/************************************************************************** * * Copyright 2008 Dennis Smit * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * AUTHORS, COPYRIGHT HOLDERS, AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * CPU feature detection. * * @author Dennis Smit * @author Based on the work of Eric Anholt */ #include "util/detect.h" #include "util/compiler.h" #include "util/u_debug.h" #include "u_cpu_detect.h" #include "u_math.h" #include "os_file.h" #include "c11/threads.h" #include #include #if DETECT_ARCH_PPC #if DETECT_OS_APPLE #include #else #include #include #endif #endif #if DETECT_OS_BSD #include #include #include #endif #if DETECT_OS_FREEBSD #if __has_include() #include #define HAVE_ELF_AUX_INFO #endif #endif #if DETECT_OS_LINUX #include #include #include #endif #if DETECT_OS_UNIX #include #endif #if defined(HAS_ANDROID_CPUFEATURES) #include #endif #if DETECT_OS_WINDOWS #include #if DETECT_CC_MSVC #include #endif #endif #if defined(HAS_SCHED_H) #include #endif // prevent inadvert infinite recursion #define util_get_cpu_caps() util_get_cpu_caps_DO_NOT_USE() DEBUG_GET_ONCE_BOOL_OPTION(dump_cpu, "GALLIUM_DUMP_CPU", false) static struct util_cpu_caps_t util_cpu_caps; /* Do not try to access _util_cpu_caps_state directly, call to util_get_cpu_caps instead */ struct _util_cpu_caps_state_t _util_cpu_caps_state = { .once_flag = ONCE_FLAG_INIT, .detect_done = 0, }; #if DETECT_ARCH_X86 || DETECT_ARCH_X86_64 static int has_cpuid(void); #endif #if DETECT_ARCH_PPC && !DETECT_OS_APPLE && !DETECT_OS_BSD && !DETECT_OS_LINUX static jmp_buf __lv_powerpc_jmpbuf; static volatile sig_atomic_t __lv_powerpc_canjump = 0; static void sigill_handler(int sig) { if (!__lv_powerpc_canjump) { signal (sig, SIG_DFL); raise (sig); } __lv_powerpc_canjump = 0; longjmp(__lv_powerpc_jmpbuf, 1); } #endif #if DETECT_ARCH_PPC static void check_os_altivec_support(void) { #if defined(__ALTIVEC__) util_cpu_caps.has_altivec = 1; #endif #if defined(__VSX__) util_cpu_caps.has_vsx = 1; #endif #if defined(__ALTIVEC__) && defined(__VSX__) /* Do nothing */ #elif DETECT_OS_APPLE || DETECT_OS_NETBSD || DETECT_OS_OPENBSD #ifdef HW_VECTORUNIT int sels[2] = {CTL_HW, HW_VECTORUNIT}; #else int sels[2] = {CTL_MACHDEP, CPU_ALTIVEC}; #endif int has_vu = 0; size_t len = sizeof (has_vu); int err; err = sysctl(sels, 2, &has_vu, &len, NULL, 0); if (err == 0) { if (has_vu != 0) { util_cpu_caps.has_altivec = 1; } } #elif DETECT_OS_FREEBSD /* !DETECT_OS_APPLE && !DETECT_OS_NETBSD && !DETECT_OS_OPENBSD */ unsigned long hwcap = 0; #ifdef HAVE_ELF_AUX_INFO elf_aux_info(AT_HWCAP, &hwcap, sizeof(hwcap)); #else size_t len = sizeof(hwcap); sysctlbyname("hw.cpu_features", &hwcap, &len, NULL, 0); #endif if (hwcap & PPC_FEATURE_HAS_ALTIVEC) util_cpu_caps.has_altivec = 1; if (hwcap & PPC_FEATURE_HAS_VSX) util_cpu_caps.has_vsx = 1; #elif DETECT_OS_LINUX /* !DETECT_OS_FREEBSD */ #if DETECT_ARCH_PPC_64 Elf64_auxv_t aux; #else Elf32_auxv_t aux; #endif int fd = open("/proc/self/auxv", O_RDONLY | O_CLOEXEC); if (fd >= 0) { while (read(fd, &aux, sizeof(aux)) == sizeof(aux)) { if (aux.a_type == AT_HWCAP) { char *env_vsx = getenv("GALLIVM_VSX"); uint64_t hwcap = aux.a_un.a_val; util_cpu_caps.has_altivec = (hwcap >> 28) & 1; if (!env_vsx || env_vsx[0] != '0') { util_cpu_caps.has_vsx = (hwcap >> 7) & 1; } break; } } close(fd); } #else /* !DETECT_OS_APPLE && !DETECT_OS_BSD && !DETECT_OS_LINUX */ /* not on Apple/Darwin or Linux, do it the brute-force way */ /* this is borrowed from the libmpeg2 library */ signal(SIGILL, sigill_handler); if (setjmp(__lv_powerpc_jmpbuf)) { signal(SIGILL, SIG_DFL); } else { bool enable_altivec = true; /* Default: enable if available, and if not overridden */ bool enable_vsx = true; #ifdef DEBUG /* Disabling Altivec code generation is not the same as disabling VSX code generation, * which can be done simply by passing -mattr=-vsx to the LLVM compiler; cf. * lp_build_create_jit_compiler_for_module(). * If you want to disable Altivec code generation, the best place to do it is here. */ char *env_control = getenv("GALLIVM_ALTIVEC"); /* 1=enable (default); 0=disable */ if (env_control && env_control[0] == '0') { enable_altivec = false; } #endif /* VSX instructions can be explicitly enabled/disabled via GALLIVM_VSX=1 or 0 */ char *env_vsx = getenv("GALLIVM_VSX"); if (env_vsx && env_vsx[0] == '0') { enable_vsx = false; } if (enable_altivec) { __lv_powerpc_canjump = 1; __asm __volatile ("mtspr 256, %0\n\t" "vand %%v0, %%v0, %%v0" : : "r" (-1)); util_cpu_caps.has_altivec = 1; if (enable_vsx) { __asm __volatile("xxland %vs0, %vs0, %vs0"); util_cpu_caps.has_vsx = 1; } signal(SIGILL, SIG_DFL); } else { util_cpu_caps.has_altivec = 0; } } #endif /* !DETECT_OS_APPLE && !DETECT_OS_LINUX */ } #endif /* DETECT_ARCH_PPC */ #if DETECT_ARCH_X86 || DETECT_ARCH_X86_64 static int has_cpuid(void) { #if DETECT_ARCH_X86 #if DETECT_OS_GCC int a, c; __asm __volatile ("pushf\n" "popl %0\n" "movl %0, %1\n" "xorl $0x200000, %0\n" "push %0\n" "popf\n" "pushf\n" "popl %0\n" : "=a" (a), "=c" (c) : : "cc"); return a != c; #else /* FIXME */ return 1; #endif #elif DETECT_ARCH_X86_64 return 1; #else return 0; #endif } /** * @sa cpuid.h included in gcc-4.3 onwards. * @sa http://msdn.microsoft.com/en-us/library/hskdteyh.aspx */ static inline void cpuid(uint32_t ax, uint32_t *p) { #if DETECT_CC_GCC && DETECT_ARCH_X86 __asm __volatile ( "xchgl %%ebx, %1\n\t" "cpuid\n\t" "xchgl %%ebx, %1" : "=a" (p[0]), "=S" (p[1]), "=c" (p[2]), "=d" (p[3]) : "0" (ax) ); #elif DETECT_CC_GCC && DETECT_ARCH_X86_64 __asm __volatile ( "cpuid\n\t" : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3]) : "0" (ax) ); #elif DETECT_CC_MSVC __cpuid(p, ax); #else p[0] = 0; p[1] = 0; p[2] = 0; p[3] = 0; #endif } /** * @sa cpuid.h included in gcc-4.4 onwards. * @sa http://msdn.microsoft.com/en-us/library/hskdteyh%28v=vs.90%29.aspx */ static inline void cpuid_count(uint32_t ax, uint32_t cx, uint32_t *p) { #if DETECT_CC_GCC && DETECT_ARCH_X86 __asm __volatile ( "xchgl %%ebx, %1\n\t" "cpuid\n\t" "xchgl %%ebx, %1" : "=a" (p[0]), "=S" (p[1]), "=c" (p[2]), "=d" (p[3]) : "0" (ax), "2" (cx) ); #elif DETECT_CC_GCC && DETECT_ARCH_X86_64 __asm __volatile ( "cpuid\n\t" : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3]) : "0" (ax), "2" (cx) ); #elif