/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "RenderScriptToolkit.h" #include "TaskProcessor.h" #include "Utils.h" namespace android { namespace renderscript { #define LOG_TAG "renderscript.toolkit.Blur" /** * Blurs an image or a section of an image. * * Our algorithm does two passes: a vertical blur followed by an horizontal blur. */ class BlurTask : public Task { // The image we're blurring. const uchar* mIn; // Where we store the blurred image. uchar* outArray; // The size of the kernel radius is limited to 25 in ScriptIntrinsicBlur.java. // So, the max kernel size is 51 (= 2 * 25 + 1). // Considering SSSE3 case, which requires the size is multiple of 4, // at least 52 words are necessary. Values outside of the kernel should be 0. float mFp[104]; uint16_t mIp[104]; // Working area to store the result of the vertical blur, to be used by the horizontal pass. // There's one area per thread. Since the needed working area may be too large to put on the // stack, we are allocating it from the heap. To avoid paying the allocation cost for each // tile, we cache the scratch area here. std::vector mScratch; // Pointers to the scratch areas, one per thread. std::vector mScratchSize; // The size in bytes of the scratch areas, one per thread. // The radius of the blur, in floating point and integer format. float mRadius; int mIradius; void kernelU4(void* outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY, uint32_t threadIndex); void kernelU1(void* outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY); void ComputeGaussianWeights(); // Process a 2D tile of the overall work. threadIndex identifies which thread does the work. virtual void processData(int threadIndex, size_t startX, size_t startY, size_t endX, size_t endY) override; public: BlurTask(const uint8_t* in, uint8_t* out, size_t sizeX, size_t sizeY, size_t vectorSize, uint32_t threadCount, float radius, const Restriction* restriction) : Task{sizeX, sizeY, vectorSize, false, restriction}, mIn{in}, outArray{out}, mScratch{threadCount}, mScratchSize{threadCount}, mRadius{std::min(25.0f, radius)} { ComputeGaussianWeights(); } ~BlurTask() { for (size_t i = 0; i < mScratch.size(); i++) { if (mScratch[i]) { free(mScratch[i]); } } } }; void BlurTask::ComputeGaussianWeights() { memset(mFp, 0, sizeof(mFp)); memset(mIp, 0, sizeof(mIp)); // Compute gaussian weights for the blur // e is the euler's number float e = 2.718281828459045f; float pi = 3.1415926535897932f; // g(x) = (1 / (sqrt(2 * pi) * sigma)) * e ^ (-x^2 / (2 * sigma^2)) // x is of the form [-radius .. 0 .. radius] // and sigma varies with the radius. // Based on some experimental radius values and sigmas, // we approximately fit sigma = f(radius) as // sigma = radius * 0.4 + 0.6 // The larger the radius gets, the more our gaussian blur // will resemble a box blur since with large sigma // the gaussian curve begins to lose its shape float sigma = 0.4f * mRadius + 0.6f; // Now compute the coefficients. We will store some redundant values to save // some math during the blur calculations precompute some values float coeff1 = 1.0f / (sqrtf(2.0f * pi) * sigma); float coeff2 = - 1.0f / (2.0f * sigma * sigma); float normalizeFactor = 0.0f; float floatR = 0.0f; int r; mIradius = (float)ceil(mRadius) + 0.5f; for (r = -mIradius; r <= mIradius; r ++) { floatR = (float)r; mFp[r + mIradius] = coeff1 * powf(e, floatR * floatR * coeff2); normalizeFactor += mFp[r + mIradius]; } // Now we need to normalize the weights because all our coefficients need to add up to one normalizeFactor = 1.0f / normalizeFactor; for (r = -mIradius; r <= mIradius; r ++) { mFp[r + mIradius] *= normalizeFactor; mIp[r + mIradius] = (uint16_t)(mFp[r + mIradius] * 65536.0f + 0.5f); } } /** * Vertical blur of a uchar4 line. * * @param sizeY Number of cells of the input array