lock if (needWake) { mLooper->wake(); } return true; } bool InputDispatcher::focusedWindowIsOwnedByLocked(gui::Pid pid, gui::Uid uid) { const sp focusedToken = mFocusResolver.getFocusedWindowToken(mFocusedDisplayId); if (focusedToken == nullptr) { return false; } sp windowHandle = getWindowHandleLocked(focusedToken); return isWindowOwnedBy(windowHandle, pid, uid); } bool InputDispatcher::recentWindowsAreOwnedByLocked(gui::Pid pid, gui::Uid uid) { return std::find_if(mInteractionConnectionTokens.begin(), mInteractionConnectionTokens.end(), [&](const sp& connectionToken) REQUIRES(mLock) { const sp windowHandle = getWindowHandleLocked(connectionToken); return isWindowOwnedBy(windowHandle, pid, uid); }) != mInteractionConnectionTokens.end(); } void InputDispatcher::setMaximumObscuringOpacityForTouch(float opacity) { if (opacity < 0 || opacity > 1) { LOG_ALWAYS_FATAL("Maximum obscuring opacity for touch should be >= 0 and <= 1"); return; } std::scoped_lock lock(mLock); mMaximumObscuringOpacityForTouch = opacity; } std::tuple InputDispatcher::findTouchStateWindowAndDisplayLocked(const sp& token) { for (auto& [displayId, state] : mTouchStatesByDisplay) { for (TouchedWindow& w : state.windows) { if (w.windowHandle->getToken() == token) { return std::make_tuple(&state, &w, displayId); } } } return std::make_tuple(nullptr, nullptr, ui::LogicalDisplayId::DEFAULT); } bool InputDispatcher::transferTouchGesture(const sp& fromToken, const sp& toToken, bool isDragDrop) { if (fromToken == toToken) { if (DEBUG_FOCUS) { ALOGD("Trivial transfer to same window."); } return true; } { // acquire lock std::scoped_lock _l(mLock); // Find the target touch state and touched window by fromToken. auto [state, touchedWindow, displayId] = findTouchStateWindowAndDisplayLocked(fromToken); if (state == nullptr || touchedWindow == nullptr) { ALOGD("Touch transfer failed because from window is not being touched."); return false; } std::set deviceIds = touchedWindow->getTouchingDeviceIds(); if (deviceIds.size() != 1) { LOG(INFO) << "Can't transfer touch. Currently touching devices: " << dumpSet(deviceIds) << " for window: " << touchedWindow->dump(); return false; } const DeviceId deviceId = *deviceIds.begin(); const sp fromWindowHandle = touchedWindow->windowHandle; const sp toWindowHandle = getWindowHandleLocked(toToken, displayId); if (!toWindowHandle) { ALOGW("Cannot transfer touch because the transfer target window was not found."); return false; } if (DEBUG_FOCUS) { ALOGD("%s: fromWindowHandle=%s, toWindowHandle=%s", __func__, touchedWindow->windowHandle->getName().c_str(), toWindowHandle->getName().c_str()); } // Erase old window. ftl::Flags oldTargetFlags = touchedWindow->targetFlags; std::vector pointers = touchedWindow->getTouchingPointers(deviceId); state->removeWindowByToken(fromToken); // Add new window. nsecs_t downTimeInTarget = now(); ftl::Flags newTargetFlags = oldTargetFlags & (InputTarget::Flags::SPLIT); if (canReceiveForegroundTouches(*toWindowHandle->getInfo())) { newTargetFlags |= InputTarget::Flags::FOREGROUND; } // Transferring touch focus using this API should not effect the focused window. newTargetFlags |= InputTarget::Flags::NO_FOCUS_CHANGE; state->addOrUpdateWindow(toWindowHandle, InputTarget::DispatchMode::AS_IS, newTargetFlags, deviceId, pointers, downTimeInTarget); // Store the dragging window. if (isDragDrop) { if (pointers.size() != 1) { ALOGW("The drag and drop cannot be started when there is no pointer or more than 1" " pointer on the window."); return false; } // Track the pointer id for drag window and generate the drag state. const size_t id = pointers.begin()->id; mDragState = std::make_unique(toWindowHandle, id); } // Synthesize cancel for old window and down for new window. ScopedSyntheticEventTracer traceContext(mTracer); std::shared_ptr fromConnection = getConnectionLocked(fromToken); std::shared_ptr toConnection = getConnectionLocked(toToken); if (fromConnection != nullptr && toConnection != nullptr) { fromConnection->inputState.mergePointerStateTo(toConnection->inputState); CancelationOptions options(CancelationOptions::Mode::CANCEL_POINTER_EVENTS, "transferring touch from this window to another window", traceContext.getTracker()); synthesizeCancelationEventsForWindowLocked(fromWindowHandle, options, fromConnection); // Check if the wallpaper window should deliver the corresponding event. transferWallpaperTouch(oldTargetFlags, newTargetFlags, fromWindowHandle, toWindowHandle, *state, deviceId, pointers, traceContext.getTracker()); // Because new window may have a wallpaper window, it will merge input state from it // parent window, after this the firstNewPointerIdx in input state will be reset, then // it will cause new move event be thought inconsistent, so we should synthesize the // down event after it reset. synthesizePointerDownEventsForConnectionLocked(downTimeInTarget, toConnection, newTargetFlags, traceContext.getTracker()); } } // release lock // Wake up poll loop since it may need to make new input dispatching choices. mLooper->wake(); return true; } /** * Get the touched foreground window on the given display. * Return null if there are no windows touched on that display, or if more than one foreground * window is being touched. */ sp InputDispatcher::findTouchedForegroundWindowLocked( ui::LogicalDisplayId displayId) const { auto stateIt = mTouchStatesByDisplay.find(displayId); if (stateIt == mTouchStatesByDisplay.end()) { ALOGI("No touch state on display %s", displayId.toString().c_str()); return nullptr; } const TouchState& state = stateIt->second; sp touchedForegroundWindow; // If multiple foreground windows are touched, return nullptr for (const TouchedWindow& window : state.windows) { if (window.targetFlags.test(InputTarget::Flags::FOREGROUND)) { if (touchedForegroundWindow != nullptr) { ALOGI("Two or more foreground windows: %s and %s", touchedForegroundWindow->getName().c_str(), window.windowHandle->getName().c_str()); return nullptr; } touchedForegroundWindow = window.windowHandle; } } return touchedForegroundWindow; } // Binder call bool InputDispatcher::transferTouchOnDisplay(const sp& destChannelToken, ui::LogicalDisplayId displayId) { sp fromToken; { // acquire lock std::scoped_lock _l(mLock); sp toWindowHandle = getWindowHandleLocked(destChannelToken, displayId); if (toWindowHandle == nullptr) { ALOGW("Could not find window associated with token=%p on display %s", destChannelToken.get(), displayId.toString().c_str()); return false; } sp from = findTouchedForegroundWindowLocked(displayId); if (from == nullptr) { ALOGE("Could not find a source window in %s for %p", __func__, destChannelToken.get()); return false; } fromToken = from->getToken(); } // release lock return transferTouchGesture(fromToken, destChannelToken); } void InputDispatcher::resetAndDropEverythingLocked(const