DETECT_CC_MSVC __cpuidex(p, ax, cx); #else p[0] = 0; p[1] = 0; p[2] = 0; p[3] = 0; #endif } static inline uint64_t xgetbv(void) { #if DETECT_CC_GCC uint32_t eax, edx; __asm __volatile ( ".byte 0x0f, 0x01, 0xd0" // xgetbv isn't supported on gcc < 4.4 : "=a"(eax), "=d"(edx) : "c"(0) ); return ((uint64_t)edx << 32) | eax; #elif DETECT_CC_MSVC && defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK) return _xgetbv(_XCR_XFEATURE_ENABLED_MASK); #else return 0; #endif } #if DETECT_ARCH_X86 UTIL_ALIGN_STACK static inline bool sse2_has_daz(void) { alignas(16) struct { uint32_t pad1[7]; uint32_t mxcsr_mask; uint32_t pad2[128-8]; } fxarea; fxarea.mxcsr_mask = 0; #if DETECT_CC_GCC __asm __volatile ("fxsave %0" : "+m" (fxarea)); #elif DETECT_CC_MSVC || DETECT_CC_ICL _fxsave(&fxarea); #else fxarea.mxcsr_mask = 0; #endif return !!(fxarea.mxcsr_mask & (1 << 6)); } #endif #endif /* X86 or X86_64 */ #if DETECT_ARCH_ARM static void check_os_arm_support(void) { /* * On Android, the cpufeatures library is preferred way of checking * CPU capabilities. However, it is not available for standalone Mesa * builds, i.e. when Android build system (Android.mk-based) is not * used. Because of this we cannot use DETECT_OS_ANDROID here, but rather * have a separate macro that only gets enabled from respective Android.mk. */ #if defined(__ARM_NEON) || defined(__ARM_NEON__) util_cpu_caps.has_neon = 1; #elif DETECT_OS_FREEBSD && defined(HAVE_ELF_AUX_INFO) unsigned long hwcap = 0; elf_aux_info(AT_HWCAP, &hwcap, sizeof(hwcap)); if (hwcap & HWCAP_NEON) util_cpu_caps.has_neon = 1; #elif defined(HAS_ANDROID_CPUFEATURES) AndroidCpuFamily cpu_family = android_getCpuFamily(); uint64_t cpu_features = android_getCpuFeatures(); if (cpu_family == ANDROID_CPU_FAMILY_ARM) { if (cpu_features & ANDROID_CPU_ARM_FEATURE_NEON) util_cpu_caps.has_neon = 1; } #elif DETECT_OS_LINUX Elf32_auxv_t aux; int fd; fd = open("/proc/self/auxv", O_RDONLY | O_CLOEXEC); if (fd >= 0) { while (read(fd, &aux, sizeof(Elf32_auxv_t)) == sizeof(Elf32_auxv_t)) { if (aux.a_type == AT_HWCAP) { uint32_t hwcap = aux.a_un.a_val; util_cpu_caps.has_neon = (hwcap >> 12) & 1; break; } } close (fd); } #endif /* DETECT_OS_LINUX */ } #elif DETECT_ARCH_AARCH64 static void check_os_arm_support(void) { util_cpu_caps.has_neon = true; } #endif /* DETECT_ARCH_ARM || DETECT_ARCH_AARCH64 */ #if DETECT_ARCH_MIPS64 static void check_os_mips64_support(void) { #if DETECT_OS_LINUX Elf64_auxv_t aux; int fd; fd = open("/proc/self/auxv", O_RDONLY | O_CLOEXEC); if (fd >= 0) { while (read(fd, &aux, sizeof(Elf64_auxv_t)) == sizeof(Elf64_auxv_t)) { if (aux.a_type == AT_HWCAP) { uint64_t hwcap = aux.a_un.a_val; util_cpu_caps.has_msa = (hwcap >> 1) & 1; break; } } close (fd); } #endif /* DETECT_OS_LINUX */ } #endif /* DETECT_ARCH_MIPS64 */ static void get_cpu_topology(void) { /* Default. This is OK if L3 is not present or there is only one. */ util_cpu_caps.num_L3_caches = 1; memset(util_cpu_caps.cpu_to_L3, 0xff, sizeof(util_cpu_caps.cpu_to_L3)); #if DETECT_OS_LINUX uint64_t big_cap = 0; unsigned num_big_cpus = 0; uint64_t *caps = malloc(sizeof(uint64_t) * util_cpu_caps.max_cpus); bool fail = false; for (unsigned i = 0; caps && i < util_cpu_caps.max_cpus; i++) { char name[PATH_MAX]; snprintf(name, sizeof(name), "/sys/devices/system/cpu/cpu%u/cpu_capacity", i); size_t size = 0; char *cap = os_read_file(name, &size); if (!cap) { num_big_cpus = 0; fail = true; break; } errno = 0; caps[i] = strtoull(cap, NULL, 10); free(cap); if (errno) { fail = true; break; } big_cap = MAX2(caps[i], big_cap); } if (!fail) { for (unsigned i = 0; caps && i < util_cpu_caps.max_cpus; i++) { if (caps[i] >= big_cap / 2) num_big_cpus++; } } free(caps); util_cpu_caps.nr_big_cpus = num_big_cpus; #endif #if DETECT_ARCH_X86 || DETECT_ARCH_X86_64 /* AMD Zen */ if (util_cpu_caps.family >= CPU_AMD_ZEN1_ZEN2 && util_cpu_caps.family < CPU_AMD_LAST) { uint32_t regs[4]; uint32_t saved_mask[UTIL_MAX_CPUS / 32] = {0}; uint32_t mask[UTIL_MAX_CPUS / 32] = {0}; bool saved = false; uint32_t L3_found[UTIL_MAX_CPUS] = {0}; uint32_t num_L3_caches = 0; util_affinity_mask *L3_affinity_masks = NULL; /* Query APIC IDs from each CPU core. * * An APIC ID is a logical ID of the CPU with respect to the cache * hierarchy, meaning that consecutive APIC IDs are neighbours in * the hierarchy, e.g. sharing the same cache. * * For example, CPU 0 can have APIC ID 0 and CPU 12 can have APIC ID 1, * which means that both CPU 0 and 12 are next to each other. * (e.g. they are 2 threads belonging to 1 SMT2 core) * * We need to find out which CPUs share the same L3 cache and they can * be all over the place. * * Querying the APIC ID can only be done by pinning the current thread * to each core. The original affinity mask is saved. * * Loop over all possible CPUs even though some may be offline. */ for (int16_t i = 0; i < util_cpu_caps.max_cpus && i < UTIL_MAX_CPUS; i++) { uint32_t cpu_bit = 1u << (i % 32); mask[i / 32] = cpu_bit; /* The assumption is that trying to bind the thread to a CPU that is * offline will fail. */ if (util_set_current_thread_affinity(mask, !saved ? saved_mask : NULL, util_cpu_caps.num_cpu_mask_bits)) { saved = true; /* Query the APIC ID of the current core. */ cpuid(0x00000001, regs); unsigned apic_id = regs[1] >> 24; /* Query the total core count for the CPU */ uint32_t core_count = 1; if (regs[3] & (1 << 28)) core_count = (regs[1] >> 16) & 0xff; core_count = util_next_power_of_two(core_count); /* Query the L3 cache count. */ cpuid_count(0x8000001D, 3, regs); unsigned cache_level = (regs[0] >> 5) & 0x7; unsigned cores_per_L3 = ((regs[0] >> 14) & 0xfff) + 1; if (cache_level != 3) continue; unsigned local_core_id = apic_id & (core_count - 1); unsigned phys_id = (apic_id & ~(core_count - 1)) >> util_logbase2(core_count); unsigned local_l3_cache_index = local_core_id / util_next_power_of_two(cores_per_L3); #define L3_ID(p, i) (p << 16 | i << 1 | 1); unsigned l3_id = L3_ID(phys_id, local_l3_cache_index); int idx = -1; for (unsigned c = 0; c < num_L3_caches; c++) { if (L3_found[c] == l3_id) { idx = c; break; } } if (idx == -1) { idx = num_L3_caches; L3_found[num_L3_caches++] = l3_id; L3_affinity_masks = realloc(L3_affinity_masks, sizeof(util_affinity_mask) * num_L3_caches); if (!L3_affinity_masks) return; memset(&L3_affinity_masks[num_L3_caches - 1], 0, sizeof(util_affinity_mask)); } util_cpu_caps.cpu_to_L3[i] = idx; L3_affinity_masks[idx][i / 32] |= cpu_bit; } mask[i / 32] = 0; } util_cpu_caps.num_L3_caches = num_L3_caches; util_cpu_caps.L3_affinity_mask = L3_affinity_masks; if (saved) { if (debug_get_option_dump_cpu()) { fprintf(stderr, "CPU <-> L3 cache mapping:\n"); for (unsigned i = 0; i < util_cpu_caps.num_L3_caches; i++) { fprintf(stderr, " - L3 %u mask = ", i); for (int j = util_cpu_caps.max_cpus - 1; j >= 0; j -= 32) fprintf(stderr, "%08x ", util_cpu_caps.L3_affinity_mask[i][j / 32]); fprintf(stderr, "\n"); } } /* Restore the original affinity mask. */ util_set_current_thread_affinity(saved_mask, NULL, util_cpu_caps.num_cpu_mask_bits); } else { if (debug_get_option_dump_cpu()) fprintf(stderr, "Cannot set thread affinity for any thread.\n"); } } #endif } static void check_cpu_caps_override(void) { const char *override_cpu_caps = debug_get_option("GALLIUM_OVERRIDE_CPU_CAPS", NULL); #if DETECT_ARCH_X86 || DETECT_ARCH_X86_64 if (debug_get_bool_option("GALLIUM_NOSSE", false)) { util_cpu_caps.has_sse = 0; } #ifdef DEBUG /* For simulating less capable machines */ if (debug_get_bool_option("LP_FORCE_SSE2", false)) { util_cpu_caps.has_sse3 = 0; } #endif #endif /* DETECT_ARCH_X86 || DETECT_ARCH_X86_64 */ if (override_cpu_caps != NULL) { #if DETECT_ARCH_X86 || DETECT_ARCH_X86_64 if (!strcmp(override_cpu_caps, "nosse")) { util_cpu_caps.has_sse = 0; } else if (!strcmp(override_cpu_caps, "sse")) { util_cpu_caps.has_sse2 = 0; } else if (!strcmp(override_cpu_caps, "sse2")) { util_cpu_caps.has_sse3 = 0; } else if (!strcmp(override_cpu_caps, "sse3")) { util_cpu_caps.has_ssse3 = 0; } else if (!strcmp(override_cpu_caps, "ssse3")) { util_cpu_caps.has_sse4_1 = 0; } else if (!strcmp(override_cpu_caps, "sse4.1")) { util_cpu_caps.has_avx = 0; } else if (!strcmp(override_cpu_caps, "avx")) { util_cpu_caps.has_avx512f = 0; } #endif /* DETECT_ARCH_X86 || DETECT_ARCH_X86_64 */ } #if DETECT_ARCH_X86 || DETECT_ARCH_X86_64 if (!util_cpu_caps.has_sse) { util_cpu_caps.has_sse2 = 0; } if (!util_cpu_caps.has_sse2) { util_cpu_caps.has_sse3 = 0; } if (!util_cpu_caps.has_sse3) { util_cpu_caps.has_ssse3 = 0; } if (!util_cpu_caps.has_ssse3) { util_cpu_caps.has_sse4_1 = 0; } if (!util_cpu_caps.has_sse4_1) { util_cpu_caps.has_sse4_2 = 0; util_cpu_caps.has_avx = 0; } if (!util_cpu_caps.has_avx) { util_cpu_caps.has_avx2 = 0; util_cpu_caps.has_f16c = 0; util_cpu_caps.has_fma = 0; util_cpu_caps.has_avx512f = 0; } if (!util_cpu_caps.has_avx512f) { /* avx512 are cleared */ util_cpu_caps.has_avx512dq = 0; util_cpu_caps.has_avx512ifma = 0; util_cpu_caps.has_avx512pf = 0; util_cpu_caps.has_avx512er = 0; util_cpu_caps.has_avx512cd = 0; util_cpu_caps.has_avx512bw = 0; util_cpu_caps.has_avx512vl = 0; util_cpu_caps.has_avx512vbmi = 0; } #endif /* DETECT_ARCH_X86 || DETECT_ARCH_X86_64 */ } static void check_max_vector_bits(void) { /* Leave it at 128, even when no SIMD extensions are available. * Really needs to be a multiple of 128 so can fit 4 floats. */ util_cpu_caps.max_vector_bits = 128; #if DETECT_ARCH_X86 || DETECT_ARCH_X86_64 if (util_cpu_caps.has_avx512f) { util_cpu_caps.max_vector_bits = 512; } else if (util_cpu_caps.has_avx) { util_cpu_caps.max_vector_bits = 256; } #endif } void _util_cpu_detect_once(void); void _util_cpu_detect_once(void) { int available_cpus = 0; int total_cpus = 0; memset(&util_cpu_caps, 0, sizeof util_cpu_caps); /* Count the number of CPUs in system */ #if DETECT_OS_WINDOWS { SYSTEM_INFO system_info; GetSystemInfo(&system_info); available_cpus = MAX2(1, system_info.dwNumberOfProcessors); } #elif DETECT_OS_UNIX # if defined(HAS_SCHED_GETAFFINITY) { /* sched_setaffinity() can be used to further restrict the number of * CPUs on which the process can run. Use sched_getaffinity() to * determine the true number of available CPUs. * * FIXME: The Linux manual page for sched_getaffinity describes how this * simple implementation will fail with > 1024 CPUs, and we'll fall back * to the _SC_NPROCESSORS_ONLN path. Support for > 1024 CPUs can be * added to this path once someone has such a system for testing. */ cpu_set_t affin; if (sched_getaffinity(getpid(), sizeof(affin), &affin) == 0) available_cpus = CPU_COUNT(&affin); } # endif /* Linux, FreeBSD, DragonFly, and Mac OS X should have * _SC_NOPROCESSORS_ONLN. NetBSD and OpenBSD should have HW_NCPUONLINE. * This is what FFmpeg uses on those platforms. */ # if DETECT_OS_BSD && defined(HW_NCPUONLINE) if (available_cpus == 0) { const int mib[] = { CTL_HW, HW_NCPUONLINE }; int ncpu; size_t len = sizeof(ncpu); sysctl(mib, 2, &ncpu, &len, NULL, 0); available_cpus = ncpu; } # elif defined(_SC_NPROCESSORS_ONLN) if (available_cpus == 0) { available_cpus = sysconf(_SC_NPROCESSORS_ONLN); if (available_cpus == ~0) available_cpus = 1; } # elif DETECT_OS_BSD if (available_cpus == 0) { const int mib[] = { CTL_HW, HW_NCPU }; int ncpu; int len = sizeof(ncpu); sysctl(mib, 2, &ncpu, &len, NULL, 0); available_cpus = ncpu; } # endif /* DETECT_OS_BSD */ /* Determine the maximum number of CPUs configured in the system. This is * used to properly set num_cpu_mask_bits below. On BSDs that don't have * HW_NCPUONLINE, it was not clear whether HW_NCPU is the number of * configured or the number of online CPUs. For that reason, prefer the * _SC_NPROCESSORS_CONF path on all BSDs. */ # if defined(_SC_NPROCESSORS_CONF) total_cpus = sysconf(_SC_NPROCESSORS_CONF); if (total_cpus == ~0) total_cpus = 1; # elif DETECT_OS_BSD { const int mib[] = { CTL_HW, HW_NCPU }; int ncpu; int len = sizeof(ncpu); sysctl(mib, 2, &ncpu, &len, NULL, 0); total_cpus = ncpu; } # endif /* DETECT_OS_BSD */ #endif /* DETECT_OS_UNIX */ util_cpu_caps.nr_cpus = MAX2(1, available_cpus); total_cpus = MAX2(total_cpus, util_cpu_caps.nr_cpus); util_cpu_caps.max_cpus = total_cpus; util_cpu_caps.num_cpu_mask_bits = align(total_cpus, 32); /* Make the fallback cacheline size nonzero so that it can be * safely passed to align(). */ util_cpu_caps.cacheline = sizeof(void *); #if DETECT_ARCH_X86 || DETECT_ARCH_X86_64 if (has_cpuid()) { uint32_t regs[4]; uint32_t regs2[4]; util_cpu_caps.cacheline = 32; /* Get max cpuid level */ cpuid(0x00000000, regs); if (regs[0] >= 0x00000001) { unsigned int cacheline; cpuid (0x00000001, regs2); util_cpu_caps.x86_cpu_type = (regs2[0] >> 8) & 0xf; /* Add "extended family". */ if (util_cpu_caps.x86_cpu_type == 0xf) util_cpu_caps.x86_cpu_type += ((regs2[0] >> 20) & 0xff); switch (util_cpu_caps.x86_cpu_type) { case 0x17: util_cpu_caps.family = CPU_AMD_ZEN1_ZEN2; break; case 0x18: util_cpu_caps.family = CPU_AMD_ZEN_HYGON; break; case 0x19: util_cpu_caps.family = CPU_AMD_ZEN3; break; default: if (util_cpu_caps.x86_cpu_type > 0x19) util_cpu_caps.family = CPU_AMD_ZEN_NEXT; } /* general feature flags */ util_cpu_caps.has_mmx = (regs2[3] >> 23) & 1; /* 0x0800000 */ util_cpu_caps.has_sse = (regs2[3] >> 25) & 1; /* 0x2000000 */ util_cpu_caps.has_sse2 = (regs2[3] >> 26) & 1; /* 0x4000000 */ util_cpu_caps.has_sse3 = (regs2[2] >> 0) & 1; /* 0x0000001 */ util_cpu_caps.has_ssse3 = (regs2[2] >> 9) & 1; /* 0x0000020 */ util_cpu_caps.has_sse4_1 = (regs2[2] >> 19) & 1; util_cpu_caps.has_sse4_2 = (regs2[2] >> 20) & 1; util_cpu_caps.has_popcnt = (regs2[2] >> 23) & 1; util_cpu_caps.has_avx = ((regs2[2] >> 28) & 1) && // AVX ((regs2[2] >> 27) & 1) && // OSXSAVE ((xgetbv() & 6) == 6); // XMM & YMM util_cpu_caps.has_f16c = ((regs2[2] >> 29) & 1) && util_cpu_caps.has_avx; util_cpu_caps.has_fma = ((regs2[2] >> 12) & 1) && util_cpu_caps.has_avx; util_cpu_caps.has_mmx2 = util_cpu_caps.has_sse; /* SSE cpus supports mmxext too */ #if DETECT_ARCH_X86_64 util_cpu_caps.has_daz = 1; #else util_cpu_caps.has_daz = util_cpu_caps.has_sse3 || (util_cpu_caps.has_sse2 && sse2_has_daz()); #endif cacheline = ((regs2[1] >> 8) & 0xFF) * 8; if (cacheline > 0) util_cpu_caps.cacheline = cacheline; } if (regs[0] >= 0x00000007) { uint32_t regs7[4]; cpuid_count(0x00000007, 0x00000000, regs7); util_cpu_caps.has_clflushopt = (regs7[1] >> 23) & 1; if (util_cpu_caps.has_avx) { util_cpu_caps.has_avx2 = (regs7[1] >> 5) & 1; // check for avx512 if (xgetbv() & (0x7 << 5)) { // OPMASK: upper-256 enabled by OS util_cpu_caps.has_avx512f = (regs7[1] >> 16) & 1; util_cpu_caps.has_avx512dq = (regs7[1] >> 17) & 1; util_cpu_caps.has_avx512ifma = (regs7[1] >> 21) & 1; util_cpu_caps.has_avx512pf = (regs7[1] >> 26) & 1; util_cpu_caps.has_avx512er = (regs7[1] >> 27) & 1; util_cpu_caps.has_avx512cd = (regs7[1] >> 28) & 1; util_cpu_caps.has_avx512bw = (regs7[1] >> 30) & 1; util_cpu_caps.has_avx512vl = (regs7[1] >> 31) & 1; util_cpu_caps.has_avx512vbmi = (regs7[2] >> 1) & 1; } } } if (regs[1] == 0x756e6547 && regs[2] == 0x6c65746e && regs[3] == 0x49656e69) { /* GenuineIntel */ util_cpu_caps.has_intel = 1; } cpuid(0x80000000, regs); if (regs[0] >= 0x80000001) { cpuid(0x80000001, regs2); util_cpu_caps.has_mmx |= (regs2[3] >> 23) & 1; util_cpu_caps.has_mmx2 |= (regs2[3] >> 22) & 1; util_cpu_caps.has_3dnow = (regs2[3] >> 31) & 1; util_cpu_caps.has_3dnow_ext = (regs2[3] >> 30) & 1; util_cpu_caps.has_xop = util_cpu_caps.has_avx && ((regs2[2] >> 11) & 1); } if (regs[0] >= 0x80000006) { /* should we really do this if the clflush size above worked? */ unsigned int cacheline; cpuid(0x80000006, regs2); cacheline = regs2[2] & 0xFF; if (cacheline > 0) util_cpu_caps.cacheline = cacheline; } } #endif /* DETECT_ARCH_X86 || DETECT_ARCH_X86_64 */ #if DETECT_ARCH_ARM || DETECT_ARCH_AARCH64 check_os_arm_support(); #endif #if DETECT_ARCH_PPC check_os_altivec_support(); #endif /* DETECT_ARCH_PPC */ #if DETECT_ARCH_MIPS64 check_os_mips64_support(); #endif /* DETECT_ARCH_MIPS64 */ #if DETECT_ARCH_S390 util_cpu_caps.family = CPU_S390X; #endif check_cpu_caps_override(); /* max_vector_bits should be checked after cpu caps override */ check_max_vector_bits(); get_cpu_topology(); if (debug_get_option_dump_cpu()) { printf("util_cpu_caps.nr_cpus = %u\n", util_cpu_caps.nr_cpus); printf("util_cpu_caps.x86_cpu_type = %u\n", util_cpu_caps.x86_cpu_type); printf("util_cpu_caps.cacheline = %u\n", util_cpu_caps.cacheline); printf("util_cpu_caps.has_mmx = %u\n", util_cpu_caps.has_mmx); printf("util_cpu_caps.has_mmx2 = %u\n", util_cpu_caps.has_mmx2); printf("util_cpu_caps.has_sse = %u\n", util_cpu_caps.has_sse); printf("util_cpu_caps.has_sse2 = %u\n", util_cpu_caps.has_sse2); printf("util_cpu_caps.has_sse3 = %u\n", util_cpu_caps.has_sse3); printf("util_cpu_caps.has_ssse3 = %u\n", util_cpu_caps.has_ssse3); printf("util_cpu_caps.has_sse4_1 = %u\n", util_cpu_caps.has_sse4_1); printf("util_cpu_caps.has_sse4_2 = %u\n", util_cpu_caps.has_sse4_2); printf("util_cpu_caps.has_avx = %u\n", util_cpu_caps.has_avx); printf("util_cpu_caps.has_avx2 = %u\n", util_cpu_caps.has_avx2); printf("util_cpu_caps.has_f16c = %u\n", util_cpu_caps.has_f16c); printf("util_cpu_caps.has_popcnt = %u\n", util_cpu_caps.has_popcnt); printf("util_cpu_caps.has_3dnow = %u\n", util_cpu_caps.has_3dnow); printf("util_cpu_caps.has_3dnow_ext = %u\n", util_cpu_caps.has_3dnow_ext); printf("util_cpu_caps.has_xop = %u\n", util_cpu_caps.has_xop); printf("util_cpu_caps.has_altivec = %u\n", util_cpu_caps.has_altivec); printf("util_cpu_caps.has_vsx = %u\n", util_cpu_caps.has_vsx); printf("util_cpu_caps.has_neon = %u\n", util_cpu_caps.has_neon); printf("util_cpu_caps.has_msa = %u\n", util_cpu_caps.has_msa); printf("util_cpu_caps.has_daz = %u\n", util_cpu_caps.has_daz); printf("util_cpu_caps.has_avx512f = %u\n", util_cpu_caps.has_avx512f); printf("util_cpu_caps.has_avx512dq = %u\n", util_cpu_caps.has_avx512dq); printf("util_cpu_caps.has_avx512ifma = %u\n", util_cpu_caps.has_avx512ifma); printf("util_cpu_caps.has_avx512pf = %u\n", util_cpu_caps.has_avx512pf); printf("util_cpu_caps.has_avx512er = %u\n", util_cpu_caps.has_avx512er); printf("util_cpu_caps.has_avx512cd = %u\n", util_cpu_caps.has_avx512cd); printf("util_cpu_caps.has_avx512bw = %u\n", util_cpu_caps.has_avx512bw); printf("util_cpu_caps.has_avx512vl = %u\n", util_cpu_caps.has_avx512vl); printf("util_cpu_caps.has_avx512vbmi = %u\n", util_cpu_caps.has_avx512vbmi); printf("util_cpu_caps.has_clflushopt = %u\n", util_cpu_caps.has_clflushopt); printf("util_cpu_caps.num_L3_caches = %u\n", util_cpu_caps.num_L3_caches); printf("util_cpu_caps.num_cpu_mask_bits = %u\n", util_cpu_caps.num_cpu_mask_bits); } _util_cpu_caps_state.caps = util_cpu_caps; /* This must happen at the end as it's used to guard everything else */ p_atomic_set(&_util_cpu_caps_state.detect_done, 1); }