/* * Copyright 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include #include #include #include #include #include #include "VSyncTracker.h" namespace android::scheduler { class VSyncPredictor : public VSyncTracker { public: /* * \param [in] Clock The clock abstraction. Useful for unit tests. * \param [in] PhysicalDisplayid The display this corresponds to. * \param [in] modePtr The initial display mode * \param [in] historySize The internal amount of entries to store in the model. * \param [in] minimumSamplesForPrediction The minimum number of samples to collect before * predicting. \param [in] outlierTolerancePercent a number 0 to 100 that will be used to filter * samples that fall outlierTolerancePercent from an anticipated vsync event. */ VSyncPredictor(std::unique_ptr, ftl::NonNull modePtr, size_t historySize, size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent); ~VSyncPredictor(); bool addVsyncTimestamp(nsecs_t timestamp) final EXCLUDES(mMutex); nsecs_t nextAnticipatedVSyncTimeFrom(nsecs_t timePoint, std::optional lastVsyncOpt = {}) final EXCLUDES(mMutex); nsecs_t currentPeriod() const final EXCLUDES(mMutex); Period minFramePeriod() const final EXCLUDES(mMutex); void resetModel() final EXCLUDES(mMutex); /* Query if the model is in need of more samples to make a prediction. * \return True, if model would benefit from more samples, False if not. */ bool needsMoreSamples() const final EXCLUDES(mMutex); struct Model { nsecs_t slope; nsecs_t intercept; }; VSyncPredictor::Model getVSyncPredictionModel() const EXCLUDES(mMutex); bool isVSyncInPhase(nsecs_t timePoint, Fps frameRate) final EXCLUDES(mMutex); void setDisplayModePtr(ftl::NonNull) final EXCLUDES(mMutex); bool isCurrentMode(const ftl::NonNull& modePtr) const EXCLUDES(mMutex) { std::lock_guard lock(mMutex); return mDisplayModePtr->getId() == modePtr->getId() && mDisplayModePtr->getVsyncRate().getPeriodNsecs() == mRateMap.find(idealPeriod())->second.slope; } void setRenderRate(Fps, bool applyImmediately) final EXCLUDES(mMutex); void onFrameBegin(TimePoint expectedPresentTime, TimePoint lastConfirmedPresentTime) final EXCLUDES(mMutex); void onFrameMissed(TimePoint expectedPresentTime) final EXCLUDES(mMutex); void dump(std::string& result) const final EXCLUDES(mMutex); private: struct VsyncSequence { nsecs_t vsyncTime; int64_t seq; }; struct MissedVsync { TimePoint vsync = TimePoint::fromNs(0); Duration fixup = Duration::fromNs(0); }; class VsyncTimeline { public: VsyncTimeline(TimePoint knownVsync, Period idealPeriod, std::optional renderRateOpt); std::optional nextAnticipatedVSyncTimeFrom( Model model, std::optional minFramePeriodOpt, nsecs_t vsyncTime, MissedVsync lastMissedVsync, std::optional lastVsyncOpt = {}); void freeze(TimePoint lastVsync); std::optional validUntil() const { return mValidUntil; } bool isVSyncInPhase(Model, nsecs_t vsync, Fps frameRate); void shiftVsyncSequence(Duration phase); void setRenderRate(std::optional renderRateOpt) { mRenderRateOpt = renderRateOpt; } private: nsecs_t snapToVsyncAlignedWithRenderRate(Model model, nsecs_t vsync); VsyncSequence getVsyncSequenceLocked(Model, nsecs_t vsync); std::optional makeVsyncSequence(TimePoint knownVsync); const Period mIdealPeriod = Duration::fromNs(0); std::optional mRenderRateOpt; std::optional mValidUntil; std::optional mLastVsyncSequence; }; VSyncPredictor(VSyncPredictor const&) = delete; VSyncPredictor& operator=(VSyncPredictor const&) = delete; void clearTimestamps() REQUIRES(mMutex); const std::unique_ptr mClock; const PhysicalDisplayId mId; inline void traceInt64If(const char* name, int64_t value) const; inline void traceInt64(const char* name, int64_t value) const; size_t next(size_t i) const REQUIRES(mMutex); bool validate(nsecs_t timestamp) const REQUIRES(mMutex); Model getVSyncPredictionModelLocked() const REQUIRES(mMutex); nsecs_t snapToVsync(nsecs_t timePoint) const REQUIRES(mMutex); Period minFramePeriodLocked() const REQUIRES(mMutex); Duration ensureMinFrameDurationIsKept(TimePoint, TimePoint) REQUIRES(mMutex); void purgeTimelines(android::TimePoint now) REQUIRES(mMutex); nsecs_t idealPeriod() const REQUIRES(mMutex); bool const mTraceOn; size_t const kHistorySize; size_t const kMinimumSamplesForPrediction; size_t const kOutlierTolerancePercent; std::mutex mutable mMutex; std::optional mKnownTimestamp GUARDED_BY(mMutex); // Map between ideal vsync period and the calculated model std::unordered_map mutable mRateMap GUARDED_BY(mMutex); size_t mLastTimestampIndex GUARDED_BY(mMutex) = 0; std::vector mTimestamps GUARDED_BY(mMutex); ftl::NonNull mDisplayModePtr GUARDED_BY(mMutex); int mNumVsyncsForFrame GUARDED_BY(mMutex); std::deque mPastExpectedPresentTimes GUARDED_BY(mMutex); MissedVsync mMissedVsync GUARDED_BY(mMutex); std::deque mTimelines GUARDED_BY(mMutex); TimePoint mLastCommittedVsync GUARDED_BY(mMutex) = TimePoint::fromNs(0); Period mIdealPeriod GUARDED_BY(mMutex) = Duration::fromNs(0); std::optional mRenderRateOpt GUARDED_BY(mMutex); }; } // namespace android::scheduler