/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #define LOG_TAG "EffectHAL" #define ATRACE_TAG ATRACE_TAG_AUDIO #include "Effect.h" #include "common/all-versions/default/EffectMap.h" #define ATRACE_TAG ATRACE_TAG_AUDIO #include #include #include #include #include #include #include #include #include #include "VersionUtils.h" namespace android { namespace hardware { namespace audio { namespace effect { namespace CPP_VERSION { namespace implementation { #if MAJOR_VERSION <= 6 using ::android::hardware::audio::common::COMMON_TYPES_CPP_VERSION::implementation:: AudioChannelBitfield; #endif using ::android::hardware::audio::common::COMMON_TYPES_CPP_VERSION::implementation::HidlUtils; namespace { /** * Some basic scheduling tools. */ namespace scheduler { int getCpu() { return sched_getcpu(); } uint64_t getAffinity(pid_t tid) { cpu_set_t set; CPU_ZERO_S(sizeof(set), &set); if (sched_getaffinity(tid, sizeof(set), &set)) { ALOGW("%s: for tid:%d returning 0, failed %s", __func__, tid, strerror(errno)); return 0; } const int count = CPU_COUNT_S(sizeof(set), &set); uint64_t mask = 0; for (int i = 0; i < CPU_SETSIZE; ++i) { if (CPU_ISSET_S(i, sizeof(set), &set)) { mask |= 1 << i; } } ALOGV("%s: for tid:%d returning cpu count %d mask %llu", __func__, tid, count, (unsigned long long)mask); return mask; } status_t setAffinity(pid_t tid, uint64_t mask) { cpu_set_t set; CPU_ZERO_S(sizeof(set), &set); for (uint64_t m = mask; m != 0;) { uint64_t tz = __builtin_ctz(m); CPU_SET_S(tz, sizeof(set), &set); m &= ~(1 << tz); } if (sched_setaffinity(tid, sizeof(set), &set)) { ALOGW("%s: for tid:%d setting cpu mask %llu failed %s", __func__, tid, (unsigned long long)mask, strerror(errno)); return -errno; } ALOGV("%s: for tid:%d setting cpu mask %llu", __func__, tid, (unsigned long long)mask); return OK; } __unused status_t setPriority(pid_t tid, int policy, int priority) { struct sched_param param { .sched_priority = priority, }; if (sched_setscheduler(tid, policy, ¶m) != 0) { ALOGW("%s: Cannot set FIFO priority for tid %d to policy %d priority %d %s", __func__, tid, policy, priority, strerror(errno)); return -errno; } ALOGV("%s: Successfully set priority for tid %d to policy %d priority %d", __func__, tid, policy, priority); return NO_ERROR; } status_t setUtilMin(pid_t tid, uint32_t utilMin) { // Currently, there is no wrapper in bionic: b/183240349. struct { uint32_t size; uint32_t sched_policy; uint64_t sched_flags; int32_t sched_nice; uint32_t sched_priority; uint64_t sched_runtime; uint64_t sched_deadline; uint64_t sched_period; uint32_t sched_util_min; uint32_t sched_util_max; } attr{ .size = sizeof(attr), .sched_flags = SCHED_FLAG_KEEP_ALL | SCHED_FLAG_UTIL_CLAMP_MIN, .sched_util_min = utilMin, }; if (syscall(__NR_sched_setattr, tid, &attr, 0 /* flags */)) { ALOGW("%s: Cannot set sched_util_min for pid %d to %u %s", __func__, tid, utilMin, strerror(errno)); return -errno; } ALOGV("%s: Successfully set sched_util_min for pid %d to %u", __func__, tid, utilMin); return NO_ERROR; } /* Attempts to raise the priority and usage of tid for spatialization. Returns OK if everything works. */ status_t updateSpatializerPriority(pid_t tid) { status_t status = OK; const int cpu = getCpu(); ALOGV("%s: current CPU:%d", __func__, cpu); const auto currentAffinity = getAffinity(tid); ALOGV("%s: current Affinity:%llx", __func__, (unsigned long long)currentAffinity); // Set the desired CPU core affinity. // Typically this would be done to move the Spatializer effect off of the little cores. // The mid cores and large cores typically have more FP/NEON units // and will advantageously reduce power and prevent glitches due CPU limitations. // // Since this is SOC dependent, we do not set the core affinity here but // prefer to set the util_clamp_min below. // constexpr uint64_t