/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #define XK_MISCELLANY #define XK_LATIN1 #include #include #ifdef XCB_KEYSYMS_AVAILABLE #include #endif #include #include #include #include "util/macros.h" #include #include #include #include #include #include #include #include #include #include "drm-uapi/drm_fourcc.h" #include "util/hash_table.h" #include "util/os_file.h" #include "util/os_time.h" #include "util/u_debug.h" #include "util/u_thread.h" #include "util/xmlconfig.h" #include "util/timespec.h" #include "vk_format.h" #include "vk_instance.h" #include "vk_physical_device.h" #include "vk_device.h" #include "vk_util.h" #include "vk_enum_to_str.h" #include "wsi_common_entrypoints.h" #include "wsi_common_private.h" #include "wsi_common_queue.h" #ifdef HAVE_SYS_SHM_H #include #include #endif #ifndef XCB_PRESENT_OPTION_ASYNC_MAY_TEAR #define XCB_PRESENT_OPTION_ASYNC_MAY_TEAR 16 #endif #ifndef XCB_PRESENT_CAPABILITY_ASYNC_MAY_TEAR #define XCB_PRESENT_CAPABILITY_ASYNC_MAY_TEAR 8 #endif struct wsi_x11_connection { bool has_dri3; bool has_dri3_modifiers; bool has_present; bool is_proprietary_x11; bool is_xwayland; bool has_mit_shm; bool has_xfixes; }; struct wsi_x11 { struct wsi_interface base; pthread_mutex_t mutex; /* Hash table of xcb_connection -> wsi_x11_connection mappings */ struct hash_table *connections; }; struct wsi_x11_vk_surface { union { VkIcdSurfaceXlib xlib; VkIcdSurfaceXcb xcb; }; bool has_alpha; }; /** * Wrapper around xcb_dri3_open. Returns the opened fd or -1 on error. */ static int wsi_dri3_open(xcb_connection_t *conn, xcb_window_t root, uint32_t provider) { xcb_dri3_open_cookie_t cookie; xcb_dri3_open_reply_t *reply; int fd; cookie = xcb_dri3_open(conn, root, provider); reply = xcb_dri3_open_reply(conn, cookie, NULL); if (!reply) return -1; /* According to DRI3 extension nfd must equal one. */ if (reply->nfd != 1) { free(reply); return -1; } fd = xcb_dri3_open_reply_fds(conn, reply)[0]; free(reply); fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC); return fd; } /** * Checks compatibility of the device wsi_dev with the device the X server * provides via DRI3. * * This returns true when no device could be retrieved from the X server or when * the information for the X server device indicate that it is the same device. */ static bool wsi_x11_check_dri3_compatible(const struct wsi_device *wsi_dev, xcb_connection_t *conn) { xcb_screen_iterator_t screen_iter = xcb_setup_roots_iterator(xcb_get_setup(conn)); xcb_screen_t *screen = screen_iter.data; /* Open the DRI3 device from the X server. If we do not retrieve one we * assume our local device is compatible. */ int dri3_fd = wsi_dri3_open(conn, screen->root, None); if (dri3_fd == -1) return true; bool match = wsi_device_matches_drm_fd(wsi_dev, dri3_fd); close(dri3_fd); return match; } static bool wsi_x11_detect_xwayland(xcb_connection_t *conn, xcb_query_extension_reply_t *randr_reply, xcb_query_extension_reply_t *xwl_reply) { /* Newer Xwayland exposes an X11 extension we can check for */ if (xwl_reply && xwl_reply->present) return true; /* Older Xwayland uses the word "XWAYLAND" in the RandR output names */ if (!randr_reply || !randr_reply->present) return false; xcb_randr_query_version_cookie_t ver_cookie = xcb_randr_query_version_unchecked(conn, 1, 3); xcb_randr_query_version_reply_t *ver_reply = xcb_randr_query_version_reply(conn, ver_cookie, NULL); bool has_randr_v1_3 = ver_reply && (ver_reply->major_version > 1 || ver_reply->minor_version >= 3); free(ver_reply); if (!has_randr_v1_3) return false; const xcb_setup_t *setup = xcb_get_setup(conn); xcb_screen_iterator_t iter = xcb_setup_roots_iterator(setup); xcb_randr_get_screen_resources_current_cookie_t gsr_cookie = xcb_randr_get_screen_resources_current_unchecked(conn, iter.data->root); xcb_randr_get_screen_resources_current_reply_t *gsr_reply = xcb_randr_get_screen_resources_current_reply(conn, gsr_cookie, NULL); if (!gsr_reply || gsr_reply->num_outputs == 0) { free(gsr_reply); return false; } xcb_randr_output_t *randr_outputs = xcb_randr_get_screen_resources_current_outputs(gsr_reply); xcb_randr_get_output_info_cookie_t goi_cookie = xcb_randr_get_output_info(conn, randr_outputs[0], gsr_reply->config_timestamp); free(gsr_reply); xcb_randr_get_output_info_reply_t *goi_reply = xcb_randr_get_output_info_reply(conn, goi_cookie, NULL); if (!goi_reply) { return false; } char *output_name = (char*)xcb_randr_get_output_info_name(goi_reply); bool is_xwayland = output_name && strncmp(output_name, "XWAYLAND", 8) == 0; free(goi_reply); return is_xwayland; } static struct wsi_x11_connection * wsi_x11_connection_create(struct wsi_device *wsi_dev, xcb_connection_t *conn) { xcb_query_extension_cookie_t dri3_cookie, pres_cookie, randr_cookie, amd_cookie, nv_cookie, shm_cookie, sync_cookie, xfixes_cookie, xwl_cookie; xcb_query_extension_reply_t *dri3_reply, *pres_reply, *randr_reply, *amd_reply, *nv_reply, *shm_reply = NULL, *xfixes_reply, *xwl_reply; bool wants_shm = wsi_dev->sw && !(WSI_DEBUG & WSI_DEBUG_NOSHM) && wsi_dev->has_import_memory_host; bool has_dri3_v1_2 = false; bool has_present_v1_2 = false; struct wsi_x11_connection *wsi_conn = vk_alloc(&wsi_dev->instance_alloc, sizeof(*wsi_conn), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (!wsi_conn) return NULL; sync_cookie = xcb_query_extension(conn, 4, "SYNC"); dri3_cookie = xcb_query_extension(conn, 4, "DRI3"); pres_cookie = xcb_query_extension(conn, 7, "Present"); randr_cookie = xcb_query_extension(conn, 5, "RANDR"); xfixes_cookie = xcb_query_extension(conn, 6, "XFIXES"); xwl_cookie = xcb_query_extension(conn, 8, "XWAYLAND"); if (wants_shm) shm_cookie = xcb_query_extension(conn, 7, "MIT-SHM"); /* We try to be nice to users and emit a warning if they try to use a * Vulkan application on a system without DRI3 enabled. However, this ends * up spewing the warning when a user has, for example, both Intel * integrated graphics and a discrete card with proprietary drivers and are * running on the discrete card with the proprietary DDX. In this case, we * really don't want to print the warning because it just confuses users. * As a heuristic to detect this case, we check for a couple of proprietary * X11 extensions. */ amd_cookie = xcb_query_extension(conn, 11, "ATIFGLRXDRI"); nv_cookie = xcb_query_extension(conn, 10, "NV-CONTROL"); xcb_discard_reply(conn, sync_cookie.sequence); dri3_reply = xcb_query_extension_reply(conn, dri3_cookie, NULL); pres_reply = xcb_query_extension_reply(conn, pres_cookie, NULL); randr_reply = xcb_query_extension_reply(conn, randr_cookie, NULL); amd_reply = xcb_query_extension_reply(conn, amd_cookie, NULL); nv_reply = xcb_query_extension_reply(conn, nv_cookie, NULL); xfixes_reply = xcb_query_extension_reply(conn, xfixes_cookie, NULL); xwl_reply = xcb_query_extension_reply(conn, xwl_cookie, NULL); if (wants_shm) shm_reply = xcb_query_extension_reply(conn, shm_cookie, NULL); if (!dri3_reply || !pres_reply || !xfixes_reply) { free(dri3_reply); free(pres_reply); free(xfixes_reply); free(xwl_reply); free(randr_reply); free(amd_reply); free(nv_reply); if (wants_shm) free(shm_reply); vk_free(&wsi_dev->instance_alloc, wsi_conn); return NULL; } wsi_conn->has_dri3 = dri3_reply->present != 0; #ifdef HAVE_DRI3_MODIFIERS if (wsi_conn->has_dri3) { xcb_dri3_query_version_cookie_t ver_cookie; xcb_dri3_query_version_reply_t *ver_reply; ver_cookie = xcb_dri3_query_version(conn, 1, 2); ver_reply = xcb_dri3_query_version_reply(conn, ver_cookie, NULL); has_dri3_v1_2 = ver_reply != NULL && (ver_reply->major_version > 1 || ver_reply->minor_version >= 2); free(ver_reply); } #endif wsi_conn->has_present = pres_reply->present != 0; #ifdef HAVE_DRI3_MODIFIERS if (wsi_conn->has_present) { xcb_present_query_version_cookie_t ver_cookie; xcb_present_query_version_reply_t *ver_reply; ver_cookie = xcb_present_query_version(conn, 1, 2); ver_reply = xcb_present_query_version_reply(conn, ver_cookie, NULL); has_present_v1_2 = (ver_reply->major_version > 1 || ver_reply->minor_version >= 2); free(ver_reply); } #endif wsi_conn->has_xfixes = xfixes_reply->present != 0; if (wsi_conn->has_xfixes) { xcb_xfixes_query_version_cookie_t ver_cookie; xcb_xfixes_query_version_reply_t *ver_reply; ver_cookie = xcb_xfixes_query_version(conn, 6, 0); ver_reply = xcb_xfixes_query_version_reply(conn, ver_cookie, NULL); wsi_conn->has_xfixes = (ver_reply->major_version >= 2); free(ver_reply); } wsi_conn->is_xwayland = wsi_x11_detect_xwayland(conn, randr_reply, xwl_reply); wsi_conn->has_dri3_modifiers = has_dri3_v1_2 && has_present_v1_2; wsi_conn->is_proprietary_x11 = false; if (amd_reply && amd_reply->present) wsi_conn->is_proprietary_x11 = true; if (nv_reply && nv_reply->present) wsi_conn->is_proprietary_x11 = true; wsi_conn->has_mit_shm = false; if (wsi_conn->has_dri3 && wsi_conn->has_present && wants_shm) { bool has_mit_shm = shm_reply->present != 0; xcb_shm_query_version_cookie_t ver_cookie; xcb_shm_query_version_reply_t *ver_reply; ver_cookie = xcb_shm_query_version(conn); ver_reply = xcb_shm_query_version_reply(conn, ver_cookie, NULL); has_mit_shm = ver_reply->shared_pixmaps; free(ver_reply); xcb_void_cookie_t cookie; xcb_generic_error_t *error; if (has_mit_shm) { cookie = xcb_shm_detach_checked(conn, 0); if ((error = xcb_request_check(conn, cookie))) { if (error->error_code != BadRequest) wsi_conn->has_mit_shm = true; free(error); } } } free(dri3_reply); free(pres_reply); free(randr_reply); free(xwl_reply); free(amd_reply); free(nv_reply); free(xfixes_reply); if (wants_shm) free(shm_reply); return wsi_conn; } static void wsi_x11_connection_destroy(struct wsi_device *wsi_dev, struct wsi_x11_connection *conn) { vk_free(&wsi_dev->instance_alloc, conn); } static bool wsi_x11_check_for_dri3(struct wsi_x11_connection *wsi_conn) { if (wsi_conn->has_dri3) return true; if (!wsi_conn->is_proprietary_x11) { fprintf(stderr, "vulkan: No DRI3 support detected - required for presentation\n" "Note: you can probably enable DRI3 in your Xorg config\n"); } return false; } /** * Get internal struct representing an xcb_connection_t. * * This can allocate the struct but the caller does not own the struct. It is * deleted on wsi_x11_finish_wsi by the hash table it is inserted. * * If the allocation fails NULL is returned. */ static struct wsi_x11_connection * wsi_x11_get_connection(struct wsi_device *wsi_dev, xcb_connection_t *conn) { struct wsi_x11 *wsi = (struct wsi_x11 *)wsi_dev->wsi[VK_ICD_WSI_PLATFORM_XCB]; pthread_mutex_lock(&wsi->mutex); struct hash_entry *entry = _mesa_hash_table_search(wsi->connections, conn); if (!entry) { /* We're about to make a bunch of blocking calls. Let's drop the * mutex for now so we don't block up too badly. */ pthread_mutex_unlock(&wsi->mutex); struct wsi_x11_connection *wsi_conn = wsi_x11_connection_create(wsi_dev, conn); if (!wsi_conn) return NULL; pthread_mutex_lock(&wsi->mutex); entry = _mesa_hash_table_search(wsi->connections, conn); if (entry) { /* Oops, someone raced us to it */ wsi_x11_connection_destroy(wsi_dev, wsi_conn); } else { entry = _mesa_hash_table_insert(wsi->connections, conn, wsi_conn); } } pthread_mutex_unlock(&wsi->mutex); return entry->data; } static const VkFormat formats[] = { VK_FORMAT_R5G6B5_UNORM_PACK16, VK_FORMAT_B8G8R8A8_SRGB, VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_A2R10G10B10_UNORM_PACK32, }; static const VkPresentModeKHR present_modes[] = { VK_PRESENT_MODE_IMMEDIATE_KHR, VK_PRESENT_MODE_MAILBOX_KHR, VK_PRESENT_MODE_FIFO_KHR, VK_PRESENT_MODE_FIFO_RELAXED_KHR, }; static xcb_screen_t * get_screen_for_root(xcb_connection_t *conn, xcb_window_t root) { xcb_screen_iterator_t screen_iter = xcb_setup_roots_iterator(xcb_get_setup(conn)); for (; screen_iter.rem; xcb_screen_next (&screen_iter)) { if (screen_iter.data->root == root) return screen_iter.data; } return NULL; } static xcb_visualtype_t * screen_get_visualtype(xcb_screen_t *screen, xcb_visualid_t visual_id, unsigned *depth) { xcb_depth_iterator_t depth_iter = xcb_screen_allowed_depths_iterator(screen); for (; depth_iter.rem; xcb_depth_next (&depth_iter)) { xcb_visualtype_iterator_t visual_iter = xcb_depth_visuals_iterator (depth_iter.data); for (; visual_iter.rem; xcb_visualtype_next (&visual_iter)) { if (visual_iter.data->visual_id == visual_id) { if (depth) *depth = depth_iter.data->depth; return visual_iter.data; } } } return NULL; } static xcb_visualtype_t * connection_get_visualtype(xcb_connection_t *conn, xcb_visualid_t visual_id) { xcb_screen_iterator_t screen_iter = xcb_setup_roots_iterator(xcb_get_setup(conn)); /* For this we have to iterate over all of the screens which is rather * annoying. Fortunately, there is probably only 1. */ for (; screen_iter.rem; xcb_screen_next (&screen_iter)) { xcb_visualtype_t *visual = screen_get_visualtype(screen_iter.data, visual_id, NULL); if (visual) return visual; } return NULL; } static xcb_visualtype_t * get_visualtype_for_window(xcb_connection_t *conn, xcb_window_t window, unsigned *depth, xcb_visualtype_t **rootvis) { xcb_query_tree_cookie_t tree_cookie; xcb_get_window_attributes_cookie_t attrib_cookie; xcb_query_tree_reply_t *tree; xcb_get_window_attributes_reply_t *attrib; tree_cookie = xcb_query_tree(conn, window); attrib_cookie = xcb_get_window_attributes(conn, window); tree = xcb_query_tree_reply(conn, tree_cookie, NULL); attrib = xcb_get_window_attributes_reply(conn, attrib_cookie, NULL); if (attrib == NULL || tree == NULL) { free(attrib); free(tree); return NULL; } xcb_window_t root = tree->root; xcb_visualid_t visual_id = attrib->visual; free(attrib); free(tree); xcb_screen_t *screen = get_screen_for_root(conn, root); if (screen == NULL) return NULL; if (rootvis) *rootvis = screen_get_visualtype(screen, screen->root_visual, depth); return screen_get_visualtype(screen, visual_id, depth); } static bool visual_has_alpha(xcb_visualtype_t *visual, unsigned depth) { uint32_t rgb_mask = visual->red_mask | visual->green_mask | visual->blue_mask; uint32_t all_mask = 0xffffffff >> (32 - depth); /* Do we have bits left over after RGB? */ return (all_mask & ~rgb_mask) != 0; } static bool visual_supported(xcb_visualtype_t *visual) { if (!visual) return false; return visual->_class == XCB_VISUAL_CLASS_TRUE_COLOR || visual->_class == XCB_VISUAL_CLASS_DIRECT_COLOR; } VKAPI_ATTR VkBool32 VKAPI_CALL wsi_GetPhysicalDeviceXcbPresentationSupportKHR(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, xcb_connection_t *connection, xcb_visualid_t visual_id) { VK_FROM_HANDLE(vk_physical_device, pdevice, physicalDevice); struct wsi_device *wsi_device = pdevice->wsi_device; struct wsi_x11_connection *wsi_conn = wsi_x11_get_connection(wsi_device, connection); if (!wsi_conn) return false; if (!wsi_device->sw) { if (!wsi_x11_check_for_dri3(wsi_conn)) return false; } if (!visual_supported(connection_get_visualtype(connection, visual_id))) return false; return true; } VKAPI_ATTR VkBool32 VKAPI_CALL wsi_GetPhysicalDeviceXlibPresentationSupportKHR(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, Display *dpy, VisualID visualID) { return wsi_GetPhysicalDeviceXcbPresentationSupportKHR(physicalDevice, queueFamilyIndex, XGetXCBConnection(dpy), visualID); } static xcb_connection_t* x11_surface_get_connection(VkIcdSurfaceBase *icd_surface) { if (icd_surface->platform == VK_ICD_WSI_PLATFORM_XLIB) return XGetXCBConnection(((VkIcdSurfaceXlib *)icd_surface)->dpy); else return ((VkIcdSurfaceXcb *)icd_surface)->connection; } static xcb_window_t x11_surface_get_window(VkIcdSurfaceBase *icd_surface) { if (icd_surface->platform == VK_ICD_WSI_PLATFORM_XLIB) return ((VkIcdSurfaceXlib *)icd_surface)->window; else return ((VkIcdSurfaceXcb *)icd_surface)->window; } static VkResult x11_surface_get_support(VkIcdSurfaceBase *icd_surface, struct wsi_device *wsi_device, uint32_t queueFamilyIndex, VkBool32* pSupported) { xcb_connection_t *conn = x11_surface_get_connection(icd_surface); xcb_window_t window = x11_surface_get_window(icd_surface); struct wsi_x11_connection *wsi_conn = wsi_x11_get_connection(wsi_device, conn); if (!wsi_conn) return VK_ERROR_OUT_OF_HOST_MEMORY; if (!wsi_device->sw) { if (!wsi_x11_check_for_dri3(wsi_conn)) { *pSupported = false; return VK_SUCCESS; } } if (!visual_supported(get_visualtype_for_window(conn, window, NULL, NULL))) { *pSupported = false; return VK_SUCCESS; } *pSupported = true; return VK_SUCCESS; } static uint32_t x11_get_min_image_count(const struct wsi_device *wsi_device, bool is_xwayland) { if (wsi_device->x11.override_minImageCount) return wsi_device->x11.override_minImageCount; /* For IMMEDIATE and FIFO, most games work in a pipelined manner where the * can produce frames at a rate of 1/MAX(CPU duration, GPU duration), but * the render latency is CPU duration + GPU duration. * * This means that with scanout from pageflipping we need 3 frames to run * full speed: * 1) CPU rendering work * 2) GPU rendering work * 3) scanout * * Once we have a nonblocking acquire that returns a semaphore we can merge * 1 and 3. Hence the ideal implementation needs only 2 images, but games * cannot tellwe currently do not have an ideal implementation and that * hence they need to allocate 3 images. So let us do it for them. * * This is a tradeoff as it uses more memory than needed for non-fullscreen * and non-performance intensive applications. * * For Xwayland Venus reports four images as described in * wsi_wl_surface_get_capabilities */ return is_xwayland && wsi_device->x11.extra_xwayland_image ? 4 : 3; } static unsigned x11_get_min_image_count_for_present_mode(struct wsi_device *wsi_device, struct wsi_x11_connection *wsi_conn, VkPresentModeKHR present_mode); static VkResult x11_surface_get_capabilities(VkIcdSurfaceBase *icd_surface, struct wsi_device *wsi_device, const VkSurfacePresentModeEXT *present_mode, VkSurfaceCapabilitiesKHR *caps) { xcb_connection_t *conn = x11_surface_get_connection(icd_surface); xcb_window_t window = x11_surface_get_window(icd_surface); struct wsi_x11_vk_surface *surface = (struct wsi_x11_vk_surface*)icd_surface; struct wsi_x11_connection *wsi_conn = wsi_x11_get_connection(wsi_device, conn); xcb_get_geometry_cookie_t geom_cookie; xcb_generic_error_t *err; xcb_get_geometry_reply_t *geom; geom_cookie = xcb_get_geometry(conn, window); geom = xcb_get_geometry_reply(conn, geom_cookie, &err); if (!geom) return VK_ERROR_SURFACE_LOST_KHR; { VkExtent2D extent = { geom->width, geom->height }; caps->currentExtent = extent; caps->minImageExtent = extent; caps->maxImageExtent = extent; } free(err); free(geom); if (surface->has_alpha) { caps->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR | VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR; } else { caps->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR | VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; } if (present_mode) { caps->minImageCount = x11_get_min_image_count_for_present_mode(wsi_device, wsi_conn, present_mode->presentMode); } else { caps->minImageCount = x11_get_min_image_count(wsi_device, wsi_conn->is_xwayland); } /* There is no real maximum */ caps->maxImageCount = 0; caps->supportedTransforms = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; caps->currentTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; caps->maxImageArrayLayers = 1; caps->supportedUsageFlags = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT; VK_FROM_HANDLE(vk_physical_device, pdevice, wsi_device->pdevice); if (pdevice->supported_extensions.EXT_attachment_feedback_loop_layout) caps->supportedUsageFlags |= VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT; return VK_SUCCESS; } static VkResult x11_surface_get_capabilities2(VkIcdSurfaceBase *icd_surface, struct wsi_device *wsi_device, const void *info_next, VkSurfaceCapabilities2KHR *caps) { assert(caps->sType == VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR); const VkSurfacePresentModeEXT *present_mode = vk_find_struct_const(info_next, SURFACE_PRESENT_MODE_EXT); VkResult result = x11_surface_get_capabilities(icd_surface, wsi_device, present_mode, &caps->surfaceCapabilities); if (result != VK_SUCCESS) return result; vk_foreach_struct(ext, caps->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_SURFACE_PROTECTED_CAPABILITIES_KHR: { VkSurfaceProtectedCapabilitiesKHR *protected = (void *)ext; protected->supportsProtected = VK_FALSE; break; } case VK_STRUCTURE_TYPE_SURFACE_PRESENT_SCALING_CAPABILITIES_EXT: { /* Unsupported. */ VkSurfacePresentScalingCapabilitiesEXT *scaling = (void *)ext; scaling->supportedPresentScaling = 0; scaling->supportedPresentGravityX = 0; scaling->supportedPresentGravityY = 0; scaling->minScaledImageExtent = caps->surfaceCapabilities.minImageExtent; scaling->maxScaledImageExtent = caps->surfaceCapabilities.maxImageExtent; break; } case VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_COMPATIBILITY_EXT: { /* To be able to toggle between FIFO and non-FIFO, we would need a rewrite to always use FIFO thread * mechanism. For now, only return the input, making this effectively unsupported. */ VkSurfacePresentModeCompatibilityEXT *compat = (void *)ext; if (compat->pPresentModes) { if (compat->presentModeCount) { assert(present_mode); compat->pPresentModes[0] = present_mode->presentMode; compat->presentModeCount = 1; } } else { if (!present_mode) wsi_common_vk_warn_once("Use of VkSurfacePresentModeCompatibilityEXT " "without a VkSurfacePresentModeEXT set. This is an " "application bug.