char* reason) { if (DEBUG_FOCUS) { ALOGD("Resetting and dropping all events (%s).", reason); } ScopedSyntheticEventTracer traceContext(mTracer); CancelationOptions options(CancelationOptions::Mode::CANCEL_ALL_EVENTS, reason, traceContext.getTracker()); synthesizeCancelationEventsForAllConnectionsLocked(options); resetKeyRepeatLocked(); releasePendingEventLocked(); drainInboundQueueLocked(); resetNoFocusedWindowTimeoutLocked(); mAnrTracker.clear(); mTouchStatesByDisplay.clear(); } void InputDispatcher::logDispatchStateLocked() const { std::string dump; dumpDispatchStateLocked(dump); std::istringstream stream(dump); std::string line; while (std::getline(stream, line, '\n')) { ALOGI("%s", line.c_str()); } } std::string InputDispatcher::dumpPointerCaptureStateLocked() const { std::string dump; dump += StringPrintf(INDENT "Pointer Capture Requested: %s\n", toString(mCurrentPointerCaptureRequest.isEnable())); std::string windowName = "None"; if (mWindowTokenWithPointerCapture) { const sp captureWindowHandle = getWindowHandleLocked(mWindowTokenWithPointerCapture); windowName = captureWindowHandle ? captureWindowHandle->getName().c_str() : "token has capture without window"; } dump += StringPrintf(INDENT "Current Window with Pointer Capture: %s\n", windowName.c_str()); return dump; } void InputDispatcher::dumpDispatchStateLocked(std::string& dump) const { dump += StringPrintf(INDENT "DispatchEnabled: %s\n", toString(mDispatchEnabled)); dump += StringPrintf(INDENT "DispatchFrozen: %s\n", toString(mDispatchFrozen)); dump += StringPrintf(INDENT "InputFilterEnabled: %s\n", toString(mInputFilterEnabled)); dump += StringPrintf(INDENT "FocusedDisplayId: %s\n", mFocusedDisplayId.toString().c_str()); if (!mFocusedApplicationHandlesByDisplay.empty()) { dump += StringPrintf(INDENT "FocusedApplications:\n"); for (auto& it : mFocusedApplicationHandlesByDisplay) { const ui::LogicalDisplayId displayId = it.first; const std::shared_ptr& applicationHandle = it.second; const std::chrono::duration timeout = applicationHandle->getDispatchingTimeout(DEFAULT_INPUT_DISPATCHING_TIMEOUT); dump += StringPrintf(INDENT2 "displayId=%s, name='%s', dispatchingTimeout=%" PRId64 "ms\n", displayId.toString().c_str(), applicationHandle->getName().c_str(), millis(timeout)); } } else { dump += StringPrintf(INDENT "FocusedApplications: \n"); } dump += mFocusResolver.dump(); dump += dumpPointerCaptureStateLocked(); if (!mTouchStatesByDisplay.empty()) { dump += StringPrintf(INDENT "TouchStatesByDisplay:\n"); for (const auto& [displayId, state] : mTouchStatesByDisplay) { std::string touchStateDump = addLinePrefix(state.dump(), INDENT2); dump += INDENT2 + displayId.toString() + " : " + touchStateDump; } } else { dump += INDENT "TouchStates: \n"; } if (mDragState) { dump += StringPrintf(INDENT "DragState:\n"); mDragState->dump(dump, INDENT2); } if (!mWindowHandlesByDisplay.empty()) { for (const auto& [displayId, windowHandles] : mWindowHandlesByDisplay) { dump += StringPrintf(INDENT "Display: %s\n", displayId.toString().c_str()); if (const auto& it = mDisplayInfos.find(displayId); it != mDisplayInfos.end()) { const auto& displayInfo = it->second; dump += StringPrintf(INDENT2 "logicalSize=%dx%d\n", displayInfo.logicalWidth, displayInfo.logicalHeight); displayInfo.transform.dump(dump, "transform", INDENT4); } else { dump += INDENT2 "No DisplayInfo found!\n"; } if (!windowHandles.empty()) { dump += INDENT2 "Windows:\n"; for (size_t i = 0; i < windowHandles.size(); i++) { dump += StringPrintf(INDENT3 "%zu: %s", i, streamableToString(*windowHandles[i]).c_str()); } } else { dump += INDENT2 "Windows: \n"; } } } else { dump += INDENT "Displays: \n"; } if (!mGlobalMonitorsByDisplay.empty()) { for (const auto& [displayId, monitors] : mGlobalMonitorsByDisplay) { dump += StringPrintf(INDENT "Global monitors on display %s:\n", displayId.toString().c_str()); dumpMonitors(dump, monitors); } } else { dump += INDENT "Global Monitors: \n"; } const nsecs_t currentTime = now(); // Dump recently dispatched or dropped events from oldest to newest. if (!mRecentQueue.empty()) { dump += StringPrintf(INDENT "RecentQueue: length=%zu\n", mRecentQueue.size()); for (const std::shared_ptr& entry : mRecentQueue) { dump += INDENT2; dump += entry->getDescription(); dump += StringPrintf(", age=%" PRId64 "ms\n", ns2ms(currentTime - entry->eventTime)); } } else { dump += INDENT "RecentQueue: \n"; } // Dump event currently being dispatched. if (mPendingEvent) { dump += INDENT "PendingEvent:\n"; dump += INDENT2; dump += mPendingEvent->getDescription(); dump += StringPrintf(", age=%" PRId64 "ms\n", ns2ms(currentTime - mPendingEvent->eventTime)); } else { dump += INDENT "PendingEvent: \n"; } // Dump inbound events from oldest to newest. if (!mInboundQueue.empty()) { dump += StringPrintf(INDENT "InboundQueue: length=%zu\n", mInboundQueue.size()); for (const std::shared_ptr& entry : mInboundQueue) { dump += INDENT2; dump += entry->getDescription(); dump += StringPrintf(", age=%" PRId64 "ms\n", ns2ms(currentTime - entry->eventTime)); } } else { dump += INDENT "InboundQueue: \n"; } if (!mCommandQueue.empty()) { dump += StringPrintf(INDENT "CommandQueue: size=%zu\n", mCommandQueue.size()); } else { dump += INDENT "CommandQueue: \n"; } if (!mConnectionsByToken.empty()) { dump += INDENT "Connections:\n"; for (const auto& [token, connection] : mConnectionsByToken) { dump += StringPrintf(INDENT2 "%i: channelName='%s', " "status=%s, monitor=%s, responsive=%s\n", connection->inputPublisher.getChannel().getFd(), connection->getInputChannelName().c_str(), ftl::enum_string(connection->status).c_str(), toString(connection->monitor), toString(connection->responsive)); if (!connection->outboundQueue.empty()) { dump += StringPrintf(INDENT3 "OutboundQueue: length=%zu\n", connection->outboundQueue.size()); dump += dumpQueue(connection->outboundQueue, currentTime); } else { dump += INDENT3 "OutboundQueue: \n"; } if (!connection->waitQueue.empty()) { dump += StringPrintf(INDENT3 "WaitQueue: length=%zu\n", connection->waitQueue.size()); dump += dumpQueue(connection->waitQueue, currentTime); } else { dump += INDENT3 "WaitQueue: \n"; } std::string inputStateDump = streamableToString(connection->inputState); if (!inputStateDump.empty()) { dump += INDENT3 "InputState: "; dump += inputStateDump + "\n"; } } } else { dump += INDENT "Connections: \n"; } if (!mTouchModePerDisplay.empty()) { dump += INDENT "TouchModePerDisplay:\n"; for (const auto& [displayId, touchMode] : mTouchModePerDisplay) { dump += StringPrintf(INDENT2 "Display: %s TouchMode: %s\n", displayId.toString().c_str(), std::to_string(touchMode).c_str()); } } else { dump += INDENT "TouchModePerDisplay: \n"; } dump += INDENT "Configuration:\n"; dump += StringPrintf(INDENT2 "KeyRepeatDelay: %" PRId64 "ms\n", ns2ms(mConfig.keyRepeatDelay)); dump += StringPrintf(INDENT2 "KeyRepeatTimeout: %" PRId64 "ms\n", ns2ms(mConfig.keyRepeatTimeout)); dump += mLatencyTracker.dump(INDENT2); dump += mLatencyAggregator.dump(INDENT2); dump += INDENT "InputTracer: "; dump += mTracer == nullptr ? "Disabled" : "Enabled"; } void InputDispatcher::dumpMonitors(std::string& dump, const std::vector& monitors) const { const size_t numMonitors = monitors.size(); for (size_t i = 0; i < numMonitors; i++) { const Monitor& monitor = monitors[i]; const std::shared_ptr& connection = monitor.connection; dump += StringPrintf(INDENT2 "%zu: '%s', ", i, connection->getInputChannelName().c_str()); dump += "\n"; } } class LooperEventCallback : public LooperCallback { public: LooperEventCallback(std::function callback) : mCallback(callback) {} int handleEvent(int /*fd*/, int events, void* /*data*/) override { return mCallback(events); } private: std::function mCallback; }; Result> InputDispatcher::createInputChannel(const std::string& name) { if (DEBUG_CHANNEL_CREATION) { ALOGD("channel '%s' ~ createInputChannel", name.c_str()); } std::unique_ptr serverChannel; std::unique_ptr clientChannel; status_t result = InputChannel::openInputChannelPair(name, serverChannel, clientChannel); if (result) { return base::Error(result) << "Failed to open input channel pair with name " << name; } { // acquire lock std::scoped_lock _l(mLock); const sp& token = serverChannel->getConnectionToken(); const int fd = serverChannel->getFd(); std::shared_ptr connection = std::make_shared(std::move(serverChannel), /*monitor=*/false, mIdGenerator); auto [_, inserted] = mConnectionsByToken.try_emplace(token, connection); if (!inserted) { ALOGE("Created a new connection, but the token %p is already known", token.get()); } std::function callback = std::bind(&InputDispatcher::handleReceiveCallback, this, std::placeholders::_1, token); mLooper->addFd(fd, 0, ALOOPER_EVENT_INPUT, sp::make(callback), nullptr); } // release lock // Wake the looper because some connections have changed. mLooper->wake(); return clientChannel; } Result> InputDispatcher::createInputMonitor( ui::LogicalDisplayId displayId, const std::string& name, gui::Pid pid) { std::unique_ptr serverChannel; std::unique_ptr clientChannel; status_t result = InputChannel::openInputChannelPair(name, serverChannel, clientChannel); if (result) { return base::Error(result) << "Failed to open input channel pair with name " << name; } { // acquire lock std::scoped_lock _l(mLock); if (displayId < ui::LogicalDisplayId::DEFAULT) { return base::Error(BAD_VALUE) << "Attempted to create input monitor with name " << name << " without a specified display."; } const sp& token = serverChannel->getConnectionToken(); const int fd = serverChannel->getFd(); std::shared_ptr connection = std::make_shared(std::move(serverChannel), /*monitor=*/true, mIdGenerator); auto [_, inserted] = mConnectionsByToken.emplace(token, connection); if (!inserted) { ALOGE("Created a new connection, but the token %p is already known", token.get()); } std::function callback = std::bind(&InputDispatcher::handleReceiveCallback, this, std::placeholders::_1, token); mGlobalMonitorsByDisplay[displayId].emplace_back(connection, pid); mLooper->addFd(fd, 0, ALOOPER_EVENT_INPUT, sp::make(callback), nullptr); } // Wake the looper because some connections have changed. mLooper->wake(); return clientChannel; } status_t InputDispatcher::removeInputChannel(const sp& connectionToken) { { // acquire lock std::scoped_lock _l(mLock); status_t status = removeInputChannelLocked(connectionToken, /*notify=*/false); if (status) { return status; } } // release lock // Wake the poll loop because removing the connection may have changed the current // synchronization state. mLooper->wake(); return OK; } status_t InputDispatcher::removeInputChannelLocked(const sp& connectionToken, bool notify) { std::shared_ptr connection = getConnectionLocked(connectionToken); if (connection == nullptr) { // Connection can be removed via socket hang up or an explicit call to 'removeInputChannel' return BAD_VALUE; } removeConnectionLocked(connection); if (connection->monitor) { removeMonitorChannelLocked(connectionToken); } mLooper->removeFd(connection->inputPublisher.getChannel().getFd()); nsecs_t currentTime = now(); abortBrokenDispatchCycleLocked(currentTime, connection, notify); connection->status = Connection::Status::ZOMBIE; return OK; } void InputDispatcher::removeMonitorChannelLocked(const sp& connectionToken) { for (auto it = mGlobalMonitorsByDisplay.begin(); it != mGlobalMonitorsByDisplay.end();) { auto& [displayId, monitors] = *it; std::erase_if(monitors, [connectionToken](const Monitor& monitor) { return monitor.connection->getToken() == connectionToken; }); if (monitors.empty()) { it = mGlobalMonitorsByDisplay.erase(it); } else { ++it; } } } status_t InputDispatcher::pilferPointers(const sp& token) { std::scoped_lock _l(mLock); return pilferPointersLocked(token); } status_t InputDispatcher::pilferPointersLocked(const sp& token) { const std::shared_ptr requestingConnection = getConnectionLocked(token); if (!requestingConnection) { LOG(WARNING) << "Attempted to pilfer pointers from an un-registered channel or invalid token"; return BAD_VALUE; } auto [statePtr, windowPtr, displayId] = findTouchStateWindowAndDisplayLocked(token); if (statePtr == nullptr || windowPtr == nullptr) { LOG(WARNING) << "Attempted to pilfer points from a channel without any on-going pointer streams." " Ignoring."; return BAD_VALUE; } std::set deviceIds = windowPtr->getTouchingDeviceIds(); if (deviceIds.empty()) { LOG(WARNING) << "Can't pilfer: no touching devices in window: " << windowPtr->dump(); return BAD_VALUE; } ScopedSyntheticEventTracer traceContext(mTracer); for (const DeviceId deviceId : deviceIds) { TouchState& state = *statePtr; TouchedWindow& window = *windowPtr; // Send cancel events to all the input channels we're stealing from. CancelationOptions options(CancelationOptions::Mode::CANCEL_POINTER_EVENTS, "input channel stole pointer stream", traceContext.getTracker()); options.deviceId = deviceId; options.displayId = displayId; std::vector pointers = window.getTouchingPointers(deviceId); std::bitset pointerIds = getPointerIds(pointers); options.pointerIds = pointerIds; std::string canceledWindows; for (const TouchedWindow& w : state.windows) { if (w.windowHandle->getToken() != token) { synthesizeCancelationEventsForWindowLocked(w.windowHandle, options); canceledWindows += canceledWindows.empty() ? "[" : ", "; canceledWindows += w.windowHandle->getName(); } } canceledWindows += canceledWindows.empty() ? "[]" : "]"; LOG(INFO) << "Channel " << requestingConnection->getInputChannelName() << " is stealing input gesture for device " << deviceId << " from " << canceledWindows; // Prevent the gesture from being sent to any other windows. // This