in the vertical direction. * @param out Where to place the computed value. * @param x Coordinate of the point we're blurring. * @param y Coordinate of the point we're blurring. * @param ptrIn Start of the input array. * @param iStride The size in byte of a row of the input array. * @param gPtr The gaussian coefficients. * @param iradius The radius of the blur. */ static void OneVU4(uint32_t sizeY, float4* out, int32_t x, int32_t y, const uchar* ptrIn, int iStride, const float* gPtr, int iradius) { const uchar *pi = ptrIn + x*4; float4 blurredPixel = 0; for (int r = -iradius; r <= iradius; r ++) { int validY = std::max((y + r), 0); validY = std::min(validY, (int)(sizeY - 1)); const uchar4 *pvy = (const uchar4 *)&pi[validY * iStride]; float4 pf = convert(pvy[0]); blurredPixel += pf * gPtr[0]; gPtr++; } out[0] = blurredPixel; } /** * Vertical blur of a uchar1 line. * * @param sizeY Number of cells of the input array in the vertical direction. * @param out Where to place the computed value. * @param x Coordinate of the point we're blurring. * @param y Coordinate of the point we're blurring. * @param ptrIn Start of the input array. * @param iStride The size in byte of a row of the input array. * @param gPtr The gaussian coefficients. * @param iradius The radius of the blur. */ static void OneVU1(uint32_t sizeY, float *out, int32_t x, int32_t y, const uchar *ptrIn, int iStride, const float* gPtr, int iradius) { const uchar *pi = ptrIn + x; float blurredPixel = 0; for (int r = -iradius; r <= iradius; r ++) { int validY = std::max((y + r), 0); validY = std::min(validY, (int)(sizeY - 1)); float pf = (float)pi[validY * iStride]; blurredPixel += pf * gPtr[0]; gPtr++; } out[0] = blurredPixel; } extern "C" void rsdIntrinsicBlurU1_K(uchar *out, uchar const *in, size_t w, size_t h, size_t p, size_t x, size_t y, size_t count, size_t r, uint16_t const *tab); extern "C" void rsdIntrinsicBlurU4_K(uchar4 *out, uchar4 const *in, size_t w, size_t h, size_t p, size_t x, size_t y, size_t count, size_t r, uint16_t const *tab); #if defined(ARCH_X86_HAVE_SSSE3) extern void rsdIntrinsicBlurVFU4_K(void *dst, const void *pin, int stride, const void *gptr, int rct, int x1, int ct); extern void rsdIntrinsicBlurHFU4_K(void *dst, const void *pin, const void *gptr, int rct, int x1, int ct); extern void rsdIntrinsicBlurHFU1_K(void *dst, const void *pin, const void *gptr, int rct, int x1, int ct); #endif /** * Vertical blur of a line of RGBA, knowing that there's enough rows above and below us to avoid * dealing with boundary conditions. * * @param out Where to store the results. This is the input to the horizontal blur. * @param ptrIn The input data for this line. * @param iStride The width of the input. * @param gPtr The gaussian coefficients. * @param ct The diameter of the blur. * @param len How many cells to blur. * @param usesSimd Whether this processor supports SIMD. */ static void OneVFU4(float4 *out, const uchar *ptrIn, int iStride, const float* gPtr, int ct, int x2, bool usesSimd) { int x1 = 0; #if defined(ARCH_X86_HAVE_SSSE3) if (usesSimd) { int t = (x2 - x1); t &= ~1; if (t) { rsdIntrinsicBlurVFU4_K(out, ptrIn, iStride, gPtr, ct, x1, x1 + t); } x1 += t; out += t; ptrIn += t << 2; } #else (void) usesSimd; // Avoid unused parameter warning. #endif while(x2 > x1) { const uchar *pi = ptrIn; float4 blurredPixel = 0; const float* gp = gPtr; for (int r = 0; r < ct; r++) { float4 pf = convert(((const uchar4 *)pi)[0]); blurredPixel += pf * gp[0]; pi += iStride; gp++; } out->xyzw = blurredPixel; x1++; out++; ptrIn+=4; } } /** * Vertical blur of a line of U_8, knowing that there's enough rows above and below us to avoid * dealing with boundary conditions. * * @param out Where to store the results. This is the input to the horizontal blur. * @param ptrIn The input data for this