\n"); compat->presentModeCount = 1; } break; } default: /* Ignored */ break; } } return result; } static int format_get_component_bits(VkFormat format, int comp) { return vk_format_get_component_bits(format, UTIL_FORMAT_COLORSPACE_RGB, comp); } static bool rgb_component_bits_are_equal(VkFormat format, const xcb_visualtype_t* type) { return format_get_component_bits(format, 0) == util_bitcount(type->red_mask) && format_get_component_bits(format, 1) == util_bitcount(type->green_mask) && format_get_component_bits(format, 2) == util_bitcount(type->blue_mask); } static bool get_sorted_vk_formats(VkIcdSurfaceBase *surface, struct wsi_device *wsi_device, VkFormat *sorted_formats, unsigned *count) { xcb_connection_t *conn = x11_surface_get_connection(surface); xcb_window_t window = x11_surface_get_window(surface); xcb_visualtype_t *rootvis = NULL; xcb_visualtype_t *visual = get_visualtype_for_window(conn, window, NULL, &rootvis); if (!visual) return false; /* use the root window's visual to set the default */ *count = 0; for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) { if (rgb_component_bits_are_equal(formats[i], rootvis)) sorted_formats[(*count)++] = formats[i]; } for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) { for (unsigned j = 0; j < *count; j++) if (formats[i] == sorted_formats[j]) goto next_format; if (rgb_component_bits_are_equal(formats[i], visual)) sorted_formats[(*count)++] = formats[i]; next_format:; } if (wsi_device->force_bgra8_unorm_first) { for (unsigned i = 0; i < *count; i++) { if (sorted_formats[i] == VK_FORMAT_B8G8R8A8_UNORM) { sorted_formats[i] = sorted_formats[0]; sorted_formats[0] = VK_FORMAT_B8G8R8A8_UNORM; break; } } } return true; } static VkResult x11_surface_get_formats(VkIcdSurfaceBase *surface, struct wsi_device *wsi_device, uint32_t *pSurfaceFormatCount, VkSurfaceFormatKHR *pSurfaceFormats) { VK_OUTARRAY_MAKE_TYPED(VkSurfaceFormatKHR, out, pSurfaceFormats, pSurfaceFormatCount); unsigned count; VkFormat sorted_formats[ARRAY_SIZE(formats)]; if (!get_sorted_vk_formats(surface, wsi_device, sorted_formats, &count)) return VK_ERROR_SURFACE_LOST_KHR; for (unsigned i = 0; i < count; i++) { vk_outarray_append_typed(VkSurfaceFormatKHR, &out, f) { f->format = sorted_formats[i]; f->colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR; } } return vk_outarray_status(&out); } static VkResult x11_surface_get_formats2(VkIcdSurfaceBase *surface, struct wsi_device *wsi_device, const void *info_next, uint32_t *pSurfaceFormatCount, VkSurfaceFormat2KHR *pSurfaceFormats) { VK_OUTARRAY_MAKE_TYPED(VkSurfaceFormat2KHR, out, pSurfaceFormats, pSurfaceFormatCount); unsigned count; VkFormat sorted_formats[ARRAY_SIZE(formats)]; if (!get_sorted_vk_formats(surface, wsi_device, sorted_formats, &count)) return VK_ERROR_SURFACE_LOST_KHR; for (unsigned i = 0; i < count; i++) { vk_outarray_append_typed(VkSurfaceFormat2KHR, &out, f) { assert(f->sType == VK_STRUCTURE_TYPE_SURFACE_FORMAT_2_KHR); f->surfaceFormat.format = sorted_formats[i]; f->surfaceFormat.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR; } } return vk_outarray_status(&out); } static VkResult x11_surface_get_present_modes(VkIcdSurfaceBase *surface, struct wsi_device *wsi_device, uint32_t *pPresentModeCount, VkPresentModeKHR *pPresentModes) { if (pPresentModes == NULL) { *pPresentModeCount = ARRAY_SIZE(present_modes); return VK_SUCCESS; } *pPresentModeCount = MIN2(*pPresentModeCount, ARRAY_SIZE(present_modes)); typed_memcpy(pPresentModes, present_modes, *pPresentModeCount); return *pPresentModeCount < ARRAY_SIZE(present_modes) ? VK_INCOMPLETE : VK_SUCCESS; } static VkResult x11_surface_get_present_rectangles(VkIcdSurfaceBase *icd_surface, struct wsi_device *wsi_device, uint32_t* pRectCount, VkRect2D* pRects) { xcb_connection_t *conn = x11_surface_get_connection(icd_surface); xcb_window_t window = x11_surface_get_window(icd_surface); VK_OUTARRAY_MAKE_TYPED(VkRect2D, out, pRects, pRectCount); vk_outarray_append_typed(VkRect2D, &out, rect) { xcb_generic_error_t *err = NULL; xcb_get_geometry_cookie_t geom_cookie = xcb_get_geometry(conn, window); xcb_get_geometry_reply_t *geom = xcb_get_geometry_reply(conn, geom_cookie, &err); free(err); if (geom) { *rect = (VkRect2D) { .offset = { 0, 0 }, .extent = { geom->width, geom->height }, }; } free(geom); if (!geom) return VK_ERROR_SURFACE_LOST_KHR; } return vk_outarray_status(&out); } VKAPI_ATTR VkResult VKAPI_CALL wsi_CreateXcbSurfaceKHR(VkInstance _instance, const VkXcbSurfaceCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { VK_FROM_HANDLE(vk_instance, instance, _instance); struct wsi_x11_vk_surface *surface; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR); unsigned visual_depth; xcb_visualtype_t *visual = get_visualtype_for_window(pCreateInfo->connection, pCreateInfo->window, &visual_depth, NULL); if (!visual) return VK_ERROR_OUT_OF_HOST_MEMORY; surface = vk_alloc2(&instance->alloc, pAllocator, sizeof(struct wsi_x11_vk_surface), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (surface == NULL) return VK_ERROR_OUT_OF_HOST_MEMORY; surface->xcb.base.platform = VK_ICD_WSI_PLATFORM_XCB; surface->xcb.connection = pCreateInfo->connection; surface->xcb.window = pCreateInfo->window; surface->has_alpha = visual_has_alpha(visual, visual_depth); *pSurface = VkIcdSurfaceBase_to_handle(&surface->xcb.base); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL wsi_CreateXlibSurfaceKHR(VkInstance _instance, const VkXlibSurfaceCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { VK_FROM_HANDLE(vk_instance, instance, _instance); struct wsi_x11_vk_surface *surface; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR); unsigned visual_depth; xcb_visualtype_t *visual = get_visualtype_for_window(XGetXCBConnection(pCreateInfo->dpy), pCreateInfo->window, &visual_depth, NULL); if (!visual) return VK_ERROR_OUT_OF_HOST_MEMORY; surface = vk_alloc2(&instance->alloc, pAllocator, sizeof(struct wsi_x11_vk_surface), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (surface == NULL) return VK_ERROR_OUT_OF_HOST_MEMORY; surface->xlib.base.platform = VK_ICD_WSI_PLATFORM_XLIB; surface->xlib.dpy = pCreateInfo->dpy; surface->xlib.window = pCreateInfo->window; surface->has_alpha = visual_has_alpha(visual, visual_depth); *pSurface = VkIcdSurfaceBase_to_handle(&surface->xlib.base); return VK_SUCCESS; } struct x11_image { struct wsi_image base; xcb_pixmap_t pixmap; xcb_xfixes_region_t update_region; /* long lived XID */ xcb_xfixes_region_t update_area; /* the above or None */ atomic_bool busy; bool present_queued; struct xshmfence * shm_fence; uint32_t sync_fence; uint32_t serial; xcb_shm_seg_t shmseg; int shmid; uint8_t * shmaddr; uint64_t present_id; uint64_t signal_present_id; }; struct x11_swapchain { struct wsi_swapchain base; bool has_dri3_modifiers; bool has_mit_shm; bool has_async_may_tear; xcb_connection_t * conn; xcb_window_t window; xcb_gc_t gc; uint32_t depth; VkExtent2D extent; xcb_present_event_t event_id; xcb_special_event_t * special_event; uint64_t send_sbc; uint64_t last_present_msc; uint32_t stamp; atomic_int sent_image_count; bool has_present_queue; bool has_acquire_queue; VkResult status; bool copy_is_suboptimal; struct wsi_queue present_queue; struct wsi_queue acquire_queue; pthread_t queue_manager; /* Lock and condition variable that lets callers monitor forward progress in the swapchain. * This includes: * - Present ID completion updates (present_id). * - Pending ID pending updates (present_id_pending). * - Any errors happening while blocking on present progress updates (present_progress_error). * - present_submitted_count. */ pthread_mutex_t present_progress_mutex; pthread_cond_t present_progress_cond; /* Lock needs to be taken when waiting for and reading presentation events. * Only relevant in non-FIFO modes where AcquireNextImage or WaitForPresentKHR may * have to pump the XCB connection on its own. */ pthread_mutex_t present_poll_mutex; /* For VK_KHR_present_wait. */ uint64_t present_id; uint64_t present_id_pending; /* When blocking on present progress, this can be set and progress_cond is signalled to unblock waiters. */ VkResult present_progress_error; /* For handling wait_ready scenario where two different threads can pump the connection. */ /* Updated by presentation thread. Incremented when a present is submitted to X. * Signals progress_cond when this happens. */ uint64_t present_submitted_count; /* Total number of images ever pushed to a present queue. */ uint64_t present_queue_push_count; /* Total number of images returned to application in AcquireNextImage. */ uint64_t present_poll_acquire_count; struct x11_image images[0]; }; VK_DEFINE_NONDISP_HANDLE_CASTS(x11_swapchain, base.base, VkSwapchainKHR, VK_OBJECT_TYPE_SWAPCHAIN_KHR) static void x11_present_complete(struct x11_swapchain *swapchain, struct x11_image *image) { if (image->signal_present_id) { pthread_mutex_lock(&swapchain->present_progress_mutex); if (image->signal_present_id > swapchain->present_id) { swapchain->present_id = image->signal_present_id; pthread_cond_broadcast(&swapchain->present_progress_cond); } pthread_mutex_unlock(&swapchain->present_progress_mutex); } } static void x11_notify_pending_present(struct x11_swapchain *swapchain, struct x11_image *image) { if (image->present_id || !swapchain->has_acquire_queue) { pthread_mutex_lock(&swapchain->present_progress_mutex); if (image->present_id > swapchain->present_id_pending) { /* Unblock any thread waiting for a presentID out of order. */ swapchain->present_id_pending = image->present_id; } /* If we don't have an acquire queue, we might need to let * vkAcquireNextImageKHR call know that it is safe to poll for presentation events. */ swapchain->present_submitted_count++; pthread_cond_broadcast(&swapchain->present_progress_cond); pthread_mutex_unlock(&swapchain->present_progress_mutex); } /* It is possible that an IDLE is observed before PRESENT_COMPLETE when * not flipping. In this case, reading image->present_id might be a race * in the FIFO management thread. */ if (image->present_id) image->signal_present_id = image->present_id; } static void x11_swapchain_notify_error(struct x11_swapchain *swapchain, VkResult result) { pthread_mutex_lock(&swapchain->present_progress_mutex); swapchain->present_id = UINT64_MAX; swapchain->present_id_pending = UINT64_MAX; swapchain->present_progress_error = result; pthread_cond_broadcast(&swapchain->present_progress_cond); pthread_mutex_unlock(&swapchain->present_progress_mutex); } /** * Update the swapchain status with the result of an operation, and return * the combined status. The chain status will eventually be returned from * AcquireNextImage and QueuePresent. * * We make sure to 'stick' more pessimistic statuses: an out-of-date error * is permanent once seen, and every subsequent call will return this. If * this has not been seen, success will be returned. */ static VkResult _x11_swapchain_result(struct x11_swapchain *chain, VkResult result, const char *file, int line) { if (result < 0) x11_swapchain_notify_error(chain, result); /* Prioritise returning existing errors for consistency. */ if (chain->status < 0) return chain->status; /* If we have a new error, mark it as permanent on the chain and return. */ if (result < 0) { #ifndef NDEBUG fprintf(stderr, "%s:%d: Swapchain status changed to %s\n", file, line, vk_Result_to_str(result)); #endif chain->status = result; return result; } /* Return temporary errors, but don't persist them. */ if (result == VK_TIMEOUT || result == VK_NOT_READY) return result; /* Suboptimal isn't an error, but is a status which sticks to the swapchain * and is always returned rather than success. */ if (result == VK_SUBOPTIMAL_KHR) { #ifndef NDEBUG if (chain->status != VK_SUBOPTIMAL_KHR) { fprintf(stderr, "%s:%d: Swapchain status changed to %s\n", file, line, vk_Result_to_str(result)); } #endif chain->status = result; return result; } /* No changes, so return the last status. */ return chain->status; } #define x11_swapchain_result(chain, result) \ _x11_swapchain_result(chain, result, __FILE__, __LINE__) static struct wsi_image * x11_get_wsi_image(struct wsi_swapchain *wsi_chain, uint32_t image_index) { struct x11_swapchain *chain = (struct x11_swapchain *)wsi_chain; return &chain->images[image_index].base; } /* XXX this belongs in presentproto */ #ifndef PresentWindowDestroyed #define PresentWindowDestroyed (1 << 0) #endif /** * Process an X11 Present event. Does not update chain->status. */ static VkResult x11_handle_dri3_present_event(struct x11_swapchain *chain, xcb_present_generic_event_t *event) { switch (event->evtype) { case XCB_PRESENT_CONFIGURE_NOTIFY: { xcb_present_configure_notify_event_t *config = (void *) event; if (config->pixmap_flags & PresentWindowDestroyed) return VK_ERROR_SURFACE_LOST_KHR; if (config->width != chain->extent.width || config->height != chain->extent.height) return VK_SUBOPTIMAL_KHR; break; } case XCB_PRESENT_EVENT_IDLE_NOTIFY: { xcb_present_idle_notify_event_t *idle = (void *) event; for (unsigned i = 0; i < chain->base.image_count; i++) { if (chain->images[i].pixmap == idle->pixmap) { chain->images[i].busy = false; chain->sent_image_count--; assert(chain->sent_image_count >= 0); if (chain->has_acquire_queue) wsi_queue_push(&chain->acquire_queue, i); break; } } break; } case XCB_PRESENT_EVENT_COMPLETE_NOTIFY: { xcb_present_complete_notify_event_t *complete = (void *) event; if (complete->kind == XCB_PRESENT_COMPLETE_KIND_PIXMAP) { unsigned i; for (i = 0; i < chain->base.image_count; i++) { struct x11_image *image = &chain->images[i]; if (image->present_queued && image->serial == complete->serial) { x11_present_complete(chain, &chain->images[i]); image->present_queued = false; } } chain->last_present_msc = complete->msc; } VkResult result = VK_SUCCESS; switch (complete->mode) { case XCB_PRESENT_COMPLETE_MODE_COPY: if (chain->copy_is_suboptimal) result = VK_SUBOPTIMAL_KHR; break; case XCB_PRESENT_COMPLETE_MODE_FLIP: /* If we ever go from flipping to copying, the odds are very likely * that we could reallocate in a more optimal way if we didn't have * to care about scanout, so we always do this. */ chain->copy_is_suboptimal = true; break; #ifdef HAVE_DRI3_MODIFIERS case XCB_PRESENT_COMPLETE_MODE_SUBOPTIMAL_COPY: /* The winsys is now trying to flip directly and cannot due to our * configuration. Request the user reallocate. */ result = VK_SUBOPTIMAL_KHR; break; #endif default: break; } return result; } default: break; } return VK_SUCCESS; } static VkResult x11_poll_for_special_event(struct x11_swapchain *chain, uint64_t abs_timeout, xcb_generic_event_t **out_event) { /* Start out with 1 ms intervals since that's what poll() supports. */ uint64_t poll_busywait_ns = 1000 * 1000; xcb_generic_event_t *event; uint64_t rel_timeout; struct pollfd pfds; assert(abs_timeout != UINT64_MAX); /* abs_timeout is assumed to be in timebase of os_time_get_absolute_timeout(). */ /* See comments in x11_manage_fifo_queues about problems with xcb_poll followed by poll(). * This path is suboptimal for scenarios where we're doing: * - IMMEDIATE / MAILBOX (no acquire queue) and * - Timeout that is neither 0 nor UINT64_MAX (very rare). * The only real solution is a busy-poll scheme to ensure we don't sleep for too long. * In a forward progress scenario, the XCB FD will be written at least once per frame, * so we expect frequent wake-ups either way. * This is a best-effort pragmatic solution until we have a proper solution in XCB. */ rel_timeout = abs_timeout; *out_event = NULL; event = NULL; while (1) { event = xcb_poll_for_special_event(chain->conn, chain->special_event); if (event || rel_timeout == 0) break; /* If a non-special event happens, the fd will still * poll. So recalculate the timeout now just in case. */ uint64_t current_time = os_time_get_nano(); if (abs_timeout > current_time) rel_timeout = MIN2(poll_busywait_ns, abs_timeout - current_time); else rel_timeout = 0; if (rel_timeout) { pfds.fd = xcb_get_file_descriptor(chain->conn); pfds.events = POLLIN; int ret = poll(&pfds, 1, MAX2(rel_timeout / 1000 / 1000, 1u)); if (ret == -1) return VK_ERROR_OUT_OF_DATE_KHR; /* Gradually increase the poll duration if it takes a very long time to receive a poll event, * since at that point, stutter isn't really the main concern anymore. * We generally expect a special event to be received once every refresh duration. */ poll_busywait_ns += poll_busywait_ns / 2; poll_busywait_ns = MIN2(10ull * 1000ull * 1000ull, poll_busywait_ns); } } *out_event = event; return event ? VK_SUCCESS : VK_TIMEOUT; } static bool x11_acquire_next_image_poll_has_forward_progress(struct x11_swapchain *chain) { /* We have forward progress in the sense that we just error out. */ if (chain->present_progress_error != VK_SUCCESS) return true; /* If we got here, there are no available images. * Some images might be acquired, but not submitted. * Some images might be submitted to FIFO thread, but not submitted to X yet. */ /* If application holds on to images without presenting, it affects forward progress. * If application holds on to too many images, forward progress may be impossible. * Application is allowed to call acquire with timeout in these scenarios, but not UINT64_MAX, since it may deadlock. */ assert(chain->present_poll_acquire_count >= chain->present_queue_push_count); unsigned application_owned_images = chain->present_poll_acquire_count - chain->present_queue_push_count; assert(application_owned_images <= chain->base.image_count); const unsigned minimum_images = 2; /* To observe an IDLE event, we must have submitted at least 2 present requests to X. * The first present may replace another swapchain's image, but it cannot IDLE one of our own. * Refuse forward progress until we have observed two completed present requests. * If we are in a steady state, we only need one present to be able to idle the current image. * In a blit style composition (windowed mode), images may be idled immediately, so this requirement is relaxed, * but we have to assume the worst case of FLIP model where the front buffer holds on to one of the swapchain images. */ if (chain->present_submitted_count < minimum_images) return false; /* Since there are no available images, all images not owned by application have been pushed to FIFO thread. * There must be at least 2 presents queued up. */ unsigned present_queued_images = chain->base.image_count - application_owned_images; if (present_queued_images < minimum_images) return false; /* Present queue must have caught up. */ return (chain->present_queue_push_count - chain->present_submitted_count) <= (present_queued_images - minimum_images); } static VkResult x11_acquire_next_image_poll_find_index(struct x11_swapchain *chain, uint32_t *image_index) { /* We don't need a lock here. AcquireNextImageKHR cannot be called concurrently, * and busy flag is atomic. */ for (uint32_t i = 0; i < chain->base.image_count; i++) { if (!chain->images[i].busy) { /* We found a non-busy image */ xshmfence_await(chain->images[i].shm_fence); *image_index = i; chain->images[i].busy = true; chain->present_poll_acquire_count++; return x11_swapchain_result(chain, VK_SUCCESS); } } return x11_swapchain_result(chain, VK_NOT_READY); } /** * Acquire a ready-to-use image directly from our swapchain. If all images are * busy wait until one is not anymore or till timeout. */ static VkResult x11_acquire_next_image_poll_x11(struct x11_swapchain *chain, uint32_t *image_index, uint64_t timeout) { struct timespec rel_timeout, abs_timespec_realtime, start_time; xcb_generic_event_t *event; VkResult result; /* If another thread is pumping the event queue, and we're polling with timeout == 0, * try a quick poll before we try to take any locks. */ result = x11_acquire_next_image_poll_find_index(chain, image_index); if (result != VK_NOT_READY) return result; uint64_t atimeout; if (timeout == 0 || timeout == UINT64_MAX) atimeout = timeout; else atimeout = os_time_get_absolute_timeout(timeout); /* Mutex abs_timeout is in REALTIME timebase. */ timespec_from_nsec(&rel_timeout, timeout); clock_gettime(CLOCK_REALTIME, &start_time); timespec_add(&abs_timespec_realtime, &rel_timeout, &start_time); if (chain->has_present_queue) { /* If we have a present queue (but no acquire queue), * we might need the present queue to complete * a request before we can guarantee forward progress in the poll loop below. * We take the poll_mutex, but so does the present queue. */ pthread_mutex_lock(&chain->present_progress_mutex); /* There must be at least one present in-flight that has been committed to X, * otherwise we can never satisfy the acquire operation if all images are busy, * since we would be waiting on an event that will never happen. */ struct timespec abs_timespec; timespec_from_nsec(&abs_timespec, atimeout); result = VK_SUCCESS; while (!x11_acquire_next_image_poll_has_forward_progress(chain)) { int ret = pthread_cond_timedwait(&chain->present_progress_cond, &chain->present_progress_mutex, &abs_timespec); if (ret == ETIMEDOUT) { result = x11_swapchain_result(chain, timeout == 0 ? VK_NOT_READY : VK_TIMEOUT); break; } if (ret) { result = VK_ERROR_DEVICE_LOST; break; } } if (result == VK_SUCCESS && chain->present_progress_error != VK_SUCCESS) result = chain->present_progress_error; pthread_mutex_unlock(&chain->present_progress_mutex); if (result != VK_SUCCESS) return result; } int ret; if (timeout == UINT64_MAX) ret = pthread_mutex_lock(&chain->present_poll_mutex); else ret = pthread_mutex_timedlock(&chain->present_poll_mutex, &abs_timespec_realtime); if (ret) { if (ret == ETIMEDOUT) return timeout == 0 ? VK_NOT_READY : VK_TIMEOUT; else return VK_ERROR_DEVICE_LOST; } while (1) { result = x11_acquire_next_image_poll_find_index(chain, image_index); if (result != VK_NOT_READY) goto out_unlock; xcb_flush(chain->conn); if (timeout == UINT64_MAX) { /* See comments in x11_manage_fifo_queues about problem scenarios with this call. */ event = xcb_wait_for_special_event(chain->conn, chain->special_event); if (!event) { result = x11_swapchain_result(chain, VK_ERROR_SURFACE_LOST_KHR); goto out_unlock; } } else { result = x11_poll_for_special_event(chain, atimeout, &event); if (result == VK_TIMEOUT) { /* AcquireNextImageKHR reserves a special return value for 0 timeouts. */ result = x11_swapchain_result(chain, timeout == 0 ? VK_NOT_READY : VK_TIMEOUT); goto out_unlock; } else if (result != VK_SUCCESS) { result = x11_swapchain_result(chain, result); goto out_unlock; } } /* Update the swapchain status here. We may catch non-fatal errors here, * in which case we need to update the status