only blocks relevant pointers to be sent to other windows window.addPilferingPointers(deviceId, pointerIds); state.cancelPointersForWindowsExcept(deviceId, pointerIds, token); } return OK; } void InputDispatcher::requestPointerCapture(const sp& windowToken, bool enabled) { { // acquire lock std::scoped_lock _l(mLock); if (DEBUG_FOCUS) { const sp windowHandle = getWindowHandleLocked(windowToken); ALOGI("Request to %s Pointer Capture from: %s.", enabled ? "enable" : "disable", windowHandle != nullptr ? windowHandle->getName().c_str() : "token without window"); } const sp focusedToken = mFocusResolver.getFocusedWindowToken(mFocusedDisplayId); if (focusedToken != windowToken) { ALOGW("Ignoring request to %s Pointer Capture: window does not have focus.", enabled ? "enable" : "disable"); return; } if (enabled == mCurrentPointerCaptureRequest.isEnable()) { ALOGW("Ignoring request to %s Pointer Capture: " "window has %s requested pointer capture.", enabled ? "enable" : "disable", enabled ? "already" : "not"); return; } if (enabled) { if (std::find(mIneligibleDisplaysForPointerCapture.begin(), mIneligibleDisplaysForPointerCapture.end(), mFocusedDisplayId) != mIneligibleDisplaysForPointerCapture.end()) { ALOGW("Ignoring request to enable Pointer Capture: display is not eligible"); return; } } setPointerCaptureLocked(enabled ? windowToken : nullptr); } // release lock // Wake the thread to process command entries. mLooper->wake(); } void InputDispatcher::setDisplayEligibilityForPointerCapture(ui::LogicalDisplayId displayId, bool isEligible) { { // acquire lock std::scoped_lock _l(mLock); std::erase(mIneligibleDisplaysForPointerCapture, displayId); if (!isEligible) { mIneligibleDisplaysForPointerCapture.push_back(displayId); } } // release lock } std::optional InputDispatcher::findMonitorPidByTokenLocked(const sp& token) { for (const auto& [_, monitors] : mGlobalMonitorsByDisplay) { for (const Monitor& monitor : monitors) { if (monitor.connection->getToken() == token) { return monitor.pid; } } } return std::nullopt; } std::shared_ptr InputDispatcher::getConnectionLocked( const sp& inputConnectionToken) const { if (inputConnectionToken == nullptr) { return nullptr; } for (const auto& [token, connection] : mConnectionsByToken) { if (token == inputConnectionToken) { return connection; } } return nullptr; } std::string InputDispatcher::getConnectionNameLocked(const sp& connectionToken) const { std::shared_ptr connection = getConnectionLocked(connectionToken); if (connection == nullptr) { return ""; } return connection->getInputChannelName(); } void InputDispatcher::removeConnectionLocked(const std::shared_ptr& connection) { mAnrTracker.eraseToken(connection->getToken()); mConnectionsByToken.erase(connection->getToken()); } void InputDispatcher::doDispatchCycleFinishedCommand(nsecs_t finishTime, const std::shared_ptr& connection, uint32_t seq, bool handled, nsecs_t consumeTime) { // Handle post-event policy actions. std::unique_ptr fallbackKeyEntry; { // Start critical section auto dispatchEntryIt = std::find_if(connection->waitQueue.begin(), connection->waitQueue.end(), [seq](auto& e) { return e->seq == seq; }); if (dispatchEntryIt == connection->waitQueue.end()) { return; } DispatchEntry& dispatchEntry = **dispatchEntryIt; const nsecs_t eventDuration = finishTime - dispatchEntry.deliveryTime; if (eventDuration > SLOW_EVENT_PROCESSING_WARNING_TIMEOUT) { ALOGI("%s spent %" PRId64 "ms processing %s", connection->getInputChannelName().c_str(), ns2ms(eventDuration), dispatchEntry.eventEntry->getDescription().c_str()); } if (shouldReportFinishedEvent(dispatchEntry, *connection)) { mLatencyTracker.trackFinishedEvent(dispatchEntry.eventEntry->id, connection->getToken(), dispatchEntry.deliveryTime, consumeTime, finishTime); } if (dispatchEntry.eventEntry->type == EventEntry::Type::KEY) { fallbackKeyEntry = afterKeyEventLockedInterruptable(connection, &dispatchEntry, handled); } } // End critical section: The -LockedInterruptable methods may have released the lock. // Dequeue the event and start the next cycle. // Because the lock might have been released, it is possible that the // contents of the wait queue to have been drained, so we need to double-check // a few things. auto entryIt = std::find_if(connection->waitQueue.begin(), connection->waitQueue.end(), [seq](auto& e) { return e->seq == seq; }); if (entryIt != connection->waitQueue.end()) { std::unique_ptr dispatchEntry = std::move(*entryIt); connection->waitQueue.erase(entryIt); const sp& connectionToken = connection->getToken(); mAnrTracker.erase(dispatchEntry->timeoutTime, connectionToken); if (!connection->responsive) { connection->responsive = isConnectionResponsive(*connection); if (connection->responsive) { // The connection was unresponsive, and now it's responsive. processConnectionResponsiveLocked(*connection); } } traceWaitQueueLength(*connection); if (fallbackKeyEntry && connection->status == Connection::Status::NORMAL) { const auto windowHandle = getWindowHandleLocked(connection->getToken()); // Only dispatch fallbacks if there is a window for the connection. if (windowHandle != nullptr) { const auto inputTarget = createInputTargetLocked(windowHandle, InputTarget::DispatchMode::AS_IS, dispatchEntry->targetFlags, fallbackKeyEntry->downTime); if (inputTarget.has_value()) { enqueueDispatchEntryLocked(connection, std::move(fallbackKeyEntry), *inputTarget); } } } releaseDispatchEntry(std::move(dispatchEntry)); } // Start the next dispatch cycle for this connection. startDispatchCycleLocked(now(), connection); } void InputDispatcher::sendFocusChangedCommandLocked(const sp& oldToken, const sp& newToken) { auto command = [this, oldToken, newToken]() REQUIRES(mLock) { scoped_unlock unlock(mLock); mPolicy.notifyFocusChanged(oldToken, newToken); }; postCommandLocked(std::move(command)); } void InputDispatcher::sendDropWindowCommandLocked(const sp& token, float x, float y) { auto command = [this, token, x, y]() REQUIRES(mLock) { scoped_unlock unlock(mLock); mPolicy.notifyDropWindow(token, x, y); }; postCommandLocked(std::move(command)); } void InputDispatcher::onAnrLocked(const std::shared_ptr& connection) { if (connection == nullptr) { LOG_ALWAYS_FATAL("Caller must check for nullness"); } // Since we are allowing the policy to extend the timeout, maybe the waitQueue // is already healthy again. Don't raise ANR in this situation if (connection->waitQueue.empty()) { ALOGI("Not raising ANR because the connection %s has recovered", connection->getInputChannelName().c_str()); return; } /** * The "oldestEntry" is the entry that was first sent to the application. That entry, however, * may not be the one that caused the timeout to occur. One possibility is that window timeout * has changed. This could cause newer entries to time out before the already dispatched * entries. In that situation, the newest entries caused ANR. But in all likelihood, the app * processes the events linearly. So providing information about the oldest entry seems to be * most useful. */ DispatchEntry& oldestEntry = *connection->waitQueue.front(); const nsecs_t currentWait = now() - oldestEntry.deliveryTime; std::string reason = android::base::StringPrintf("%s is not responding. Waited %" PRId64 "ms for %s", connection->getInputChannelName().c_str(), ns2ms(currentWait), oldestEntry.eventEntry->getDescription().c_str()); sp connectionToken = connection->getToken(); updateLastAnrStateLocked(getWindowHandleLocked(connectionToken), reason); processConnectionUnresponsiveLocked(*connection, std::move(reason)); // Stop waking up for events on this connection, it is already unresponsive cancelEventsForAnrLocked(connection); } void InputDispatcher::onAnrLocked(std::shared_ptr application) { std::string reason = StringPrintf("%s does not have a focused window", application->getName().c_str()); updateLastAnrStateLocked(*application, reason); auto command = [this, app = std::move(application)]() REQUIRES(mLock) { scoped_unlock unlock(mLock); mPolicy.notifyNoFocusedWindowAnr(app); }; postCommandLocked(std::move(command)); } void InputDispatcher::updateLastAnrStateLocked(const sp& window, const std::string& reason) { const std::string windowLabel = getApplicationWindowLabel(nullptr, window); updateLastAnrStateLocked(windowLabel, reason); } void InputDispatcher::updateLastAnrStateLocked(const InputApplicationHandle& application, const std::string& reason) { const std::string windowLabel = getApplicationWindowLabel(&application, nullptr); updateLastAnrStateLocked(windowLabel, reason); } void InputDispatcher::updateLastAnrStateLocked(const std::string& windowLabel, const std::string& reason) { // Capture a record of the InputDispatcher state at the time of the ANR. time_t t = time(nullptr); struct tm tm; localtime_r(&t, &tm); char timestr[64]; strftime(timestr, sizeof(timestr), "%F %T", &tm); mLastAnrState.clear(); mLastAnrState += INDENT "ANR:\n"; mLastAnrState += StringPrintf(INDENT2 "Time: %s\n", timestr); mLastAnrState += StringPrintf(INDENT2 "Reason: %s\n", reason.c_str()); mLastAnrState += StringPrintf(INDENT2 "Window: %s\n", windowLabel.c_str()); dumpDispatchStateLocked(mLastAnrState); } void InputDispatcher::doInterceptKeyBeforeDispatchingCommand(const sp& focusedWindowToken, const KeyEntry& entry) { const KeyEvent event = createKeyEvent(entry); nsecs_t delay = 0; { // release lock scoped_unlock unlock(mLock); android::base::Timer t; delay = mPolicy.interceptKeyBeforeDispatching(focusedWindowToken, event, entry.policyFlags); if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) { ALOGW("Excessive delay in interceptKeyBeforeDispatching; took %s ms", std::to_string(t.duration().count()).c_str()); } } // acquire lock if (delay < 0) { entry.interceptKeyResult = KeyEntry::InterceptKeyResult::SKIP; } else if (delay == 0) { entry.interceptKeyResult = KeyEntry::InterceptKeyResult::CONTINUE; } else { entry.interceptKeyResult = KeyEntry::InterceptKeyResult::TRY_AGAIN_LATER; entry.interceptKeyWakeupTime = now() + delay; } } void InputDispatcher::sendWindowUnresponsiveCommandLocked(const sp& token, std::optional pid, std::string reason) { auto command = [this, token, pid, r = std::move(reason)]() REQUIRES(mLock) { scoped_unlock unlock(mLock); mPolicy.notifyWindowUnresponsive(token, pid, r); }; postCommandLocked(std::move(command)); } void InputDispatcher::sendWindowResponsiveCommandLocked(const sp& token, std::optional pid) { auto command = [this, token, pid]() REQUIRES(mLock) { scoped_unlock unlock(mLock); mPolicy.notifyWindowResponsive(token, pid); }; postCommandLocked(std::move(command)); } /** * Tell the policy that a connection has become unresponsive so that it can start ANR. * Check whether the connection of interest is a monitor or a window, and add the corresponding * command entry to the command queue. */ void InputDispatcher::processConnectionUnresponsiveLocked(const Connection& connection, std::string reason) { const sp& connectionToken = connection.getToken(); std::optional pid; if (connection.monitor) { ALOGW("Monitor %s is unresponsive: %s", connection.getInputChannelName().c_str(), reason.c_str()); pid = findMonitorPidByTokenLocked(connectionToken); } else { // The connection is a window ALOGW("Window %s is unresponsive: %s", connection.getInputChannelName().c_str(), reason.c_str()); const sp handle = getWindowHandleLocked(connectionToken); if (handle != nullptr) { pid = handle->getInfo()->ownerPid; } } sendWindowUnresponsiveCommandLocked(connectionToken, pid, std::move(reason)); } /** * Tell the policy that a connection has become responsive so that it can stop ANR. */ void InputDispatcher::processConnectionResponsiveLocked(const Connection& connection) { const sp& connectionToken = connection.getToken(); std::optional pid; if (connection.monitor) { pid = findMonitorPidByTokenLocked(connectionToken); } else { // The connection is a window const sp handle = getWindowHandleLocked(connectionToken); if (handle != nullptr) { pid = handle->getInfo()->ownerPid; } } sendWindowResponsiveCommandLocked(connectionToken, pid); } std::unique_ptr InputDispatcher::afterKeyEventLockedInterruptable( const std::shared_ptr& connection, DispatchEntry* dispatchEntry, bool handled) { // The dispatchEntry is currently valid, but it might point to a deleted object after we release // the lock. For simplicity, make copies of the data of interest here and assume that // 'dispatchEntry' is not valid after this section. // Hold a strong reference to the EventEntry to ensure it's valid for the duration of this // function, even if the DispatchEntry gets destroyed and releases its share of the ownership. std::shared_ptr eventEntry = dispatchEntry->eventEntry; const bool hasForegroundTarget = dispatchEntry->hasForegroundTarget(); const KeyEntry& keyEntry = static_cast(*(eventEntry)); // To prevent misuse, ensure dispatchEntry is no longer valid. dispatchEntry = nullptr; if (keyEntry.flags & AKEY_EVENT_FLAG_FALLBACK) { if (!handled) { // Report the key as unhandled, since the fallback was not handled. mReporter->reportUnhandledKey(keyEntry.id); } return {}; } // Get the fallback key state. // Clear it out after dispatching the UP. int32_t originalKeyCode = keyEntry.keyCode; std::optional fallbackKeyCode = connection->inputState.getFallbackKey(originalKeyCode); if (keyEntry.action == AKEY_EVENT_ACTION_UP) { connection->inputState.removeFallbackKey(originalKeyCode); } if (handled || !hasForegroundTarget) { // If the application handles the original key for which we previously // generated a fallback or if the window is not a foreground window, // then cancel the associated fallback key, if any. if (fallbackKeyCode) { // Dispatch the unhandled key to the policy with the cancel flag. if (DEBUG_OUTBOUND_EVENT_DETAILS) { ALOGD("Unhandled key event: Asking policy to cancel fallback action. " "keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x", keyEntry.keyCode, keyEntry.action, keyEntry.repeatCount, keyEntry.policyFlags); } KeyEvent event = createKeyEvent(keyEntry); event.setFlags(event.getFlags() | AKEY_EVENT_FLAG_CANCELED); mLock.unlock(); if (const auto unhandledKeyFallback = mPolicy.dispatchUnhandledKey(connection->getToken(), event, keyEntry.policyFlags); unhandledKeyFallback) { event = *unhandledKeyFallback; } mLock.lock(); // Cancel the fallback key, but only if we still have a window for the channel. // It could have been removed during the policy call. if (*fallbackKeyCode != AKEYCODE_UNKNOWN) { const auto windowHandle = getWindowHandleLocked(connection->getToken()); if (windowHandle != nullptr) { CancelationOptions options(CancelationOptions::Mode::CANCEL_FALLBACK_EVENTS, "application handled the original non-fallback key " "or is no longer a foreground target, " "canceling previously dispatched fallback key", keyEntry.traceTracker); options.keyCode = *fallbackKeyCode; synthesizeCancelationEventsForWindowLocked(windowHandle, options, connection); } } connection->inputState.removeFallbackKey(originalKeyCode); } } else { // If the application did not handle a non-fallback key, first check // that we are in a good state to perform unhandled key event processing // Then ask the policy what to do with it. bool initialDown = keyEntry.action == AKEY_EVENT_ACTION_DOWN && keyEntry.repeatCount == 0; if (!fallbackKeyCode && !initialDown) { if (DEBUG_OUTBOUND_EVENT_DETAILS) { ALOGD("Unhandled key event: Skipping unhandled key event processing " "since this is not an initial down. " "keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x", originalKeyCode, keyEntry.action, keyEntry.repeatCount, keyEntry.policyFlags); } return {}; } // Dispatch the unhandled key to the policy. if (DEBUG_OUTBOUND_EVENT_DETAILS) { ALOGD("Unhandled key event: Asking policy to perform fallback action. " "keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x", keyEntry.keyCode, keyEntry.action, keyEntry.repeatCount, keyEntry.policyFlags); } KeyEvent event = createKeyEvent(keyEntry); mLock.unlock(); bool fallback = false; if (auto fb = mPolicy.dispatchUnhandledKey(connection->getToken(), event, keyEntry.policyFlags); fb) { fallback = true; event = *fb; } mLock.lock(); if (connection->status != Connection::Status::NORMAL) { connection->inputState.removeFallbackKey(originalKeyCode); return {}; } // Latch the fallback keycode for this key on an initial down. // The fallback keycode cannot change at any other point in the lifecycle. if (initialDown) { if (fallback) { *fallbackKeyCode = event.getKeyCode(); } else { *fallbackKeyCode = AKEYCODE_UNKNOWN; } connection->inputState.setFallbackKey(originalKeyCode, *fallbackKeyCode); } ALOG_ASSERT(fallbackKeyCode); // Cancel the fallback key if the policy decides not to send it anymore. // We will continue to dispatch the key to the policy but we will no // longer dispatch a fallback key to the application. if (*fallbackKeyCode != AKEYCODE_UNKNOWN && (!fallback || *fallbackKeyCode != event.getKeyCode())) { if (DEBUG_OUTBOUND_EVENT_DETAILS) { if (fallback) { ALOGD("Unhandled key event: Policy requested to send key %d" "as a fallback for %d, but on the DOWN it had requested " "to send %d instead. Fallback canceled.", event.getKeyCode(), originalKeyCode, *fallbackKeyCode); } else { ALOGD("Unhandled key event: Policy did not request fallback for %d, " "but on the DOWN it had requested to send %d. " "Fallback canceled.", originalKeyCode, *fallbackKeyCode); } } const auto windowHandle = getWindowHandleLocked(connection->getToken()); if (windowHandle != nullptr) { CancelationOptions options(CancelationOptions::Mode::CANCEL_FALLBACK_EVENTS, "canceling fallback, policy no longer desires it", keyEntry.traceTracker); options.keyCode = *fallbackKeyCode; synthesizeCancelationEventsForWindowLocked(windowHandle, options, connection); } fallback = false; *fallbackKeyCode = AKEYCODE_UNKNOWN; if (keyEntry.action != AKEY_EVENT_ACTION_UP) { connection->inputState.setFallbackKey(originalKeyCode, *fallbackKeyCode); } } if (DEBUG_OUTBOUND_EVENT_DETAILS) { { std::string msg; const std::map& fallbackKeys = connection->inputState.getFallbackKeys(); for (const auto& [key, value] : fallbackKeys) { msg += StringPrintf(", %d->%d", key, value); } ALOGD("Unhandled key event: %zu currently tracked fallback keys%s.", fallbackKeys.size(), msg.c_str()); } } if (fallback) { // Return the fallback key that we want dispatched to the channel. std::unique_ptr newEntry = std::make_unique(mIdGenerator.nextId(), keyEntry.injectionState, event.getEventTime(), event.getDeviceId(), event.getSource(), event.getDisplayId(), keyEntry.policyFlags, keyEntry.action, event.getFlags() | AKEY_EVENT_FLAG_FALLBACK, *fallbackKeyCode, event.getScanCode(), event.getMetaState(), event.getRepeatCount(), event.getDownTime()); if (mTracer) { newEntry->traceTracker = mTracer->traceDerivedEvent(*newEntry, *keyEntry.traceTracker); } if (DEBUG_OUTBOUND_EVENT_DETAILS) { ALOGD("Unhandled key event: Dispatching fallback key. " "originalKeyCode=%d, fallbackKeyCode=%d, fallbackMetaState=%08x", originalKeyCode, *fallbackKeyCode, keyEntry.metaState); } return newEntry; } else { if (DEBUG_OUTBOUND_EVENT_DETAILS) { ALOGD("Unhandled key event: No fallback key."); } // Report the key as unhandled, since there is no fallback key. mReporter->reportUnhandledKey(keyEntry.id); } } return {}; } void InputDispatcher::traceInboundQueueLengthLocked() { if (ATRACE_ENABLED()) { ATRACE_INT("iq", mInboundQueue.size()); } } void InputDispatcher::traceOutboundQueueLength(const Connection& connection) { if (ATRACE_ENABLED()) { char counterName[40]; snprintf(counterName, sizeof(counterName), "oq:%s", connection.getInputChannelName().c_str()); ATRACE_INT(counterName, connection.outboundQueue.size()); } } void InputDispatcher::traceWaitQueueLength(const Connection& connection) { if (ATRACE_ENABLED()) { char counterName[40]; snprintf(counterName, sizeof(counterName), "wq:%s", connection.getInputChannelName().c_str()); ATRACE_INT(counterName, connection.waitQueue.size()); } } void InputDispatcher::dump(std::string& dump) const { std::scoped_lock _l(mLock); dump += "Input Dispatcher State:\n"; dumpDispatchStateLocked(dump); if (!mLastAnrState.empty()) { dump += "\nInput Dispatcher State at time of last ANR:\n"; dump += mLastAnrState; } } void InputDispatcher::monitor() { // Acquire and release the lock to ensure that the dispatcher has not deadlocked. std::unique_lock _l(mLock); mLooper->wake(); mDispatcherIsAlive.wait(_l); } /** * Wake up the dispatcher and wait until it processes