line. * @param iStride The width of the input. * @param gPtr The gaussian coefficients. * @param ct The diameter of the blur. * @param len How many cells to blur. * @param usesSimd Whether this processor supports SIMD. */ static void OneVFU1(float* out, const uchar* ptrIn, int iStride, const float* gPtr, int ct, int len, bool usesSimd) { int x1 = 0; while((len > x1) && (((uintptr_t)ptrIn) & 0x3)) { const uchar *pi = ptrIn; float blurredPixel = 0; const float* gp = gPtr; for (int r = 0; r < ct; r++) { float pf = (float)pi[0]; blurredPixel += pf * gp[0]; pi += iStride; gp++; } out[0] = blurredPixel; x1++; out++; ptrIn++; len--; } #if defined(ARCH_X86_HAVE_SSSE3) if (usesSimd && (len > x1)) { int t = (len - x1) >> 2; t &= ~1; if (t) { rsdIntrinsicBlurVFU4_K(out, ptrIn, iStride, gPtr, ct, 0, t ); len -= t << 2; ptrIn += t << 2; out += t << 2; } } #else (void) usesSimd; // Avoid unused parameter warning. #endif while(len > 0) { const uchar *pi = ptrIn; float blurredPixel = 0; const float* gp = gPtr; for (int r = 0; r < ct; r++) { float pf = (float)pi[0]; blurredPixel += pf * gp[0]; pi += iStride; gp++; } out[0] = blurredPixel; len--; out++; ptrIn++; } } /** * Horizontal blur of a uchar4 line. * * @param sizeX Number of cells of the input array in the horizontal direction. * @param out Where to place the computed value. * @param x Coordinate of the point we're blurring. * @param ptrIn The start of the input row from which we're indexing x. * @param gPtr The gaussian coefficients. * @param iradius The radius of the blur. */ static void OneHU4(uint32_t sizeX, uchar4* out, int32_t x, const float4* ptrIn, const float* gPtr, int iradius) { float4 blurredPixel = 0; for (int r = -iradius; r <= iradius; r ++) { int validX = std::max((x + r), 0); validX = std::min(validX, (int)(sizeX - 1)); float4 pf = ptrIn[validX]; blurredPixel += pf * gPtr[0]; gPtr++; } out->xyzw = convert(blurredPixel); } /** * Horizontal blur of a uchar line. * * @param sizeX Number of cells of the input array in the horizontal direction. * @param out Where to place the computed value. * @param x Coordinate of the point we're blurring. * @param ptrIn The start of the input row from which we're indexing x. * @param gPtr The gaussian coefficients. * @param iradius The radius of the blur. */ static void OneHU1(uint32_t sizeX, uchar* out, int32_t x, const float* ptrIn, const float* gPtr, int iradius) { float blurredPixel = 0; for (int r = -iradius; r <= iradius; r ++) { int validX = std::max((x + r), 0); validX = std::min(validX, (int)(sizeX - 1)); float pf = ptrIn[validX]; blurredPixel += pf * gPtr[0]; gPtr++; } out[0] = (uchar)blurredPixel; } /** * Full blur of a line of RGBA data. * * @param outPtr Where to store the results * @param xstart The index of the section we're starting to blur. * @param xend The end index of the section. * @param currentY The index of the line we're blurring. * @param usesSimd Whether this processor supports SIMD. */ void BlurTask::kernelU4(void *outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY, uint32_t threadIndex) { float4 stackbuf[2048]; float4 *buf = &stackbuf[0]; const uint32_t stride = mSizeX * mVectorSize; uchar4 *out = (uchar4 *)outPtr; uint32_t x1 = xstart; uint32_t x2 = xend; #if defined(ARCH_ARM_USE_INTRINSICS) if (mUsesSimd && mSizeX >= 4) { rsdIntrinsicBlurU4_K(out, (uchar4 const *)(mIn + stride * currentY), mSizeX, mSizeY, stride, x1, currentY, x2 - x1, mIradius, mIp + mIradius); return; } #endif if (mSizeX > 2048) { if ((mSizeX > mScratchSize[threadIndex]) || !mScratch[threadIndex]) { // Pad the side of the allocation by one unit to allow alignment later mScratch[threadIndex] = realloc(mScratch[threadIndex], (mSizeX + 1) * 16); mScratchSize[threadIndex] = mSizeX; } // realloc only aligns to 8 bytes so we manually align to 16. buf = (float4 *) ((((intptr_t)mScratch[threadIndex]) + 15) & ~0xf); } float4 *fout = (float4 *)buf; int y = currentY; if ((y > mIradius) && (y < ((int)mSizeY - mIradius))) { const uchar *pi = mIn + (y - mIradius) * stride; OneVFU4(fout, pi, stride, mFp, mIradius * 2 + 1, mSizeX, mUsesSimd); } else { x1 = 0; while(mSizeX > x1) { OneVU4(mSizeY, fout, x1, y, mIn, stride, mFp, mIradius); fout++; x1++; } } x1 = xstart; while ((x1 < (uint32_t)mIradius) && (x1 < x2)) { OneHU4(mSizeX, out, x1, buf, mFp, mIradius); out++; x1++; } #if defined(ARCH_X86_HAVE_SSSE3) if (mUsesSimd) { if ((x1 + mIradius) < x2) { rsdIntrinsicBlurHFU4_K(out, buf - mIradius, mFp, mIradius * 2 + 1, x1, x2 - mIradius); out += (x2 - mIradius) - x1; x1 = x2 - mIradius; } } #endif while(x2 > x1) { OneHU4(mSizeX, out, x1, buf, mFp, mIradius); out++; x1++; } } /** * Full blur of a line of U_8 data. * * @param outPtr Where to store the results * @param xstart The index of the section we're starting to blur. * @param xend The end index of the section. * @param currentY The index of the line we're blurring. */ void BlurTask::kernelU1(void *outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY) { float buf[4 * 2048]; const uint32_t stride = mSizeX * mVectorSize; uchar *out = (uchar *)outPtr; uint32_t x1 = xstart; uint32_t x2 = xend; #if defined(ARCH_ARM_USE_INTRINSICS) if (mUsesSimd && mSizeX >= 16) { // The specialisation for r<=8 has an awkward prefill case, which is // fiddly to resolve, where starting close to the right edge can cause // a read beyond the end of input. So avoid that case here. if (mIradius > 8 || (mSizeX - std::max(0, (int32_t)x1 - 8)) >= 16) { rsdIntrinsicBlurU1_K(out, mIn + stride * currentY, mSizeX, mSizeY, stride, x1, currentY, x2 - x1, mIradius, mIp + mIradius); return; } } #endif float *fout = (float *)buf; int y = currentY; if ((y > mIradius) && (y < ((int)mSizeY - mIradius -1))) { const uchar *pi = mIn + (y - mIradius) * stride; OneVFU1(fout, pi, stride, mFp, mIradius * 2 + 1, mSizeX, mUsesSimd); } else { x1 = 0; while(mSizeX > x1) { OneVU1(mSizeY, fout, x1, y, mIn, stride, mFp, mIradius); fout++; x1++; } } x1 = xstart; while ((x1 < x2) && ((x1 < (uint32_t)mIradius) || (((uintptr_t)out) & 0x3))) { OneHU1(mSizeX, out, x1, buf, mFp, mIradius); out++; x1++; } #if defined(ARCH_X86_HAVE_SSSE3) if (mUsesSimd) { if ((x1 + mIradius) < x2) { uint32_t len = x2 - (x1 + mIradius); len &= ~3; // rsdIntrinsicBlurHFU1_K() processes each four float values in |buf| at once, so it // nees to ensure four more values can be accessed in order to avoid accessing // uninitialized buffer. if (len > 4) { len -= 4; rsdIntrinsicBlurHFU1_K(out, ((float *)buf) - mIradius, mFp, mIradius * 2 + 1, x1, x1 + len); out += len; x1 += len; } } } #endif while(x2 > x1) { OneHU1(mSizeX, out, x1, buf, mFp, mIradius); out++; x1++; } } void BlurTask::processData(int threadIndex, size_t startX, size_t startY, size_t endX, size_t endY) { for (size_t y = startY; y < endY; y++) { void* outPtr = outArray + (mSizeX * y + startX) * mVectorSize; if (mVectorSize == 4) { kernelU4(outPtr, startX, endX, y, threadIndex); } else { kernelU1(outPtr, startX, endX, y); } } } void RenderScriptToolkit::blur(const uint8_t* in, uint8_t* out, size_t sizeX, size_t sizeY, size_t vectorSize, int radius, const Restriction* restriction) { #ifdef ANDROID_RENDERSCRIPT_TOOLKIT_VALIDATE if (!validRestriction(LOG_TAG, sizeX, sizeY, restriction)) { return; } if (radius <= 0 || radius > 25) { ALOGE("The radius should be between 1 and 25. %d provided.", radius); } if (vectorSize != 1 && vectorSize != 4) { ALOGE("The vectorSize should be 1 or 4. %zu provided.", vectorSize); } #endif BlurTask task(in, out, sizeX, sizeY, vectorSize, processor->getNumberOfThreads(), radius, restriction); processor->doTask(&task); } } // namespace renderscript } // namespace android