and continue. */ result = x11_handle_dri3_present_event(chain, (void *)event); /* Ensure that VK_SUBOPTIMAL_KHR is reported to the application */ result = x11_swapchain_result(chain, result); free(event); if (result < 0) goto out_unlock; } out_unlock: pthread_mutex_unlock(&chain->present_poll_mutex); return result; } /** * Acquire a ready-to-use image from the acquire-queue. Only relevant in fifo * presentation mode. */ static VkResult x11_acquire_next_image_from_queue(struct x11_swapchain *chain, uint32_t *image_index_out, uint64_t timeout) { assert(chain->has_acquire_queue); uint32_t image_index; VkResult result = wsi_queue_pull(&chain->acquire_queue, &image_index, timeout); if (result < 0 || result == VK_TIMEOUT) { /* On error, the thread has shut down, so safe to update chain->status. * Calling x11_swapchain_result with VK_TIMEOUT won't modify * chain->status so that is also safe. */ return x11_swapchain_result(chain, result); } else if (chain->status < 0) { return chain->status; } assert(image_index < chain->base.image_count); xshmfence_await(chain->images[image_index].shm_fence); *image_index_out = image_index; return chain->status; } /** * Send image to X server via Present extension. */ static VkResult x11_present_to_x11_dri3(struct x11_swapchain *chain, uint32_t image_index, uint64_t target_msc) { struct x11_image *image = &chain->images[image_index]; assert(image_index < chain->base.image_count); uint32_t options = XCB_PRESENT_OPTION_NONE; int64_t divisor = 0; int64_t remainder = 0; struct wsi_x11_connection *wsi_conn = wsi_x11_get_connection((struct wsi_device*)chain->base.wsi, chain->conn); if (!wsi_conn) return VK_ERROR_OUT_OF_HOST_MEMORY; if (chain->base.present_mode == VK_PRESENT_MODE_IMMEDIATE_KHR || (chain->base.present_mode == VK_PRESENT_MODE_MAILBOX_KHR && wsi_conn->is_xwayland) || chain->base.present_mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR) options |= XCB_PRESENT_OPTION_ASYNC; if (chain->base.present_mode == VK_PRESENT_MODE_IMMEDIATE_KHR && chain->has_async_may_tear) options |= XCB_PRESENT_OPTION_ASYNC_MAY_TEAR; #ifdef HAVE_DRI3_MODIFIERS if (chain->has_dri3_modifiers) options |= XCB_PRESENT_OPTION_SUBOPTIMAL; #endif xshmfence_reset(image->shm_fence); ++chain->sent_image_count; assert(chain->sent_image_count <= chain->base.image_count); ++chain->send_sbc; image->present_queued = true; image->serial = (uint32_t) chain->send_sbc; xcb_present_pixmap(chain->conn, chain->window, image->pixmap, image->serial, 0, /* valid */ image->update_area, /* update */ 0, /* x_off */ 0, /* y_off */ XCB_NONE, /* target_crtc */ XCB_NONE, image->sync_fence, options, target_msc, divisor, remainder, 0, NULL); xcb_flush(chain->conn); return x11_swapchain_result(chain, VK_SUCCESS); } /** * Send image to X server unaccelerated (software drivers). */ static VkResult x11_present_to_x11_sw(struct x11_swapchain *chain, uint32_t image_index, uint64_t target_msc) { struct x11_image *image = &chain->images[image_index]; xcb_void_cookie_t cookie; void *myptr = image->base.cpu_map; size_t hdr_len = sizeof(xcb_put_image_request_t); int stride_b = image->base.row_pitches[0]; size_t size = (hdr_len + stride_b * chain->extent.height) >> 2; uint64_t max_req_len = xcb_get_maximum_request_length(chain->conn); if (size < max_req_len) { cookie = xcb_put_image(chain->conn, XCB_IMAGE_FORMAT_Z_PIXMAP, chain->window, chain->gc, image->base.row_pitches[0] / 4, chain->extent.height, 0,0,0,24, image->base.row_pitches[0] * chain->extent.height, image->base.cpu_map); xcb_discard_reply(chain->conn, cookie.sequence); } else { int num_lines = ((max_req_len << 2) - hdr_len) / stride_b; int y_start = 0; int y_todo = chain->extent.height; while (y_todo) { int this_lines = MIN2(num_lines, y_todo); cookie = xcb_put_image(chain->conn, XCB_IMAGE_FORMAT_Z_PIXMAP, chain->window, chain->gc, image->base.row_pitches[0] / 4, this_lines, 0,y_start,0,24, this_lines * stride_b, (const uint8_t *)myptr + (y_start * stride_b)); xcb_discard_reply(chain->conn, cookie.sequence); y_start += this_lines; y_todo -= this_lines; } } chain->images[image_index].busy = false; xcb_flush(chain->conn); return x11_swapchain_result(chain, VK_SUCCESS); } static void x11_capture_trace(struct x11_swapchain *chain) { #ifdef XCB_KEYSYMS_AVAILABLE VK_FROM_HANDLE(vk_device, device, chain->base.device); if (!device->physical->instance->trace_mode) return; xcb_query_keymap_cookie_t keys_cookie = xcb_query_keymap(chain->conn); xcb_generic_error_t *error = NULL; xcb_query_keymap_reply_t *keys = xcb_query_keymap_reply(chain->conn, keys_cookie, &error); if (error) { free(error); return; } xcb_key_symbols_t *key_symbols = xcb_key_symbols_alloc(chain->conn); xcb_keycode_t *keycodes = xcb_key_symbols_get_keycode(key_symbols, XK_F1); if (keycodes) { xcb_keycode_t keycode = keycodes[0]; free(keycodes); simple_mtx_lock(&device->trace_mtx); bool capture_key_pressed = keys->keys[keycode / 8] & (1u << (keycode % 8)); device->trace_hotkey_trigger = capture_key_pressed && (capture_key_pressed != chain->base.capture_key_pressed); chain->base.capture_key_pressed = capture_key_pressed; simple_mtx_unlock(&device->trace_mtx); } xcb_key_symbols_free(key_symbols); free(keys); #endif } /** * Send image to the X server for presentation at target_msc. */ static VkResult x11_present_to_x11(struct x11_swapchain *chain, uint32_t image_index, uint64_t target_msc) { x11_capture_trace(chain); VkResult result; if (chain->base.wsi->sw && !chain->has_mit_shm) result = x11_present_to_x11_sw(chain, image_index, target_msc); else result = x11_present_to_x11_dri3(chain, image_index, target_msc); if (result < 0) x11_swapchain_notify_error(chain, result); else x11_notify_pending_present(chain, &chain->images[image_index]); return result; } static VkResult x11_release_images(struct wsi_swapchain *wsi_chain, uint32_t count, const uint32_t *indices) { struct x11_swapchain *chain = (struct x11_swapchain *)wsi_chain; if (chain->status == VK_ERROR_SURFACE_LOST_KHR) return chain->status; for (uint32_t i = 0; i < count; i++) { uint32_t index = indices[i]; assert(index < chain->base.image_count); if (chain->has_acquire_queue) { wsi_queue_push(&chain->acquire_queue, index); } else { assert(chain->images[index].busy); chain->images[index].busy = false; } } if (!chain->has_acquire_queue) { assert(chain->present_poll_acquire_count >= count); chain->present_poll_acquire_count -= count; } return VK_SUCCESS; } /** * Acquire a ready-to-use image from the swapchain. * * This means usually that the image is not waiting on presentation and that the * image has been released by the X server to be used again by the consumer. */ static VkResult x11_acquire_next_image(struct wsi_swapchain *anv_chain, const VkAcquireNextImageInfoKHR *info, uint32_t *image_index) { struct x11_swapchain *chain = (struct x11_swapchain *)anv_chain; uint64_t timeout = info->timeout; /* If the swapchain is in an error state, don't go any further. */ if (chain->status < 0) return chain->status; if (chain->base.wsi->sw && !chain->has_mit_shm) { for (unsigned i = 0; i < chain->base.image_count; i++) { if (!chain->images[i].busy) { *image_index = i; chain->images[i].busy = true; chain->present_poll_acquire_count++; xcb_generic_error_t *err; xcb_get_geometry_cookie_t geom_cookie = xcb_get_geometry(chain->conn, chain->window); xcb_get_geometry_reply_t *geom = xcb_get_geometry_reply(chain->conn, geom_cookie, &err); VkResult result = VK_SUCCESS; if (geom) { if (chain->extent.width != geom->width || chain->extent.height != geom->height) result = VK_SUBOPTIMAL_KHR; } else { result = VK_ERROR_SURFACE_LOST_KHR; } free(err); free(geom); return result; } } return VK_NOT_READY; } if (chain->has_acquire_queue) { return x11_acquire_next_image_from_queue(chain, image_index, timeout); } else { return x11_acquire_next_image_poll_x11(chain, image_index, timeout); } } #define MAX_DAMAGE_RECTS 64 /** * Queue a new presentation of an image that was previously acquired by the * consumer. * * Note that in immediate presentation mode this does not really queue the * presentation but directly asks the X server to show it. */ static VkResult x11_queue_present(struct wsi_swapchain *anv_chain, uint32_t image_index, uint64_t present_id, const VkPresentRegionKHR *damage) { struct x11_swapchain *chain = (struct x11_swapchain *)anv_chain; xcb_xfixes_region_t update_area = 0; /* If the swapchain is in an error state, don't go any further. */ if (chain->status < 0) return chain->status; if (damage && damage->pRectangles && damage->rectangleCount > 0 && damage->rectangleCount <= MAX_DAMAGE_RECTS) { xcb_rectangle_t rects[MAX_DAMAGE_RECTS]; update_area = chain->images[image_index].update_region; for (unsigned i = 0; i < damage->rectangleCount; i++) { const VkRectLayerKHR *rect = &damage->pRectangles[i]; assert(rect->layer == 0); rects[i].x = rect->offset.x; rects[i].y = rect->offset.y; rects[i].width = rect->extent.width; rects[i].height = rect->extent.height; } xcb_xfixes_set_region(chain->conn, update_area, damage->rectangleCount, rects); } chain->images[image_index].update_area = update_area; chain->images[image_index].present_id = present_id; chain->images[image_index].busy = true; if (chain->has_present_queue) { wsi_queue_push(&chain->present_queue, image_index); chain->present_queue_push_count++; return chain->status; } else { /* No present queue means immedate mode, so we present immediately. */ pthread_mutex_lock(&chain->present_poll_mutex); VkResult result = x11_present_to_x11(chain, image_index, 0); pthread_mutex_unlock(&chain->present_poll_mutex); return result; } } /** * Decides if an early wait on buffer fences before buffer submission is required. That is for: * - Mailbox mode, as otherwise the latest image in the queue might not be fully rendered at * present time, what could lead to missing a frame. * - Immediate mode under Xwayland, as it works practically the same as mailbox mode using the * mailbox mechanism of Wayland. Sending a buffer with fences not yet signalled can make the * compositor miss a frame when compositing the final image with this buffer. * * Note though that early waits can be disabled in general on Xwayland by setting the * 'vk_xwayland_wait_ready' DRIConf option to false. */ static bool x11_needs_wait_for_fences(const struct wsi_device *wsi_device, struct wsi_x11_connection *wsi_conn, VkPresentModeKHR present_mode) { if (wsi_conn->is_xwayland && !wsi_device->x11.xwaylandWaitReady) { return false; } switch (present_mode) { case VK_PRESENT_MODE_MAILBOX_KHR: return true; case VK_PRESENT_MODE_IMMEDIATE_KHR: return wsi_conn->is_xwayland; default: return false; } } /** * The number of images that are not owned by X11: * (1) in the ownership of the app, or * (2) app to take ownership through an acquire, or * (3) in the present queue waiting for the FIFO thread to present to X11. */ static unsigned x11_driver_owned_images(const struct x11_swapchain *chain) { return chain->base.image_count - chain->sent_image_count; } /** * Our queue