all events and commands. * The notification of mDispatcherEnteredIdle is guaranteed to happen after wake(), so * this method can be safely called from any thread, as long as you've ensured that * the work you are interested in completing has already been queued. */ bool InputDispatcher::waitForIdle() const { /** * Timeout should represent the longest possible time that a device might spend processing * events and commands. */ constexpr std::chrono::duration TIMEOUT = 100ms; std::unique_lock lock(mLock); mLooper->wake(); std::cv_status result = mDispatcherEnteredIdle.wait_for(lock, TIMEOUT); return result == std::cv_status::no_timeout; } /** * Sets focus to the window identified by the token. This must be called * after updating any input window handles. * * Params: * request.token - input channel token used to identify the window that should gain focus. * request.focusedToken - the token that the caller expects currently to be focused. If the * specified token does not match the currently focused window, this request will be dropped. * If the specified focused token matches the currently focused window, the call will succeed. * Set this to "null" if this call should succeed no matter what the currently focused token is. * request.timestamp - SYSTEM_TIME_MONOTONIC timestamp in nanos set by the client (wm) * when requesting the focus change. This determines which request gets * precedence if there is a focus change request from another source such as pointer down. */ void InputDispatcher::setFocusedWindow(const FocusRequest& request) { { // acquire lock std::scoped_lock _l(mLock); std::optional changes = mFocusResolver.setFocusedWindow(request, getWindowHandlesLocked( ui::LogicalDisplayId{request.displayId})); ScopedSyntheticEventTracer traceContext(mTracer); if (changes) { onFocusChangedLocked(*changes, traceContext.getTracker()); } } // release lock // Wake up poll loop since it may need to make new input dispatching choices. mLooper->wake(); } void InputDispatcher::onFocusChangedLocked( const FocusResolver::FocusChanges& changes, const std::unique_ptr& traceTracker, const sp removedFocusedWindowHandle) { if (changes.oldFocus) { const auto resolvedWindow = removedFocusedWindowHandle != nullptr ? removedFocusedWindowHandle : getWindowHandleLocked(changes.oldFocus, changes.displayId); if (resolvedWindow == nullptr) { LOG(FATAL) << __func__ << ": Previously focused token did not have a window"; } CancelationOptions options(CancelationOptions::Mode::CANCEL_NON_POINTER_EVENTS, "focus left window", traceTracker); synthesizeCancelationEventsForWindowLocked(resolvedWindow, options); enqueueFocusEventLocked(changes.oldFocus, /*hasFocus=*/false, changes.reason); } if (changes.newFocus) { resetNoFocusedWindowTimeoutLocked(); enqueueFocusEventLocked(changes.newFocus, /*hasFocus=*/true, changes.reason); } if (mFocusedDisplayId == changes.displayId) { // If a window has pointer capture, then it must have focus and must be on the top-focused // display. We need to ensure that this contract is upheld when pointer capture is being // disabled due to a loss of window focus. If the window loses focus before it loses pointer // capture, then the window can be in a state where it has pointer capture but not focus, // violating the contract. Therefore we must dispatch the pointer capture event before the // focus event. Since focus events are added to the front of the queue (above), we add the // pointer capture event to the front of the queue after the focus events are added. This // ensures the pointer capture event ends up at the front. disablePointerCaptureForcedLocked(); sendFocusChangedCommandLocked(changes.oldFocus, changes.newFocus); } } void InputDispatcher::disablePointerCaptureForcedLocked() { if (!mCurrentPointerCaptureRequest.isEnable() && !mWindowTokenWithPointerCapture) { return; } ALOGD_IF(DEBUG_FOCUS, "Disabling Pointer Capture because the window lost focus."); if (mCurrentPointerCaptureRequest.isEnable()) { setPointerCaptureLocked(nullptr); } if (!mWindowTokenWithPointerCapture) { // No need to send capture changes because no window has capture. return; } if (mPendingEvent != nullptr) { // Move the pending event to the front of the queue. This will give the chance // for the pending event to be dropped if it is a captured event. mInboundQueue.push_front(mPendingEvent); mPendingEvent = nullptr; } auto entry = std::make_unique(mIdGenerator.nextId(), now(), mCurrentPointerCaptureRequest); mInboundQueue.push_front(std::move(entry)); } void InputDispatcher::setPointerCaptureLocked(const sp& windowToken) { mCurrentPointerCaptureRequest.window = windowToken; mCurrentPointerCaptureRequest.seq++; auto command = [this, request = mCurrentPointerCaptureRequest]() REQUIRES(mLock) { scoped_unlock unlock(mLock); mPolicy.setPointerCapture(request); }; postCommandLocked(std::move(command)); } void InputDispatcher::displayRemoved(ui::LogicalDisplayId displayId) { { // acquire lock std::scoped_lock _l(mLock); // Set an empty list to remove all handles from the specific display. setInputWindowsLocked(/*windowInfoHandles=*/{}, displayId); setFocusedApplicationLocked(displayId, nullptr); // Call focus resolver to clean up stale requests. This must be called after input windows // have been removed for the removed display. mFocusResolver.displayRemoved(displayId); // Reset pointer capture eligibility, regardless of previous state. std::erase(mIneligibleDisplaysForPointerCapture, displayId); // Remove the associated touch mode state. mTouchModePerDisplay.erase(displayId); mVerifiersByDisplay.erase(displayId); mInputFilterVerifiersByDisplay.erase(displayId); } // release lock // Wake up poll loop since it may need to make new input dispatching choices. mLooper->wake(); } void InputDispatcher::onWindowInfosChanged(const gui::WindowInfosUpdate& update) { if (auto result = validateWindowInfosUpdate(update); !result.ok()) { { // acquire lock std::scoped_lock _l(mLock); logDispatchStateLocked(); } LOG_ALWAYS_FATAL("Incorrect WindowInfosUpdate provided: %s", result.error().message().c_str()); }; // The listener sends the windows as a flattened array. Separate the windows by display for // more convenient parsing. std::unordered_map>> handlesPerDisplay; for (const auto& info : update.windowInfos) { handlesPerDisplay.emplace(info.displayId, std::vector>()); handlesPerDisplay[info.displayId].push_back(sp::make(info)); } { // acquire lock std::scoped_lock _l(mLock); // Ensure that we have an entry created for all existing displays so that if a displayId has // no windows, we can tell that the windows were removed from the display. for (const auto& [displayId, _] : mWindowHandlesByDisplay) { handlesPerDisplay[displayId]; } mDisplayInfos.clear(); for (const auto& displayInfo : update.displayInfos) { mDisplayInfos.emplace(displayInfo.displayId, displayInfo); } for (const auto& [displayId, handles] : handlesPerDisplay) { setInputWindowsLocked(handles, displayId); } if (update.vsyncId < mWindowInfosVsyncId) { ALOGE("Received out of order window infos update. Last update vsync id: %" PRId64 ", current update vsync id: %" PRId64, mWindowInfosVsyncId, update.vsyncId); } mWindowInfosVsyncId = update.vsyncId; } // Wake up poll loop since it may need to make new input dispatching choices. mLooper->wake(); } bool InputDispatcher::shouldDropInput( const EventEntry& entry, const sp& windowHandle) const { if (windowHandle->getInfo()->inputConfig.test(WindowInfo::InputConfig::DROP_INPUT) || (windowHandle->getInfo()->inputConfig.test( WindowInfo::InputConfig::DROP_INPUT_IF_OBSCURED) && isWindowObscuredLocked(windowHandle))) { ALOGW("Dropping %s event targeting %s as requested by the input configuration {%s} on " "display %s.", ftl::enum_string(entry.type).c_str(), windowHandle->getName().c_str(), windowHandle->getInfo()->inputConfig.string().c_str(), windowHandle->getInfo()->displayId.toString().c_str()); return true; } return false; } void InputDispatcher::DispatcherWindowListener::onWindowInfosChanged( const gui::WindowInfosUpdate& update) { mDispatcher.onWindowInfosChanged(update); } void InputDispatcher::cancelCurrentTouch() { { std::scoped_lock _l(mLock); ScopedSyntheticEventTracer traceContext(mTracer); ALOGD("Canceling all ongoing pointer gestures on all displays."); CancelationOptions options(CancelationOptions::Mode::CANCEL_POINTER_EVENTS, "cancel current touch", traceContext.getTracker()); synthesizeCancelationEventsForAllConnectionsLocked(options); mTouchStatesByDisplay.clear(); } // Wake up poll loop since there might be work to do. mLooper->wake(); } void InputDispatcher::setMonitorDispatchingTimeoutForTest(std::chrono::nanoseconds timeout) { std::scoped_lock _l(mLock); mMonitorDispatchingTimeout = timeout; } void InputDispatcher::slipWallpaperTouch(ftl::Flags targetFlags, const sp& oldWindowHandle, const sp& newWindowHandle, TouchState& state, DeviceId deviceId, const PointerProperties& pointerProperties, std::vector& targets) const { std::vector pointers{pointerProperties}; const bool oldHasWallpaper = oldWindowHandle->getInfo()->inputConfig.test( gui::WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER); const bool newHasWallpaper = targetFlags.test(InputTarget::Flags::FOREGROUND) && newWindowHandle->getInfo()->inputConfig.test( gui::WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER); const sp oldWallpaper = oldHasWallpaper ? state.getWallpaperWindow(deviceId) : nullptr; const sp newWallpaper = newHasWallpaper ? findWallpaperWindowBelow(newWindowHandle) : nullptr; if (oldWallpaper == newWallpaper) { return; } if (oldWallpaper != nullptr) { const TouchedWindow& oldTouchedWindow = state.getTouchedWindow(oldWallpaper); addPointerWindowTargetLocked(oldWallpaper, InputTarget::DispatchMode::SLIPPERY_EXIT, oldTouchedWindow.targetFlags, getPointerIds(pointers), oldTouchedWindow.getDownTimeInTarget(deviceId), targets); state.removeTouchingPointerFromWindow(deviceId, pointerProperties.id, oldWallpaper); } if (newWallpaper != nullptr) { state.addOrUpdateWindow(newWallpaper, InputTarget::DispatchMode::SLIPPERY_ENTER, InputTarget::Flags::WINDOW_IS_OBSCURED | InputTarget::Flags::WINDOW_IS_PARTIALLY_OBSCURED, deviceId, pointers); } } void InputDispatcher::transferWallpaperTouch( ftl::Flags oldTargetFlags, ftl::Flags newTargetFlags, const sp fromWindowHandle, const sp toWindowHandle, TouchState& state, DeviceId deviceId, const std::vector& pointers, const std::unique_ptr& traceTracker) { const bool oldHasWallpaper = oldTargetFlags.test(InputTarget::Flags::FOREGROUND) && fromWindowHandle->getInfo()->inputConfig.test( gui::WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER); const bool newHasWallpaper = newTargetFlags.test(InputTarget::Flags::FOREGROUND) && toWindowHandle->getInfo()->inputConfig.test( gui::WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER); const sp oldWallpaper = oldHasWallpaper ? state.getWallpaperWindow(deviceId) : nullptr; const sp newWallpaper = newHasWallpaper ? findWallpaperWindowBelow(toWindowHandle) : nullptr; if (oldWallpaper == newWallpaper) { return; } if (oldWallpaper != nullptr) { CancelationOptions options(CancelationOptions::Mode::CANCEL_POINTER_EVENTS, "transferring touch focus to another window", traceTracker); state.removeWindowByToken(oldWallpaper->getToken()); synthesizeCancelationEventsForWindowLocked(oldWallpaper, options); } if (newWallpaper != nullptr) { nsecs_t downTimeInTarget = now(); ftl::Flags wallpaperFlags = newTargetFlags; wallpaperFlags |= oldTargetFlags & InputTarget::Flags::SPLIT; wallpaperFlags |= InputTarget::Flags::WINDOW_IS_OBSCURED | InputTarget::Flags::WINDOW_IS_PARTIALLY_OBSCURED; state.addOrUpdateWindow(newWallpaper, InputTarget::DispatchMode::AS_IS, wallpaperFlags, deviceId, pointers, downTimeInTarget); std::shared_ptr wallpaperConnection = getConnectionLocked(newWallpaper->getToken()); if (wallpaperConnection != nullptr) { std::shared_ptr toConnection = getConnectionLocked(toWindowHandle->getToken()); toConnection->inputState.mergePointerStateTo(wallpaperConnection->inputState); synthesizePointerDownEventsForConnectionLocked(downTimeInTarget, wallpaperConnection, wallpaperFlags, traceTracker); } } } sp InputDispatcher::findWallpaperWindowBelow( const sp& windowHandle) const { const std::vector>& windowHandles = getWindowHandlesLocked(windowHandle->getInfo()->displayId); bool foundWindow = false; for (const sp& otherHandle : windowHandles) { if (!foundWindow && otherHandle != windowHandle) { continue; } if (windowHandle == otherHandle) { foundWindow = true; continue; } if (otherHandle->getInfo()->inputConfig.test(WindowInfo::InputConfig::IS_WALLPAPER)) { return otherHandle; } } return nullptr; } void InputDispatcher::setKeyRepeatConfiguration(std::chrono::nanoseconds timeout, std::chrono::nanoseconds delay) { std::scoped_lock _l(mLock); mConfig.keyRepeatTimeout = timeout.count(); mConfig.keyRepeatDelay = delay.count(); } bool InputDispatcher::isPointerInWindow(const sp& token, ui::LogicalDisplayId displayId, DeviceId deviceId, int32_t pointerId) { std::scoped_lock _l(mLock); auto touchStateIt = mTouchStatesByDisplay.find(displayId); if (touchStateIt == mTouchStatesByDisplay.end()) { return false; } for (const TouchedWindow& window : touchStateIt->second.windows) { if (window.windowHandle->getToken() == token && (window.hasTouchingPointer(deviceId, pointerId) || window.hasHoveringPointer(deviceId, pointerId))) { return true; } } return false; } void InputDispatcher::setInputMethodConnectionIsActive(bool isActive) { std::scoped_lock _l(mLock); if (mTracer) { mTracer->setInputMethodConnectionIsActive(isActive); } } } // namespace android::inputdispatcher