kDefaultAffinity = 0; const int32_t desiredAffinity = property_get_int32("audio.spatializer.effect.affinity", kDefaultAffinity); if (desiredAffinity != 0 && (desiredAffinity & ~currentAffinity) == 0) { const status_t localStatus = setAffinity(tid, desiredAffinity); status = status ? status : localStatus; } // Set the util_clamp_min. // This is beneficial to reduce glitches when starting up, or due to scheduler // thread statistics reset (e.g. core migration), which cause the CPU frequency to drop // to minimum. // // Experimentation has found that moving to a mid core over a little core reduces // power if the mid core (e.g. A76/78) has more (e.g. 2x) FP/NEON units // than the little core (e.g. A55). // A possible value is 300. // constexpr uint32_t kUtilMin = 0; const int32_t utilMin = property_get_int32("audio.spatializer.effect.util_clamp_min", kUtilMin); if (utilMin > 0 && utilMin <= 1024) { const status_t localStatus = setUtilMin(tid, utilMin); status = status ? status : localStatus; } #if 0 // Provided for local vendor testing but not enabled as audioserver does this for us. // // Set priority if specified. constexpr int32_t kRTPriorityMin = 1; constexpr int32_t kRTPriorityMax = 3; const int32_t priorityBoost = property_get_int32("audio.spatializer.priority", kRTPriorityMin); if (priorityBoost >= kRTPriorityMin && priorityBoost <= kRTPriorityMax) { const status_t localStatus = scheduler::setPriority(threadId, SCHED_FIFO, priorityBoost); status = status ? status : localStatus; } #endif return status; } } // namespace scheduler #define SCOPED_STATS() \ ::android::mediautils::ScopedStatistics scopedStatistics { \ std::string("EffectHal::").append(__func__), mEffectHal->mStatistics \ } class ProcessThread : public Thread { public: // ProcessThread's lifespan never exceeds Effect's lifespan. ProcessThread(std::atomic* stop, effect_handle_t effect, std::atomic* inBuffer, std::atomic* outBuffer, Effect::StatusMQ* statusMQ, EventFlag* efGroup, Effect* effectHal) : Thread(false /*canCallJava*/), mStop(stop), mEffect(effect), mHasProcessReverse((*mEffect)->process_reverse != NULL), mInBuffer(inBuffer), mOutBuffer(outBuffer), mStatusMQ(statusMQ), mEfGroup(efGroup), mEffectHal(effectHal) {} virtual ~ProcessThread() {} private: std::atomic* mStop; effect_handle_t mEffect; bool mHasProcessReverse; std::atomic* mInBuffer; std::atomic* mOutBuffer; Effect::StatusMQ* mStatusMQ; EventFlag* mEfGroup; Effect* const mEffectHal; bool threadLoop() override; }; bool ProcessThread::threadLoop() { // This implementation doesn't return control back to the Thread until it decides to stop, // as the Thread uses mutexes, and this can lead to priority inversion. while (!std::atomic_load_explicit(mStop, std::memory_order_acquire)) { uint32_t efState = 0; mEfGroup->wait(static_cast(MessageQueueFlagBits::REQUEST_PROCESS_ALL), &efState); if (!(efState & static_cast(MessageQueueFlagBits::REQUEST_PROCESS_ALL)) || (efState & static_cast(MessageQueueFlagBits::REQUEST_QUIT))) { continue; // Nothing to do or time to quit. } Result retval = Result::OK; if (efState & static_cast(MessageQueueFlagBits::REQUEST_PROCESS_REVERSE) && !mHasProcessReverse) { retval = Result::NOT_SUPPORTED; } if (retval == Result::OK) { // affects both buffer pointers and their contents. std::atomic_thread_fence(std::memory_order_acquire); int32_t processResult; audio_buffer_t* inBuffer = std::atomic_load_explicit(mInBuffer, std::memory_order_relaxed); audio_buffer_t* outBuffer = std::atomic_load_explicit(mOutBuffer, std::memory_order_relaxed); if (inBuffer != nullptr && outBuffer != nullptr) { // Time this effect process SCOPED_STATS(); if (efState & static_cast(MessageQueueFlagBits::REQUEST_PROCESS)) { processResult = (*mEffect)->process(mEffect, inBuffer, outBuffer); } else { processResult = (*mEffect)->process_reverse(mEffect, inBuffer, outBuffer); } std::atomic_thread_fence(std::memory_order_release); } else { ALOGE("processing buffers were not set before calling 'process'"); processResult = -ENODEV; } switch (processResult) { case 0: retval = Result::OK; break; case -ENODATA: retval = Result::INVALID_STATE; break; case -EINVAL: retval = Result::INVALID_ARGUMENTS; break; default: retval = Result::NOT_INITIALIZED; } } if (!mStatusMQ->write(&retval)) { ALOGW("status message queue write failed"); } mEfGroup->wake(static_cast(MessageQueueFlagBits::DONE_PROCESSING)); } return false; } } // namespace // static const char* Effect::sContextResultOfCommand = "returned status"; const char* Effect::sContextCallToCommand = "error"; const char* Effect::sContextCallFunction = sContextCallToCommand; const char* Effect::sContextConversion = "conversion"; Effect::Effect(bool isInput, effect_handle_t handle) : mIsInput(isInput), mHandle(handle), mEfGroup(nullptr), mStopProcessThread(false) { (void)mIsInput; // prevent 'unused field' warnings in pre-V7 versions. } Effect::~Effect() { ATRACE_CALL(); auto [_, handle] = closeImpl(); if (mProcessThread.get()) { ATRACE_NAME("mProcessThread->join"); status_t status = mProcessThread->join(); ALOGE_IF(status, "processing thread exit error: %s", strerror(-status)); } if (mEfGroup) { status_t status = EventFlag::deleteEventFlag(&mEfGroup); ALOGE_IF(status, "processing MQ event flag deletion error: %s", strerror(-status)); } mInBuffer.clear(); mOutBuffer.clear(); #if MAJOR_VERSION <= 5 int status = EffectRelease(handle); ALOGW_IF(status, "Error releasing effect %p: %s", handle, strerror(-status)); #endif EffectMap::getInstance().remove(handle); } // static template size_t Effect::alignedSizeIn(size_t s) { return (s + sizeof(T) - 1) / sizeof(T); } // static template std::unique_ptr Effect::hidlVecToHal(const hidl_vec& vec, uint32_t* halDataSize) { // Due to bugs in HAL, they may attempt to write into the provided // input buffer. The original binder buffer is r/o, thus it is needed // to create a r/w version. *halDataSize = vec.size() * sizeof(T); std::unique_ptr halData(new uint8_t[*halDataSize]); memcpy(&halData[0], &vec[0], *halDataSize); return halData; } #if MAJOR_VERSION <= 6 void Effect::effectAuxChannelsConfigFromHal(const channel_config_t& halConfig, EffectAuxChannelsConfig* config) { config->mainChannels = AudioChannelBitfield(halConfig.main_channels); config->auxChannels = AudioChannelBitfield(halConfig.aux_channels); } // static void Effect::effectAuxChannelsConfigToHal(const EffectAuxChannelsConfig& config, channel_config_t* halConfig) { halConfig->main_channels = static_cast(config.mainChannels); halConfig->aux_channels = static_cast(config.auxChannels); } #else // MAJOR_VERSION <= 6 void Effect::effectAuxChannelsConfigFromHal(const channel_config_t& halConfig, EffectAuxChannelsConfig* config) { (void)HidlUtils::audioChannelMaskFromHal(halConfig.main_channels, mIsInput, &config->mainChannels); (void)HidlUtils::audioChannelMaskFromHal(halConfig.aux_channels, mIsInput, &config->auxChannels); } // static void Effect::effectAuxChannelsConfigToHal(const EffectAuxChannelsConfig& config, channel_config_t* halConfig) { (void)HidlUtils::audioChannelMaskToHal(config.mainChannels, &halConfig->main_channels); (void)HidlUtils::audioChannelMaskToHal(config.auxChannels, &halConfig->aux_channels); } #endif // MAJOR_VERSION <= 6 // static void Effect::effectOffloadParamToHal(const EffectOffloadParameter& offload, effect_offload_param_t* halOffload) { halOffload->isOffload = offload.isOffload; halOffload->ioHandle = offload.ioHandle; } // static bool Effect::parameterToHal(uint32_t paramSize, const void* paramData, uint32_t valueSize, const void** valueData, std::vector* halParamBuffer) { constexpr size_t kMaxSize = EFFECT_PARAM_SIZE_MAX - sizeof(effect_param_t); if (paramSize > kMaxSize) { ALOGE("%s: Parameter size is too big: %" PRIu32, __func__, paramSize); return false; } size_t valueOffsetFromData = alignedSizeIn(paramSize) * sizeof(uint32_t); if (valueOffsetFromData > kMaxSize) { ALOGE("%s: Aligned parameter size is too big: %zu", __func__, valueOffsetFromData); return false; } if (valueSize > kMaxSize - valueOffsetFromData) { ALOGE("%s: Value size is too big: %" PRIu32 ", max size is %zu", __func__, valueSize, kMaxSize - valueOffsetFromData); android_errorWriteLog(0x534e4554, "237291425"); return false; } size_t halParamBufferSize = sizeof(effect_param_t) + valueOffsetFromData + valueSize; halParamBuffer->resize(halParamBufferSize, 0); effect_param_t* halParam = reinterpret_cast(halParamBuffer->data()); halParam->psize = paramSize; halParam->vsize = valueSize; memcpy(halParam->data, paramData, paramSize); if (valueData) { if (*valueData) { // Value data is provided. memcpy(halParam->data + valueOffsetFromData, *valueData, valueSize); } else { // The caller needs the pointer to the value data location. *valueData = halParam->data + valueOffsetFromData; } } return true; } Result Effect::analyzeCommandStatus(const char* commandName, const char* context, status_t status) { return analyzeStatus("command", commandName, context, status); } Result Effect::analyzeStatus(const char* funcName, const char* subFuncName, const char* contextDescription, status_t status) { if (status != OK) { ALOGW("Effect %p %s %s %s: %s", mHandle, funcName, subFuncName, contextDescription, strerror(-status)); } switch (status) { case OK: return Result::OK; case -EINVAL: return Result::INVALID_ARGUMENTS; case -ENODATA: return Result::INVALID_STATE; case -ENODEV: return Result::NOT_INITIALIZED; case -ENOMEM: return Result::RESULT_TOO_BIG; case -ENOSYS: return Result::NOT_SUPPORTED; default: return Result::INVALID_STATE; } } #define RETURN_IF_EFFECT_CLOSED() \ if (mHandle == kInvalidEffectHandle) { \ return Result::INVALID_STATE; \ } #define RETURN_RESULT_IF_EFFECT_CLOSED(result) \ if (mHandle == kInvalidEffectHandle) { \ _hidl_cb(Result::INVALID_STATE, result); \ return Void(); \ } Return Effect::getConfigImpl(int commandCode, const char* commandName, GetConfigCallback _hidl_cb) { RETURN_RESULT_IF_EFFECT_CLOSED(EffectConfig()); uint32_t halResultSize = sizeof(effect_config_t); effect_config_t halConfig{}; status_t status = (*mHandle)->command(mHandle, commandCode, 0, NULL, &halResultSize, &halConfig); EffectConfig config; if (status == OK) { status = EffectUtils::effectConfigFromHal(halConfig, mIsInput, &config); } _hidl_cb(analyzeCommandStatus(commandName, sContextCallToCommand, status), config); return Void(); } Result Effect::getCurrentConfigImpl(uint32_t featureId, uint32_t configSize, GetCurrentConfigSuccessCallback onSuccess) { if (configSize > kMaxDataSize - sizeof(uint32_t)) { ALOGE("%s: Config size is too big: %" PRIu32, __func__, configSize); android_errorWriteLog(0x534e4554, "240266798"); return Result::INVALID_ARGUMENTS; } uint32_t halCmd = featureId; std::vector halResult(alignedSizeIn(sizeof(uint32_t) + configSize), 0); uint32_t halResultSize = 0; return sendCommandReturningStatusAndData( EFFECT_CMD_GET_FEATURE_CONFIG, "GET_FEATURE_CONFIG", sizeof(uint32_t), &halCmd, &halResultSize, &halResult[0], sizeof(uint32_t), [&] { onSuccess(&halResult[1]); }); } Result Effect::getParameterImpl(uint32_t paramSize, const void* paramData, uint32_t requestValueSize, uint32_t replyValueSize, GetParameterSuccessCallback onSuccess) { // As it is unknown what method HAL uses for copying the provided parameter data, // it is safer to make sure that input and output buffers do not overlap. std::vector halCmdBuffer; if (!parameterToHal(paramSize, paramData, requestValueSize, nullptr, &halCmdBuffer)) { return