manager. Albeit called x11_manage_fifo_queues only directly * manages the present-queue and does this in general in fifo and mailbox presentation * modes (there is no present-queue in immediate mode with the exception of Xwayland). * * Runs in a separate thread, blocks and reacts to queued images on the * present-queue * * In mailbox mode the queue management is simplified since we only need to * pull new images from the present queue and can directly present them. * * In fifo mode images can only be presented one after the other. For that after * sending the image to the X server we wait until the image either has been * presented or released and only then pull a new image from the present-queue. */ static void * x11_manage_fifo_queues(void *state) { struct x11_swapchain *chain = state; struct wsi_x11_connection *wsi_conn = wsi_x11_get_connection((struct wsi_device*)chain->base.wsi, chain->conn); VkResult result = VK_SUCCESS; assert(chain->has_present_queue); u_thread_setname("WSI swapchain queue"); while (chain->status >= 0) { /* We can block here unconditionally because after an image was sent to * the server (later on in this loop) we ensure at least one image is * acquirable by the consumer or wait there on such an event. */ uint32_t image_index = 0; { MESA_TRACE_SCOPE("pull present queue"); result = wsi_queue_pull(&chain->present_queue, &image_index, INT64_MAX); assert(result != VK_TIMEOUT); } if (result < 0) { goto fail; } else if (chain->status < 0) { /* The status can change underneath us if the swapchain is destroyed * from another thread. */ return NULL; } /* Waiting for the GPU work to finish at this point in time is required in certain usage * scenarios. Otherwise we wait as usual in wsi_common_queue_present. */ if (x11_needs_wait_for_fences(chain->base.wsi, wsi_conn, chain->base.present_mode)) { MESA_TRACE_SCOPE("wait fence"); result = chain->base.wsi->WaitForFences(chain->base.device, 1, &chain->base.fences[image_index], true, UINT64_MAX); if (result != VK_SUCCESS) { result = VK_ERROR_OUT_OF_DATE_KHR; goto fail; } } uint64_t target_msc = 0; if (chain->has_acquire_queue) target_msc = chain->last_present_msc + 1; /* Locking here is only relevant if we don't have an acquire queue. * WaitForPresentKHR will pump the message queue on its own unless * has_acquire_queue and has_present_queue are both true. */ if (!chain->has_acquire_queue) pthread_mutex_lock(&chain->present_poll_mutex); result = x11_present_to_x11(chain, image_index, target_msc); if (!chain->has_acquire_queue) pthread_mutex_unlock(&chain->present_poll_mutex); if (result < 0) goto fail; if (chain->has_acquire_queue) { MESA_TRACE_SCOPE("wait present"); /* Assume this isn't a swapchain where we force 5 images, because those * don't end up with an acquire queue at the moment. */ unsigned min_image_count = x11_get_min_image_count(chain->base.wsi, wsi_conn->is_xwayland); /* With drirc overrides some games have swapchain with less than * minimum number of images. */ min_image_count = MIN2(min_image_count, chain->base.image_count); /* We always need to ensure that the app can have this number of images * acquired concurrently in between presents: * "VUID-vkAcquireNextImageKHR-swapchain-01802 * If the number of currently acquired images is greater than the difference * between the number of images in swapchain and the value of * VkSurfaceCapabilitiesKHR::minImageCount as returned by a call to * vkGetPhysicalDeviceSurfaceCapabilities2KHR with the surface used to * create swapchain, timeout must not be UINT64_MAX" */ unsigned forward_progress_guaranteed_acquired_images = chain->base.image_count - min_image_count + 1; /* Wait for our presentation to occur and ensure we have at least one * image that can be acquired by the client afterwards. This ensures we * can pull on the present-queue on the next loop. */ while (chain->images[image_index].present_queued || /* If we have images in the present queue the outer loop won't block and a break * here would end up at this loop again, otherwise a break here satisfies * VUID-vkAcquireNextImageKHR-swapchain-01802 */ x11_driver_owned_images(chain) < forward_progress_guaranteed_acquired_images) { /* Calls to xcb_wait_for_special_event are broken by design due to a XCB flaw. * This call may hang indefinitely if the X window is destroyed before the swapchain. * An X window destruction does not trigger a special event here, unfortunately. * * A workaround was attempted in * https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/13564#note_1121977, but * was reverted due to its high CPU usage. * No pragmatic solution exists that solves CPU usage and stutter problems. * * A xcb_poll call followed by poll() is a race condition if other threads read from the XCB connection FD * between the xcb poll and fd poll(), even if it's completely unrelated to this event queue. * poll() may end up waiting indefinitely even if the XCB event has been moved from the FD * to chain->special_event queue. * The proper fix is a wait_for_special_event_with_timeout, but it does not exist. * See https://gitlab.freedesktop.org/xorg/lib/libxcb/-/merge_requests/9. * For now, keep this approach. Applications are generally well-behaved. */ xcb_generic_event_t *event = xcb_wait_for_special_event(chain->conn, chain->special_event); if (!event) { result = VK_ERROR_SURFACE_LOST_KHR; goto fail; } result = x11_handle_dri3_present_event(chain, (void *)event); /* Ensure that VK_SUBOPTIMAL_KHR is reported to the application */ result = x11_swapchain_result(chain, result); free(event); if (result < 0) goto fail; } } } fail: x11_swapchain_result(chain, result); if (chain->has_acquire_queue) wsi_queue_push(&chain->acquire_queue, UINT32_MAX); return NULL; } static uint8_t * alloc_shm(struct wsi_image *imagew, unsigned size) { #ifdef HAVE_SYS_SHM_H struct x11_image *image = (struct x11_image *)imagew; image->shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | 0600); if (image->shmid < 0) return NULL; uint8_t *addr = (uint8_t *)shmat(image->shmid, 0, 0); /* mark the segment immediately for deletion to avoid leaks */ shmctl(image->shmid, IPC_RMID, 0); if (addr == (uint8_t *) -1) return NULL; image->shmaddr = addr; return addr; #else return NULL; #endif } static VkResult x11_image_init(VkDevice device_h, struct x11_swapchain *chain, const VkSwapchainCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks* pAllocator, struct x11_image *image) { xcb_void_cookie_t cookie; xcb_generic_error_t *error = NULL; VkResult result; uint32_t bpp = 32; int fence_fd; result = wsi_create_image(&chain->base, &chain->base.image_info, &image->base); if (result != VK_SUCCESS) return result; image->update_region = xcb_generate_id(chain->conn); xcb_xfixes_create_region(chain->conn, image->update_region, 0, NULL); if (chain->base.wsi->sw) { if (!chain->has_mit_shm) { image->busy = false; return VK_SUCCESS; } image->shmseg = xcb_generate_id(chain->conn); xcb_shm_attach(chain->conn, image->shmseg, image->shmid, 0); image->pixmap = xcb_generate_id(chain->conn); cookie = xcb_shm_create_pixmap_checked(chain->conn, image->pixmap, chain->window, image->base.row_pitches[0] / 4, pCreateInfo->imageExtent.height, chain->depth, image->shmseg, 0); xcb_discard_reply(chain->conn, cookie.sequence); goto out_fence; } image->pixmap = xcb_generate_id(chain->conn); #ifdef HAVE_DRI3_MODIFIERS if (image->base.drm_modifier != DRM_FORMAT_MOD_INVALID) { /* If the image has a modifier, we must have DRI3 v1.2. */ assert(chain->has_dri3_modifiers); /* XCB requires an array of file descriptors but we only have one */ int fds[4] = { -1, -1, -1, -1 }; for (int i = 0; i < image->base.num_planes; i++) { fds[i] = os_dupfd_cloexec(image->base.dma_buf_fd); if (fds[i] == -1) { for (int j = 0; j < i; j++) close(fds[j]); return VK_ERROR_OUT_OF_HOST_MEMORY; } } cookie = xcb_dri3_pixmap_from_buffers_checked(chain->conn, image->pixmap, chain->window, image->base.num_planes, pCreateInfo->imageExtent.width, pCreateInfo->imageExtent.height, image->base.row_pitches[0], image->base.offsets[0], image->base.row_pitches[1], image->base.offsets[1], image->base.row_pitches[2], image->base.offsets[2], image->base.row_pitches[3], image->base.offsets[3], chain->depth, bpp, image->base.drm_modifier, fds); } else #endif { /* Without passing modifiers, we can't have multi-plane RGB images. */ assert(image->base.num_planes == 1); /* XCB will take ownership of the FD we pass it. */ int fd = os_dupfd_cloexec(image->base.dma_buf_fd); if (fd == -1) return VK_ERROR_OUT_OF_HOST_MEMORY; cookie = xcb_dri3_pixmap_from_buffer_checked(chain->conn, image->pixmap, chain->window, image->base.sizes[0], pCreateInfo->imageExtent.width, pCreateInfo->imageExtent.height, image->base.row_pitches[0], chain->depth, bpp, fd); } error = xcb_request_check(chain->conn, cookie); if (error != NULL) { free(error); goto fail_image; } out_fence: fence_fd = xshmfence_alloc_shm(); if (fence_fd < 0) goto fail_pixmap; image->shm_fence = xshmfence_map_shm(fence_fd); if (image->shm_fence == NULL) goto fail_shmfence_alloc; image->sync_fence = xcb_generate_id(chain->conn); xcb_dri3_fence_from_fd(chain->conn, image->pixmap, image->sync_fence, false, fence_fd); image->busy = false; xshmfence_trigger(image->shm_fence); return VK_SUCCESS; fail_shmfence_alloc: close(fence_fd); fail_pixmap: cookie = xcb_free_pixmap(chain->conn, image->pixmap); xcb_discard_reply(chain->conn, cookie.sequence); fail_image: wsi_destroy_image(&chain->base, &image->base); return VK_ERROR_INITIALIZATION_FAILED; } static void x11_image_finish(struct x11_swapchain *chain, const VkAllocationCallbacks* pAllocator, struct x11_image *image) { xcb_void_cookie_t cookie; if (!chain->base.wsi->sw || chain->has_mit_shm) { cookie = xcb_sync_destroy_fence(chain->conn, image->sync_fence); xcb_discard_reply(chain->conn, cookie.sequence); xshmfence_unmap_shm(image->shm_fence); cookie = xcb_free_pixmap(chain->conn, image->pixmap); xcb_discard_reply(chain->conn, cookie.sequence); cookie = xcb_xfixes_destroy_region(chain->conn, image->update_region); xcb_discard_reply(chain->conn, cookie.sequence); } wsi_destroy_image(&chain->base, &image->base); #ifdef HAVE_SYS_SHM_H if (image->shmaddr) shmdt(image->shmaddr); #endif } static void wsi_x11_get_dri3_modifiers(struct wsi_x11_connection *wsi_conn, xcb_connection_t *conn, xcb_window_t window, uint8_t depth, uint8_t bpp, VkCompositeAlphaFlagsKHR vk_alpha, uint64_t **modifiers_in, uint32_t *num_modifiers_in, uint32_t *num_tranches_in, const VkAllocationCallbacks *pAllocator) { if (!wsi_conn->has_dri3_modifiers) goto out; #ifdef HAVE_DRI3_MODIFIERS xcb_generic_error_t *error = NULL; xcb_dri3_get_supported_modifiers_cookie_t mod_cookie = xcb_dri3_get_supported_modifiers(conn, window, depth, bpp); xcb_dri3_get_supported_modifiers_reply_t *mod_reply = xcb_dri3_get_supported_modifiers_reply(conn, mod_cookie, &error); free(error); if (!mod_reply || (mod_reply->num_window_modifiers == 0 && mod_reply->num_screen_modifiers == 0)) { free(mod_reply); goto