/* * Copyright 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "FrontEnd/LayerCreationArgs.h" #include "FrontEnd/LayerLifecycleManager.h" #include "RequestedLayerState.h" #include "ftl/small_vector.h" namespace android::surfaceflinger::frontend { class LayerHierarchyBuilder; // LayerHierarchy allows us to navigate the layer hierarchy in z-order, or depth first traversal. // The hierarchy is created from a set of RequestedLayerStates. The hierarchy itself does not // contain additional states. Instead, it is a representation of RequestedLayerStates as a graph. // // Each node in the hierarchy can be visited by multiple parents (making this a graph). While // traversing the hierarchy, a new concept called Variant can be used to understand the // relationship of the layer to its parent. The following variants are possible: // Attached - child of the parent // Detached - child of the parent but currently relative parented to another layer // Relative - relative child of the parent // Mirror - mirrored from another layer // Detached_Mirror - mirrored from another layer, ignoring local transform // // By representing the hierarchy as a graph, we can represent mirrored layer hierarchies without // cloning the layer requested state. The mirrored hierarchy and its corresponding // RequestedLayerStates are kept in sync because the mirrored hierarchy does not clone any // states. class LayerHierarchy { public: enum Variant : uint32_t { Attached, // child of the parent Detached, // child of the parent but currently relative parented to another layer Relative, // relative child of the parent Mirror, // mirrored from another layer Detached_Mirror, // mirrored from another layer, ignoring local transform ftl_first = Attached, ftl_last = Detached_Mirror, }; static inline bool isMirror(Variant variant) { return ((variant == Mirror) || (variant == Detached_Mirror)); } // Represents a unique path to a node. // The layer hierarchy is represented as a graph. Each node can be visited by multiple parents. // This allows us to represent mirroring in an efficient way. See the example below: // root // ├─ A {Traversal path id = 1} // ├─ B {Traversal path id = 2} // │ ├─ C {Traversal path id = 3} // │ ├─ D {Traversal path id = 4} // │ └─ E (Mirrors C) {Traversal path id = 5} // └─ F (Mirrors B) {Traversal path id = 6} // // C can be traversed via B or E or F and or via F then E. // Depending on how the node is reached, its properties such as geometry or visibility might be // different. And we can uniquely identify the node by keeping track of the nodes leading up to // it. But to be more efficient we only need to track the nodes id and the top mirror root path. // So C for example, would have the following unique traversal paths: // - {Traversal path id = 3} // - {Traversal path id = 3, mirrorRootIds = 5} // - {Traversal path id = 3, mirrorRootIds = 6} // - {Traversal path id = 3, mirrorRootIds = 6, 5} struct TraversalPath { uint32_t id; LayerHierarchy::Variant variant; // Mirrored layers can have a different geometry than their parents so we need to track // the mirror roots in the traversal. ftl::SmallVector mirrorRootIds; // Relative layers can be visited twice, once by their parent and then once again by // their relative parent. We keep track of the roots here to detect any loops in the // hierarchy. If a relative root already exists in the list while building the // TraversalPath, it means that somewhere in the hierarchy two layers are relatively // parented to each other. ftl::SmallVector relativeRootIds; // First duplicate relative root id found. If this is a valid layer id that means we are // in a loop. uint32_t invalidRelativeRootId = UNASSIGNED_LAYER_ID; // See isAttached() bool detached = false; bool hasRelZLoop() const { return invalidRelativeRootId != UNASSIGNED_LAYER_ID; } // Returns true if this node is reached via one or more relative parents. bool isRelative() const { return !relativeRootIds.empty(); } // Returns true if the node or its parents are not Detached. bool isAttached() const { return !detached; } // Returns true if the node is a clone. bool isClone() const { return !mirrorRootIds.empty(); } bool operator==(const TraversalPath& other) const { return id == other.id && mirrorRootIds == other.mirrorRootIds; } std::string toString() const; static const TraversalPath ROOT; }; struct TraversalPathHash { std::size_t operator()(const LayerHierarchy::TraversalPath& key) const { uint32_t hashCode = key.id * 31; for (uint32_t mirrorRootId : key.mirrorRootIds) { hashCode += mirrorRootId * 31; } return std::hash{}(hashCode); } }; // Helper class to add nodes to an existing traversal id and removes the // node when it goes out of scope. class ScopedAddToTraversalPath { public: ScopedAddToTraversalPath(TraversalPath& traversalPath, uint32_t layerId, LayerHierarchy::Variant variantArg); ~ScopedAddToTraversalPath(); private: TraversalPath& mTraversalPath; TraversalPath mParentPath; }; LayerHierarchy(RequestedLayerState* layer); // Visitor function that provides the hierarchy node and a traversal id which uniquely // identifies how was visited. The hierarchy contains a pointer to the RequestedLayerState. // Return false to stop traversing down the hierarchy. typedef std::function Visitor; // Traverse the hierarchy and visit all child variants. void traverse(const Visitor& visitor) const { TraversalPath root = TraversalPath::ROOT; if (mLayer) { root.id = mLayer->id; } traverse(visitor, root, /*depth=*/0); } // Traverse the hierarchy in z-order, skipping children that have relative parents. void traverseInZOrder(const Visitor& visitor) const { TraversalPath root = TraversalPath::ROOT; if (mLayer) { root.id = mLayer->id; } traverseInZOrder(visitor, root); } const RequestedLayerState* getLayer() const; const LayerHierarchy* getRelativeParent() const; const LayerHierarchy* getParent() const; friend std::ostream& operator<<(std::ostream& os, const LayerHierarchy& obj) { std::string prefix = " "; obj.dump(os, prefix, LayerHierarchy::Variant::Attached, /*isLastChild=*/false, /*includeMirroredHierarchy*/ false); return os; } std::string dump() const { std::string prefix = " "; std::ostringstream os; dump(os, prefix, LayerHierarchy::Variant::Attached, /*isLastChild=*/false, /*includeMirroredHierarchy*/ true); return os.str(); } std::string getDebugStringShort() const; // Traverse the hierarchy and return true if loops are found. The outInvalidRelativeRoot // will contain the first relative root that was visited twice in a traversal. bool hasRelZLoop(uint32_t& outInvalidRelativeRoot) const; std::vector> mChildren; private: friend LayerHierarchyBuilder; LayerHierarchy(const LayerHierarchy& hierarchy, bool childrenOnly); void addChild(LayerHierarchy*, LayerHierarchy::Variant); void removeChild(LayerHierarchy*); void sortChildrenByZOrder(); void updateChild(LayerHierarchy*, LayerHierarchy::Variant); void traverseInZOrder(const Visitor& visitor, LayerHierarchy::TraversalPath& parent) const; void traverse(const Visitor& visitor, LayerHierarchy::TraversalPath& parent, uint32_t depth = 0) const; void dump(std::ostream& out, const std::string& prefix, LayerHierarchy::Variant variant, bool isLastChild, bool includeMirroredHierarchy) const; const RequestedLayerState* mLayer; LayerHierarchy* mParent = nullptr; LayerHierarchy* mRelativeParent = nullptr; }; // Given a list of RequestedLayerState, this class will build a root hierarchy and an // offscreen hierarchy. The builder also has an update method which can update an existing // hierarchy from a list of RequestedLayerState and associated change flags. class LayerHierarchyBuilder { public: LayerHierarchyBuilder() = default; void update(LayerLifecycleManager& layerLifecycleManager); LayerHierarchy getPartialHierarchy(uint32_t, bool childrenOnly) const; const LayerHierarchy& getHierarchy() const; const LayerHierarchy& getOffscreenHierarchy() const; std::string getDebugString(uint32_t layerId, uint32_t depth = 0) const; private: void onLayerAdded(RequestedLayerState* layer); void attachToParent(LayerHierarchy*); void detachFromParent(LayerHierarchy*); void attachToRelativeParent(LayerHierarchy*); void detachFromRelativeParent(LayerHierarchy*); std::vector getDescendants(LayerHierarchy*); void attachHierarchyToRelativeParent(LayerHierarchy*); void detachHierarchyFromRelativeParent(LayerHierarchy*); void init(const std::vector>&); void doUpdate(const std::vector>& layers, const std::vector>& destroyedLayers); void onLayerDestroyed(RequestedLayerState* layer); void updateMirrorLayer(RequestedLayerState* layer); LayerHierarchy* getHierarchyFromId(uint32_t layerId, bool crashOnFailure = true); std::unordered_map mLayerIdToHierarchy; std::vector> mHierarchies; LayerHierarchy mRoot{nullptr}; LayerHierarchy mOffscreenRoot{nullptr}; bool mInitialized = false; }; } // namespace android::surfaceflinger::frontend