Result::INVALID_ARGUMENTS; } const void* valueData = nullptr; std::vector halParamBuffer; if (!parameterToHal(paramSize, paramData, replyValueSize, &valueData, &halParamBuffer)) { return Result::INVALID_ARGUMENTS; } uint32_t halParamBufferSize = halParamBuffer.size(); return sendCommandReturningStatusAndData( EFFECT_CMD_GET_PARAM, "GET_PARAM", halCmdBuffer.size(), &halCmdBuffer[0], &halParamBufferSize, &halParamBuffer[0], sizeof(effect_param_t), [&] { effect_param_t* halParam = reinterpret_cast(&halParamBuffer[0]); onSuccess(halParam->vsize, valueData); }); } Result Effect::getSupportedConfigsImpl(uint32_t featureId, uint32_t maxConfigs, uint32_t configSize, GetSupportedConfigsSuccessCallback onSuccess) { if (maxConfigs != 0 && configSize > (kMaxDataSize - 2 * sizeof(uint32_t)) / maxConfigs) { ALOGE("%s: Config size is too big: %" PRIu32, __func__, configSize); return Result::INVALID_ARGUMENTS; } uint32_t halCmd[2] = {featureId, maxConfigs}; uint32_t halResultSize = 2 * sizeof(uint32_t) + maxConfigs * configSize; std::vector halResult(static_cast(halResultSize), 0); return sendCommandReturningStatusAndData( EFFECT_CMD_GET_FEATURE_SUPPORTED_CONFIGS, "GET_FEATURE_SUPPORTED_CONFIGS", sizeof(halCmd), halCmd, &halResultSize, &halResult[0], 2 * sizeof(uint32_t), [&] { uint32_t* halResult32 = reinterpret_cast(&halResult[0]); uint32_t supportedConfigs = *(++halResult32); // skip status field if (supportedConfigs > maxConfigs) supportedConfigs = maxConfigs; onSuccess(supportedConfigs, ++halResult32); }); } Return Effect::prepareForProcessing(prepareForProcessing_cb _hidl_cb) { RETURN_RESULT_IF_EFFECT_CLOSED(StatusMQ::Descriptor()); status_t status; // Create message queue. if (mStatusMQ) { ALOGE("the client attempts to call prepareForProcessing_cb twice"); _hidl_cb(Result::INVALID_STATE, StatusMQ::Descriptor()); return Void(); } std::unique_ptr tempStatusMQ(new StatusMQ(1, true /*EventFlag*/)); if (!tempStatusMQ->isValid()) { ALOGE_IF(!tempStatusMQ->isValid(), "status MQ is invalid"); _hidl_cb(Result::INVALID_ARGUMENTS, StatusMQ::Descriptor()); return Void(); } status = EventFlag::createEventFlag(tempStatusMQ->getEventFlagWord(), &mEfGroup); if (status != OK || !mEfGroup) { ALOGE("failed creating event flag for status MQ: %s", strerror(-status)); _hidl_cb(Result::INVALID_ARGUMENTS, StatusMQ::Descriptor()); return Void(); } // Create and launch the thread. mProcessThread = new ProcessThread(&mStopProcessThread, mHandle, &mHalInBufferPtr, &mHalOutBufferPtr, tempStatusMQ.get(), mEfGroup, this); status = mProcessThread->run("effect", PRIORITY_URGENT_AUDIO); if (status != OK) { ALOGW("failed to start effect processing thread: %s", strerror(-status)); _hidl_cb(Result::INVALID_ARGUMENTS, MQDescriptorSync()); return Void(); } // For a spatializer effect, we perform scheduler adjustments to reduce glitches and power. // We do it here instead of the ProcessThread::threadLoop to ensure that mHandle is valid. if (effect_descriptor_t halDescriptor{}; (*mHandle)->get_descriptor(mHandle, &halDescriptor) == NO_ERROR && memcmp(&halDescriptor.type, FX_IID_SPATIALIZER, sizeof(effect_uuid_t)) == 0) { const status_t status = scheduler::updateSpatializerPriority(mProcessThread->getTid()); ALOGW_IF(status != OK, "Failed to update Spatializer priority"); } mStatusMQ = std::move(tempStatusMQ); _hidl_cb(Result::OK, *mStatusMQ->getDesc()); return Void(); } Return Effect::setProcessBuffers(const AudioBuffer& inBuffer, const AudioBuffer& outBuffer) { RETURN_IF_EFFECT_CLOSED(); AudioBufferManager& manager = AudioBufferManager::getInstance(); sp tempInBuffer, tempOutBuffer; if (!manager.wrap(inBuffer, &tempInBuffer)) { ALOGE("Could not map memory of the input buffer"); return Result::INVALID_ARGUMENTS; } if (!manager.wrap(outBuffer, &tempOutBuffer)) { ALOGE("Could not