out; } uint32_t n = 0; uint32_t counts[2]; uint64_t *modifiers[2]; if (mod_reply->num_window_modifiers) { counts[n] = mod_reply->num_window_modifiers; modifiers[n] = vk_alloc(pAllocator, counts[n] * sizeof(uint64_t), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!modifiers[n]) { free(mod_reply); goto out; } memcpy(modifiers[n], xcb_dri3_get_supported_modifiers_window_modifiers(mod_reply), counts[n] * sizeof(uint64_t)); n++; } if (mod_reply->num_screen_modifiers) { counts[n] = mod_reply->num_screen_modifiers; modifiers[n] = vk_alloc(pAllocator, counts[n] * sizeof(uint64_t), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!modifiers[n]) { if (n > 0) vk_free(pAllocator, modifiers[0]); free(mod_reply); goto out; } memcpy(modifiers[n], xcb_dri3_get_supported_modifiers_screen_modifiers(mod_reply), counts[n] * sizeof(uint64_t)); n++; } for (int i = 0; i < n; i++) { modifiers_in[i] = modifiers[i]; num_modifiers_in[i] = counts[i]; } *num_tranches_in = n; free(mod_reply); return; #endif out: *num_tranches_in = 0; } static VkResult x11_swapchain_destroy(struct wsi_swapchain *anv_chain, const VkAllocationCallbacks *pAllocator) { struct x11_swapchain *chain = (struct x11_swapchain *)anv_chain; xcb_void_cookie_t cookie; if (chain->has_present_queue) { chain->status = VK_ERROR_OUT_OF_DATE_KHR; /* Push a UINT32_MAX to wake up the manager */ wsi_queue_push(&chain->present_queue, UINT32_MAX); pthread_join(chain->queue_manager, NULL); if (chain->has_acquire_queue) wsi_queue_destroy(&chain->acquire_queue); wsi_queue_destroy(&chain->present_queue); } for (uint32_t i = 0; i < chain->base.image_count; i++) x11_image_finish(chain, pAllocator, &chain->images[i]); xcb_unregister_for_special_event(chain->conn, chain->special_event); cookie = xcb_present_select_input_checked(chain->conn, chain->event_id, chain->window, XCB_PRESENT_EVENT_MASK_NO_EVENT); xcb_discard_reply(chain->conn, cookie.sequence); pthread_mutex_destroy(&chain->present_poll_mutex); pthread_mutex_destroy(&chain->present_progress_mutex); pthread_cond_destroy(&chain->present_progress_cond); wsi_swapchain_finish(&chain->base); vk_free(pAllocator, chain); return VK_SUCCESS; } static void wsi_x11_set_adaptive_sync_property(xcb_connection_t *conn, xcb_drawable_t drawable, uint32_t state) { static char const name[] = "_VARIABLE_REFRESH"; xcb_intern_atom_cookie_t cookie; xcb_intern_atom_reply_t* reply; xcb_void_cookie_t check; cookie = xcb_intern_atom(conn, 0, strlen(name), name); reply = xcb_intern_atom_reply(conn, cookie, NULL); if (reply == NULL) return; if (state) check = xcb_change_property_checked(conn, XCB_PROP_MODE_REPLACE, drawable, reply->atom, XCB_ATOM_CARDINAL, 32, 1, &state); else check = xcb_delete_property_checked(conn, drawable, reply->atom); xcb_discard_reply(conn, check.sequence); free(reply); } static VkResult x11_wait_for_present_queued( struct x11_swapchain *chain, uint64_t waitValue, uint64_t timeout) { struct timespec abs_timespec; uint64_t abs_timeout = 0; if (timeout != 0) abs_timeout = os_time_get_absolute_timeout(timeout); /* Need to observe that the swapchain semaphore has been unsignalled, * as this is guaranteed when a present is complete. */ VkResult result = wsi_swapchain_wait_for_present_semaphore( &chain->base, waitValue, timeout); if (result != VK_SUCCESS) return result; timespec_from_nsec(&abs_timespec, abs_timeout); pthread_mutex_lock(&chain->present_progress_mutex); while (chain->present_id < waitValue) { int ret = pthread_cond_timedwait(&chain->present_progress_cond, &chain->present_progress_mutex, &abs_timespec); if (ret == ETIMEDOUT) { result = VK_TIMEOUT; break; } if (ret) { result = VK_ERROR_DEVICE_LOST; break; } } if (result == VK_SUCCESS && chain->present_progress_error) result = chain->present_progress_error; pthread_mutex_unlock(&chain->present_progress_mutex); return result; } static VkResult x11_wait_for_present_polled( struct x11_swapchain *chain, uint64_t waitValue, uint64_t timeout) { struct timespec rel_timeout, abs_timespec_realtime, start_time; struct timespec abs_timespec_monotonic; uint64_t abs_timeout_monotonic = 0; if (timeout != 0) abs_timeout_monotonic = os_time_get_absolute_timeout(timeout); /* Mutex abs_timeout is in REALTIME timebase. */ timespec_from_nsec(&rel_timeout, timeout); clock_gettime(CLOCK_REALTIME, &start_time); timespec_add(&abs_timespec_realtime, &rel_timeout, &start_time); /* Need to observe that the swapchain semaphore has been unsignalled, * as this is guaranteed when a present is complete. */ VkResult result = wsi_swapchain_wait_for_present_semaphore( &chain->base, waitValue, timeout); if (result != VK_SUCCESS) return result; /* If we have satisfied the present ID right away, just return early. */ pthread_mutex_lock(&chain->present_progress_mutex); if (chain->present_id >= waitValue) { result = chain->present_progress_error; } else { result = VK_TIMEOUT; } if (result != VK_TIMEOUT) { pthread_mutex_unlock(&chain->present_progress_mutex); return result; } timespec_from_nsec(&abs_timespec_monotonic, abs_timeout_monotonic); /* In a situation of wait-before-signal, we need to ensure that a presentID of at least * waitValue has been submitted before we're allowed to lock the XCB connection. * Even if the user does not use wait-before-signal we can still hit this scenario on Xwayland * where we have a present queue, but no acquire queue. We need to observe that the present queue * has actually submitted the present to XCB before we're guaranteed forward progress. */ while (chain->present_id_pending < waitValue) { int ret = pthread_cond_timedwait(&chain->present_progress_cond, &chain->present_progress_mutex, &abs_timespec_monotonic); if (chain->present_progress_error || ret == ETIMEDOUT || ret) { pthread_mutex_unlock(&chain->present_progress_mutex); if (chain->present_progress_error) return chain->present_progress_error; else if (ret == ETIMEDOUT) return VK_TIMEOUT; else return VK_ERROR_DEVICE_LOST; } } pthread_mutex_unlock(&chain->present_progress_mutex); /* This scheme of taking the message queue lock is not optimal, * but it is only problematic in meaningless situations. * - This path can only be hit by IMMEDIATE or MAILBOX mode. * Using present wait for IMMEDIATE and MAILBOX is not particularly useful except * for safe teardown purposes and recycling semaphores. * - There is contention with multiple threads waiting for PresentWait, * where the first thread to wait is blocking with no timeout and hogs the message queue until * that present is processed. */ int ret; if (timeout == UINT64_MAX) ret = pthread_mutex_lock(&chain->present_poll_mutex); else ret = pthread_mutex_timedlock(&chain->present_poll_mutex, &abs_timespec_realtime); if (ret) { if (ret == ETIMEDOUT) return VK_TIMEOUT; else return VK_ERROR_DEVICE_LOST; } result = chain->present_progress_error; while (result == VK_SUCCESS && chain->present_id < waitValue) { xcb_generic_event_t *event; xcb_flush(chain->conn); if (timeout == UINT64_MAX) { /* See comments in x11_manage_fifo_queues about problem scenarios with this call. */ event = xcb_wait_for_special_event(chain->conn, chain->special_event); if (!event) { result = x11_swapchain_result(chain, VK_ERROR_SURFACE_LOST_KHR); goto fail; } } else { result = x11_poll_for_special_event(chain, abs_timeout_monotonic, &event); if (result != VK_SUCCESS) goto fail; } result = x11_handle_dri3_present_event(chain, (void *)event); /* Ensure that VK_SUBOPTIMAL_KHR is reported to the application */ result = x11_swapchain_result(chain, result); free(event); } fail: pthread_mutex_unlock(&chain->present_poll_mutex); return result; } static VkResult x11_wait_for_present(struct wsi_swapchain *wsi_chain, uint64_t waitValue, uint64_t timeout) { struct x11_swapchain *chain = (struct x11_swapchain *)wsi_chain; VkResult result; if (chain->has_present_queue && chain->has_acquire_queue) { /* In this style we have guaranteed forward progress in the present queue thread, * so we don't need to do anything. * This path is hit for FIFO presentation modes. */ result = x11_wait_for_present_queued(chain, waitValue, timeout); } else { /* In this style we don't necessarily have forward progress, so we need to pump the message queue ourselves. * This blocks the message queue for other threads that want to present. * In practice, we'll only end up blocking on swapchain teardown, so this isn't a big deal. */ result = x11_wait_for_present_polled(chain, waitValue, timeout); } return result; } static unsigned x11_get_min_image_count_for_present_mode(struct wsi_device *wsi_device, struct wsi_x11_connection *wsi_conn, VkPresentModeKHR present_mode) { if (x11_needs_wait_for_fences(wsi_device, wsi_conn, present_mode)) return 5; else return x11_get_min_image_count(wsi_device, wsi_conn->is_xwayland); } /** * Create the swapchain. * * Supports immediate, fifo and mailbox presentation mode. * */ static VkResult x11_surface_create_swapchain(VkIcdSurfaceBase *icd_surface, VkDevice device, struct wsi_device *wsi_device, const VkSwapchainCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks* pAllocator, struct wsi_swapchain **swapchain_out) { struct x11_swapchain *chain; xcb_void_cookie_t cookie; VkResult result; VkPresentModeKHR present_mode = wsi_swapchain_get_present_mode(wsi_device, pCreateInfo); assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR); /* Get xcb connection from the icd_surface and from that our internal struct * representing it. */ xcb_connection_t *conn = x11_surface_get_connection(icd_surface); struct wsi_x11_connection *wsi_conn = wsi_x11_get_connection(wsi_device, conn); if (!wsi_conn) return VK_ERROR_OUT_OF_HOST_MEMORY; /* Get number of images in our swapchain. This count depends on: * - requested minimal image count * - device characteristics * - presentation mode. */ unsigned num_images = pCreateInfo->minImageCount; if (wsi_device->x11.strict_imageCount) num_images = pCreateInfo->minImageCount; else if (x11_needs_wait_for_fences(wsi_device, wsi_conn, present_mode)) num_images = MAX2(num_images, 5); else if (wsi_device->x11.ensure_minImageCount) num_images = MAX2(num_images, x11_get_min_image_count(wsi_device, wsi_conn->is_xwayland)); /* Check that we have a window up-front. It is an error to not have one. */ xcb_window_t window = x11_surface_get_window(icd_surface); /* Get the geometry of that window. The bit depth of the swapchain will be fitted and the * chain's images extents should fit it for performance-optimizing flips. */ xcb_get_geometry_reply_t *geometry = xcb_get_geometry_reply(conn, xcb_get_geometry(conn, window), NULL); if (geometry == NULL) return VK_ERROR_SURFACE_LOST_KHR; const uint32_t bit_depth = geometry->depth; const uint16_t cur_width = geometry->width; const uint16_t cur_height = geometry->height; free(geometry); /* Allocate the actual swapchain. The size depends on image count. */ size_t size = sizeof(*chain) + num_images * sizeof(chain->images[0]); chain = vk_zalloc(pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (chain == NULL) return