/* * Mesa 3-D graphics library * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * Copyright 2015 Philip Taylor * Copyright 2018 Advanced Micro Devices, Inc. * Copyright (C) 2018-2019 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include "half_float.h" #include "rounding.h" #include "softfloat.h" #include "macros.h" #include "u_math.h" typedef union { float f; int32_t i; uint32_t u; } fi_type; /** * Convert a 4-byte float to a 2-byte half float. * * Not all float32 values can be represented exactly as a float16 value. We * round such intermediate float32 values to the nearest float16. When the * float32 lies exactly between to float16 values, we round to the one with * an even mantissa. * * This rounding behavior has several benefits: * - It has no sign bias. * * - It reproduces the behavior of real hardware: opcode F32TO16 in Intel's * GPU ISA. * * - By reproducing the behavior of the GPU (at least on Intel hardware), * compile-time evaluation of constant packHalf2x16 GLSL expressions will * result in the same value as if the expression were executed on the GPU. */ uint16_t _mesa_float_to_half_slow(float val) { const fi_type fi = {val}; const int flt_m = fi.i & 0x7fffff; const int flt_e = (fi.i >> 23) & 0xff; const int flt_s = (fi.i >> 31) & 0x1; int s, e, m = 0; uint16_t result; /* sign bit */ s = flt_s; /* handle special cases */ if ((flt_e == 0) && (flt_m == 0)) { /* zero */ /* m = 0; - already set */ e = 0; } else if ((flt_e == 0) && (flt_m != 0)) { /* denorm -- denorm float maps to 0 half */ /* m = 0; - already set */ e = 0; } else if ((flt_e == 0xff) && (flt_m == 0)) { /* infinity */ /* m = 0; - already set */ e = 31; } else if ((flt_e == 0xff) && (flt_m != 0)) { /* Retain the top bits of a NaN to make sure that the quiet/signaling * status stays the same. */ m = flt_m >> 13; if (!m) m = 1; e = 31; } else { /* regular number */ const int new_exp = flt_e - 127; if (new_exp < -14) { /* The float32 lies in the range (0.0, min_normal16) and is rounded * to a nearby float16 value. The result will be either zero, subnormal, * or normal. */ e = 0; m = _mesa_lroundevenf((1 << 24) * fabsf(fi.f)); } else if (new_exp > 15) { /* map this value to infinity */ /* m = 0; - already set */ e = 31; } else { /* The float32 lies in the range * [min_normal16, max_normal16 + max_step16) * and is rounded to a nearby float16 value. The result will be * either normal or infinite. */ e = new_exp + 15; m = _mesa_lroundevenf(flt_m / (float) (1 << 13)); } } assert(0 <= m && m <= 1024); if (m == 1024) { /* The float32 was rounded upwards into the range of the next exponent, * so bump the exponent. This correctly handles the case where f32 * should be rounded up to float16 infinity. */ ++e; m = 0; } result = (s << 15) | (e << 10) | m; return result; } uint16_t _mesa_float_to_float16_rtz_slow(float val) { return _mesa_float_to_half_rtz_slow(val); } /** * Convert a 2-byte half float to a 4-byte float. * Based on code from: * http://www.opengl.org/discussion_boards/ubb/Forum3/HTML/008786.html */ float _mesa_half_to_float_slow(uint16_t val) { union fi infnan; union fi magic; union fi f32; infnan.ui = 0x8f << 23; infnan.f = 65536.0f; magic.ui = 0xef << 23; /* Exponent / Mantissa */ f32.ui = (val & 0x7fff) << 13; /* Adjust */ f32.f *= magic.f; /* XXX: The magic mul relies on denorms being available */ /* Inf / NaN */ if (f32.f >= infnan.f) f32.ui |= 0xff << 23; /* Sign */ f32.ui |= (uint32_t)(val & 0x8000) << 16; return f32.f; } /** * Takes a uint16_t, divides by 65536, converts the infinite-precision * result to fp16 with round-to-zero. Used by the ASTC decoder. */ uint16_t _mesa_uint16_div_64k_to_half(uint16_t v) { /* Zero or subnormal. Set the mantissa to (v << 8) and return. */ if (v < 4) return v << 8; /* Count the leading 0s in the uint16_t */ #ifdef HAVE___BUILTIN_CLZ int n = __builtin_clz(v) - 16; #else int n = 16; for (int i = 15; i >= 0; i--) { if (v & (1 << i)) { n = 15 - i; break; } } #endif /* Shift the mantissa up so bit 16 is the hidden 1 bit, * mask it off, then shift back down to 10 bits */ int m = ( ((uint32_t)v << (n + 1)) & 0xffff ) >> 6; /* (0{n} 1 X{15-n}) * 2^-16 * = 1.X * 2^(15-n-16) * = 1.X * 2^(14-n - 15) * which is the FP16 form with e = 14 - n */ int e = 14 - n; assert(e >= 1 && e <= 30); assert(m >= 0 && m < 0x400); return (e << 10) | m; }