map memory of the output buffer"); return Result::INVALID_ARGUMENTS; } mInBuffer = tempInBuffer; mOutBuffer = tempOutBuffer; // The processing thread only reads these pointers after waking up by an event flag, // so it's OK to update the pair non-atomically. mHalInBufferPtr.store(mInBuffer->getHalBuffer(), std::memory_order_release); mHalOutBufferPtr.store(mOutBuffer->getHalBuffer(), std::memory_order_release); return Result::OK; } Result Effect::sendCommand(int commandCode, const char* commandName) { return sendCommand(commandCode, commandName, 0, NULL); } Result Effect::sendCommand(int commandCode, const char* commandName, uint32_t size, void* data) { RETURN_IF_EFFECT_CLOSED(); status_t status = (*mHandle)->command(mHandle, commandCode, size, data, 0, NULL); return analyzeCommandStatus(commandName, sContextCallToCommand, status); } Result Effect::sendCommandReturningData(int commandCode, const char* commandName, uint32_t* replySize, void* replyData) { return sendCommandReturningData(commandCode, commandName, 0, NULL, replySize, replyData); } Result Effect::sendCommandReturningData(int commandCode, const char* commandName, uint32_t size, void* data, uint32_t* replySize, void* replyData) { RETURN_IF_EFFECT_CLOSED(); uint32_t expectedReplySize = *replySize; status_t status = (*mHandle)->command(mHandle, commandCode, size, data, replySize, replyData); if (status == OK && *replySize != expectedReplySize) { status = -ENODATA; } return analyzeCommandStatus(commandName, sContextCallToCommand, status); } Result Effect::sendCommandReturningStatus(int commandCode, const char* commandName) { return sendCommandReturningStatus(commandCode, commandName, 0, NULL); } Result Effect::sendCommandReturningStatus(int commandCode, const char* commandName, uint32_t size, void* data) { uint32_t replyCmdStatus; uint32_t replySize = sizeof(uint32_t); return sendCommandReturningStatusAndData(commandCode, commandName, size, data, &replySize, &replyCmdStatus, replySize, [] {}); } Result Effect::sendCommandReturningStatusAndData(int commandCode, const char* commandName, uint32_t size, void* data, uint32_t* replySize, void* replyData, uint32_t minReplySize, CommandSuccessCallback onSuccess) { RETURN_IF_EFFECT_CLOSED(); status_t status = (*mHandle)->command(mHandle, commandCode, size, data, replySize, replyData); Result retval; if (status == OK && minReplySize >= sizeof(uint32_t) && *replySize >= minReplySize) { uint32_t commandStatus = *reinterpret_cast(replyData); retval = analyzeCommandStatus(commandName, sContextResultOfCommand, commandStatus); if (commandStatus == OK) { onSuccess(); } } else { retval = analyzeCommandStatus(commandName, sContextCallToCommand, status); } return retval; } Result Effect::setConfigImpl(int commandCode, const char* commandName, const EffectConfig& config, const sp& inputBufferProvider, const sp& outputBufferProvider) { effect_config_t halConfig; EffectUtils::effectConfigToHal(config, &halConfig); if (inputBufferProvider != 0) { LOG_FATAL("Using input buffer provider is not supported"); } if (outputBufferProvider != 0) { LOG_FATAL("Using output buffer provider is not supported"); } return sendCommandReturningStatus(commandCode, commandName, sizeof(effect_config_t), &halConfig); } Result Effect::setParameterImpl(uint32_t paramSize, const void* paramData, uint32_t valueSize, const void* valueData) { std::vector halParamBuffer; if (!parameterToHal(paramSize, paramData, valueSize, &valueData, &halParamBuffer)) { return Result::INVALID_ARGUMENTS; } return sendCommandReturningStatus(EFFECT_CMD_SET_PARAM, "SET_PARAM", halParamBuffer.size(), &halParamBuffer[0]); } // Methods from ::android::hardware::audio::effect::CPP_VERSION::IEffect follow. Return Effect::init() { return sendCommandReturningStatus(EFFECT_CMD_INIT, "INIT"); } Return Effect::setConfig(const