VK_ERROR_OUT_OF_HOST_MEMORY; int ret = pthread_mutex_init(&chain->present_progress_mutex, NULL); if (ret != 0) { vk_free(pAllocator, chain); return VK_ERROR_OUT_OF_HOST_MEMORY; } ret = pthread_mutex_init(&chain->present_poll_mutex, NULL); if (ret != 0) { pthread_mutex_destroy(&chain->present_progress_mutex); vk_free(pAllocator, chain); return VK_ERROR_OUT_OF_HOST_MEMORY; } bool bret = wsi_init_pthread_cond_monotonic(&chain->present_progress_cond); if (!bret) { pthread_mutex_destroy(&chain->present_progress_mutex); pthread_mutex_destroy(&chain->present_poll_mutex); vk_free(pAllocator, chain); return VK_ERROR_OUT_OF_HOST_MEMORY; } struct wsi_base_image_params *image_params = NULL; struct wsi_cpu_image_params cpu_image_params; struct wsi_drm_image_params drm_image_params; uint64_t *modifiers[2] = {NULL, NULL}; uint32_t num_modifiers[2] = {0, 0}; if (wsi_device->sw) { cpu_image_params = (struct wsi_cpu_image_params) { .base.image_type = WSI_IMAGE_TYPE_CPU, .alloc_shm = wsi_conn->has_mit_shm ? &alloc_shm : NULL, }; image_params = &cpu_image_params.base; } else { drm_image_params = (struct wsi_drm_image_params) { .base.image_type = WSI_IMAGE_TYPE_DRM, .same_gpu = wsi_x11_check_dri3_compatible(wsi_device, conn), }; if (wsi_device->supports_modifiers) { wsi_x11_get_dri3_modifiers(wsi_conn, conn, window, bit_depth, 32, pCreateInfo->compositeAlpha, modifiers, num_modifiers, &drm_image_params.num_modifier_lists, pAllocator); drm_image_params.num_modifiers = num_modifiers; drm_image_params.modifiers = (const uint64_t **)modifiers; } image_params = &drm_image_params.base; } result = wsi_swapchain_init(wsi_device, &chain->base, device, pCreateInfo, image_params, pAllocator); for (int i = 0; i < ARRAY_SIZE(modifiers); i++) vk_free(pAllocator, modifiers[i]); if (result != VK_SUCCESS) goto fail_alloc; chain->base.destroy = x11_swapchain_destroy; chain->base.get_wsi_image = x11_get_wsi_image; chain->base.acquire_next_image = x11_acquire_next_image; chain->base.queue_present = x11_queue_present; chain->base.wait_for_present = x11_wait_for_present; chain->base.release_images = x11_release_images; chain->base.present_mode = present_mode; chain->base.image_count = num_images; chain->conn = conn; chain->window = window; chain->depth = bit_depth; chain->extent = pCreateInfo->imageExtent; chain->send_sbc = 0; chain->sent_image_count = 0; chain->last_present_msc = 0; chain->has_acquire_queue = false; chain->has_present_queue = false; chain->status = VK_SUCCESS; chain->has_dri3_modifiers = wsi_conn->has_dri3_modifiers; chain->has_mit_shm = wsi_conn->has_mit_shm; xcb_present_query_capabilities_cookie_t present_query_cookie; xcb_present_query_capabilities_reply_t *present_query_reply; present_query_cookie = xcb_present_query_capabilities(conn, chain->window); present_query_reply = xcb_present_query_capabilities_reply(conn, present_query_cookie, NULL); if (present_query_reply) { chain->has_async_may_tear = present_query_reply->capabilities & XCB_PRESENT_CAPABILITY_ASYNC_MAY_TEAR; free(present_query_reply); } /* When images in the swapchain don't fit the window, X can still present them, but it won't * happen by flip, only by copy. So this is a suboptimal copy, because if the client would change * the chain extents X may be able to flip */ if (chain->extent.width != cur_width || chain->extent.height != cur_height) chain->status = VK_SUBOPTIMAL_KHR; /* On a new swapchain this helper variable is set to false. Once we present it will have an * impact once we ever do at least one flip and go back to copying afterwards. It is presumed * that in this case here is a high likelihood X could do flips again if the client reallocates a * new swapchain. * * Note that we used to inheritted this property from 'pCreateInfo->oldSwapchain'. But when it * was true, and when the next present was completed with copying, we would return * VK_SUBOPTIMAL_KHR and hint the app to reallocate again for no good reason. If all following * presents on the surface were completed with copying because of some surface state change, we * would always return VK_SUBOPTIMAL_KHR no matter how many times the app had reallocated. * * Note also that is is questionable in general if that mechanism is really useful. It ist not * clear why on a change from flipping to copying we can assume a reallocation has a high chance * of making flips work again per se. In other words it is not clear why there is need for * another way to inform clients about suboptimal copies besides forwarding the * 'PresentOptionSuboptimal' complete mode. */ chain->copy_is_suboptimal = false; /* For our swapchain we need to listen to following Present extension events: * - Configure: Window dimensions changed. Images in the swapchain might need * to be reallocated. * - Complete: An image from our swapchain was presented on the output. * - Idle: An image from our swapchain is not anymore accessed by the X * server and can be reused. */ chain->event_id = xcb_generate_id(chain->conn); xcb_present_select_input(chain->conn, chain->event_id, chain->window, XCB_PRESENT_EVENT_MASK_CONFIGURE_NOTIFY | XCB_PRESENT_EVENT_MASK_COMPLETE_NOTIFY | XCB_PRESENT_EVENT_MASK_IDLE_NOTIFY); /* Create an XCB event queue to hold present events outside of the usual * application event queue */ chain->special_event = xcb_register_for_special_xge(chain->conn, &xcb_present_id, chain->event_id, NULL); /* Create the graphics context. */ chain->gc = xcb_generate_id(chain->conn); if (!chain->gc) { /* FINISHME: Choose a better error. */ result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail_register; } cookie = xcb_create_gc(chain->conn, chain->gc, chain->window, XCB_GC_GRAPHICS_EXPOSURES, (uint32_t []) { 0 }); xcb_discard_reply(chain->conn, cookie.sequence); uint32_t image = 0; for (; image < chain->base.image_count; image++) { result = x11_image_init(device, chain, pCreateInfo, pAllocator, &chain->images[image]); if (result != VK_SUCCESS) goto fail_init_images; } /* Initialize queues for images in our swapchain. Possible queues are: * - Present queue: for images sent to the X server but not yet presented. * - Acquire queue: for images already presented but not yet released by the * X server. * * In general queues are not used on software drivers, otherwise which queues * are used depends on our presentation mode: * - Fifo: present and acquire * - Mailbox: present only * - Immediate: present when we wait on fences before buffer submission (Xwayland) */ if ((chain->base.present_mode == VK_PRESENT_MODE_FIFO_KHR || chain->base.present_mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR || x11_needs_wait_for_fences(wsi_device, wsi_conn, chain->base.present_mode)) && !chain->base.wsi->sw) { chain->has_present_queue = true; /* The queues have a length of base.image_count + 1 because we will * occasionally use UINT32_MAX to signal the other thread that an error * has occurred and we don't want an overflow. */ int ret; ret = wsi_queue_init(&chain->present_queue, chain->base.image_count + 1); if (ret) { goto fail_init_images; } if (chain->base.present_mode == VK_PRESENT_MODE_FIFO_KHR || chain->base.present_mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR) { chain->has_acquire_queue = true; ret = wsi_queue_init(&chain->acquire_queue, chain->base.image_count + 1); if (ret) { wsi_queue_destroy(&chain->present_queue); goto fail_init_images; } for (unsigned i = 0; i < chain->base.image_count; i++) wsi_queue_push(&chain->acquire_queue, i); } ret = pthread_create(&chain->queue_manager, NULL, x11_manage_fifo_queues, chain); if (ret) { wsi_queue_destroy(&chain->present_queue); if (chain->has_acquire_queue) wsi_queue_destroy(&chain->acquire_queue); goto fail_init_images; } } assert(chain->has_present_queue || !chain->has_acquire_queue); /* It is safe to set it here as only one swapchain can be associated with * the window, and swapchain creation does the association. At this point * we know the creation is going to succeed. */ wsi_x11_set_adaptive_sync_property(conn, window, wsi_device->enable_adaptive_sync); *swapchain_out = &chain->base; return VK_SUCCESS; fail_init_images: for (uint32_t j = 0; j < image; j++) x11_image_finish(chain, pAllocator, &chain->images[j]); fail_register: xcb_unregister_for_special_event(chain->conn, chain->special_event); wsi_swapchain_finish(&chain->base); fail_alloc: vk_free(pAllocator, chain); return result; } VkResult wsi_x11_init_wsi(struct wsi_device *wsi_device, const VkAllocationCallbacks *alloc, const struct driOptionCache *dri_options) { struct wsi_x11 *wsi; VkResult result; wsi = vk_alloc(alloc, sizeof(*wsi), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (!wsi) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } int ret = pthread_mutex_init(&wsi->mutex, NULL); if (ret != 0) { if (ret == ENOMEM) { result = VK_ERROR_OUT_OF_HOST_MEMORY; } else { /* FINISHME: Choose a better error. */ result = VK_ERROR_OUT_OF_HOST_MEMORY; } goto fail_alloc; } wsi->connections = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); if (!wsi->connections) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail_mutex; } if (dri_options) { if (driCheckOption(dri_options, "vk_x11_override_min_image_count", DRI_INT)) { wsi_device->x11.override_minImageCount = driQueryOptioni(dri_options, "vk_x11_override_min_image_count"); } if (driCheckOption(dri_options, "vk_x11_strict_image_count", DRI_BOOL)) { wsi_device->x11.strict_imageCount = driQueryOptionb(dri_options, "vk_x11_strict_image_count"); } if (driCheckOption(dri_options, "vk_x11_ensure_min_image_count", DRI_BOOL)) { wsi_device->x11.ensure_minImageCount = driQueryOptionb(dri_options, "vk_x11_ensure_min_image_count"); } wsi_device->x11.xwaylandWaitReady = true; if (driCheckOption(dri_options, "vk_xwayland_wait_ready", DRI_BOOL)) { wsi_device->x11.xwaylandWaitReady = driQueryOptionb(dri_options, "vk_xwayland_wait_ready"); } } wsi->base.get_support = x11_surface_get_support; wsi->base.get_capabilities2 = x11_surface_get_capabilities2; wsi->base.get_formats = x11_surface_get_formats; wsi->base.get_formats2 = x11_surface_get_formats2; wsi->base.get_present_modes = x11_surface_get_present_modes; wsi->base.get_present_rectangles = x11_surface_get_present_rectangles; wsi->base.create_swapchain = x11_surface_create_swapchain; wsi_device->wsi[VK_ICD_WSI_PLATFORM_XCB] = &wsi->base; wsi_device->wsi[VK_ICD_WSI_PLATFORM_XLIB] = &wsi->base; return VK_SUCCESS; fail_mutex: pthread_mutex_destroy(&wsi->mutex); fail_alloc: vk_free(alloc, wsi); fail: wsi_device->wsi[VK_ICD_WSI_PLATFORM_XCB] = NULL; wsi_device->wsi[VK_ICD_WSI_PLATFORM_XLIB] = NULL; return result; } void wsi_x11_finish_wsi(struct wsi_device *wsi_device, const VkAllocationCallbacks *alloc) { struct wsi_x11 *wsi = (struct wsi_x11 *)wsi_device->wsi[VK_ICD_WSI_PLATFORM_XCB]; if (wsi) { hash_table_foreach(wsi->connections, entry) wsi_x11_connection_destroy(wsi_device, entry->data); _mesa_hash_table_destroy(wsi->connections, NULL); pthread_mutex_destroy(&wsi->mutex); vk_free(alloc, wsi); } }