EffectConfig& config, const sp& inputBufferProvider, const sp& outputBufferProvider) { return setConfigImpl(EFFECT_CMD_SET_CONFIG, "SET_CONFIG", config, inputBufferProvider, outputBufferProvider); } Return Effect::reset() { return sendCommand(EFFECT_CMD_RESET, "RESET"); } Return Effect::enable() { return sendCommandReturningStatus(EFFECT_CMD_ENABLE, "ENABLE"); } Return Effect::disable() { return sendCommandReturningStatus(EFFECT_CMD_DISABLE, "DISABLE"); } Return Effect::setAudioSource( #if MAJOR_VERSION <= 6 AudioSource source #else const AudioSource& source #endif ) { audio_source_t halSource; if (status_t status = HidlUtils::audioSourceToHal(source, &halSource); status == NO_ERROR) { uint32_t halSourceParam = static_cast(halSource); return sendCommand(EFFECT_CMD_SET_AUDIO_SOURCE, "SET_AUDIO_SOURCE", sizeof(uint32_t), &halSourceParam); } else { return analyzeStatus(__func__, "audioSourceToHal", sContextConversion, status); } } #if MAJOR_VERSION <= 6 Return Effect::setDevice(AudioDeviceBitfield device) { uint32_t halDevice = static_cast(device); return sendCommand(EFFECT_CMD_SET_DEVICE, "SET_DEVICE", sizeof(uint32_t), &halDevice); } Return Effect::setInputDevice(AudioDeviceBitfield device) { uint32_t halDevice = static_cast(device); return sendCommand(EFFECT_CMD_SET_INPUT_DEVICE, "SET_INPUT_DEVICE", sizeof(uint32_t), &halDevice); } #else // MAJOR_VERSION <= 6 Return Effect::setDevice(const DeviceAddress& device) { audio_devices_t halDevice; char halDeviceAddress[AUDIO_DEVICE_MAX_ADDRESS_LEN]; if (status_t status = HidlUtils::deviceAddressToHal(device, &halDevice, halDeviceAddress); status == NO_ERROR) { uint32_t halDeviceParam = static_cast(halDevice); return sendCommand(EFFECT_CMD_SET_DEVICE, "SET_DEVICE", sizeof(uint32_t), &halDeviceParam); } else { return analyzeStatus(__func__, "deviceAddressToHal", sContextConversion, status); } } Return Effect::setInputDevice(const DeviceAddress& device) { audio_devices_t halDevice; char halDeviceAddress[AUDIO_DEVICE_MAX_ADDRESS_LEN]; if (status_t status = HidlUtils::deviceAddressToHal(device, &halDevice, halDeviceAddress); status == NO_ERROR) { uint32_t halDeviceParam = static_cast(halDevice); return sendCommand(EFFECT_CMD_SET_INPUT_DEVICE, "SET_INPUT_DEVICE", sizeof(uint32_t), &halDeviceParam); } else { return analyzeStatus(__func__, "deviceAddressToHal", sContextConversion, status); } } #endif // MAJOR_VERSION <= 6 Return Effect::setAndGetVolume(const hidl_vec& volumes, setAndGetVolume_cb _hidl_cb) { uint32_t halDataSize; std::unique_ptr halData = hidlVecToHal(volumes, &halDataSize); uint32_t halResultSize = halDataSize; std::vector halResult(volumes.size(), 0); Result retval = sendCommandReturningData(EFFECT_CMD_SET_VOLUME, "SET_VOLUME", halDataSize, &halData[0], &halResultSize, &halResult[0]); hidl_vec result; if (retval == Result::OK) { result.setToExternal(&halResult[0], halResultSize); } _hidl_cb(retval, result); return Void(); } Return Effect::volumeChangeNotification(const hidl_vec& volumes) { uint32_t halDataSize; std::unique_ptr halData = hidlVecToHal(volumes, &halDataSize); return sendCommand(EFFECT_CMD_SET_VOLUME, "SET_VOLUME", halDataSize, &halData[0]); } Return Effect::setAudioMode(AudioMode mode) { uint32_t halMode = static_cast(mode); return sendCommand(EFFECT_CMD_SET_AUDIO_MODE, "SET_AUDIO_MODE", sizeof(uint32_t), &halMode); } Return Effect::setConfigReverse( const EffectConfig& config, const sp& inputBufferProvider, const sp& outputBufferProvider) { return setConfigImpl(EFFECT_CMD_SET_CONFIG_REVERSE, "SET_CONFIG_REVERSE", config, inputBufferProvider, outputBufferProvider); } Return Effect::getConfig(getConfig_cb _hidl_cb) { return getConfigImpl(EFFECT_CMD_GET_CONFIG, "GET_CONFIG", _hidl_cb); } Return Effect::getConfigReverse(getConfigReverse_cb _hidl_cb) { return getConfigImpl(EFFECT_CMD_GET_CONFIG_REVERSE, "GET_CONFIG_REVERSE", _hidl_cb); } Return Effect::getSupportedAuxChannelsConfigs(uint32_t maxConfigs, getSupportedAuxChannelsConfigs_cb _hidl_cb) { hidl_vec result; Result retval = getSupportedConfigsImpl( EFFECT_FEATURE_AUX_CHANNELS, maxConfigs, sizeof(channel_config_t), [&](uint32_t supportedConfigs, void* configsData) { result.resize(supportedConfigs); channel_config_t* config = reinterpret_cast(configsData); for (size_t i = 0; i < result.size(); ++i) { effectAuxChannelsConfigFromHal(*config++, &result[i]); } }); _hidl_cb(retval, result); return Void(); } Return Effect::getAuxChannelsConfig(getAuxChannelsConfig_cb _hidl_cb) { EffectAuxChannelsConfig result; Result retval = getCurrentConfigImpl( EFFECT_FEATURE_AUX_CHANNELS, sizeof(channel_config_t), [&](void* configData) { effectAuxChannelsConfigFromHal(*reinterpret_cast(configData), &result); }); _hidl_cb(retval, result); return Void(); } Return Effect::setAuxChannelsConfig(const EffectAuxChannelsConfig& config) { std::vector halCmd( alignedSizeIn(sizeof(uint32_t) + sizeof(channel_config_t)), 0); halCmd[0] = EFFECT_FEATURE_AUX_CHANNELS; effectAuxChannelsConfigToHal(config, reinterpret_cast(&halCmd[1])); return sendCommandReturningStatus(EFFECT_CMD_SET_FEATURE_CONFIG, "SET_FEATURE_CONFIG AUX_CHANNELS", halCmd.size(), &halCmd[0]); } Return Effect::offload(const EffectOffloadParameter& param) { effect_offload_param_t halParam; effectOffloadParamToHal(param, &halParam); return sendCommandReturningStatus(EFFECT_CMD_OFFLOAD, "OFFLOAD", sizeof(effect_offload_param_t), &halParam); } Return Effect::getDescriptor(getDescriptor_cb _hidl_cb) { RETURN_RESULT_IF_EFFECT_CLOSED(EffectDescriptor()); effect_descriptor_t halDescriptor; memset(&halDescriptor, 0, sizeof(effect_descriptor_t)); status_t status = (*mHandle)->get_descriptor(mHandle, &halDescriptor); EffectDescriptor descriptor; if (status == OK) { status = EffectUtils::effectDescriptorFromHal(halDescriptor, &descriptor); } _hidl_cb(analyzeStatus("get_descriptor", "", sContextCallFunction, status), descriptor); return Void(); } Return Effect::command(uint32_t commandId, const hidl_vec& data, uint32_t resultMaxSize, command_cb _hidl_cb) { if (mHandle == kInvalidEffectHandle) { _hidl_cb(-ENODATA, hidl_vec()); return Void(); } uint32_t halDataSize; std::unique_ptr halData = hidlVecToHal(data, &halDataSize); uint32_t halResultSize = resultMaxSize; std::unique_ptr halResult(new uint8_t[halResultSize]); memset(&halResult[0], 0, halResultSize); void* dataPtr = halDataSize > 0 ? &halData[0] : NULL; void* resultPtr = halResultSize > 0 ? &halResult[0] : NULL; status_t status = BAD_VALUE; switch (commandId) { case 'gtid': // retrieve the tid, used for spatializer priority boost if (halDataSize == 0 && resultMaxSize == sizeof(int32_t)) { auto ptid = (int32_t*)resultPtr; ptid[0] = mProcessThread ? mProcessThread->getTid() : -1; status = OK; break; // we have handled 'gtid' here. } [[fallthrough]]; // allow 'gtid' overload (checked halDataSize and resultMaxSize). default: status = (*mHandle)->command(mHandle, commandId, halDataSize, dataPtr, &halResultSize, resultPtr); break; } hidl_vec result; if (status == OK && resultPtr != NULL) { result.setToExternal(&halResult[0], halResultSize); } _hidl_cb(status, result); return Void(); } Return Effect::setParameter(const hidl_vec& parameter, const hidl_vec& value) { return setParameterImpl(parameter.size(), ¶meter[0], value.size(), &value[0]); } Return Effect::getParameter(const hidl_vec& parameter, uint32_t valueMaxSize, getParameter_cb _hidl_cb) { hidl_vec value; Result retval = getParameterImpl( parameter.size(), ¶meter[0], valueMaxSize, [&](uint32_t valueSize, const void* valueData) { value.setToExternal(reinterpret_cast(const_cast(valueData)), valueSize); }); _hidl_cb(retval, value); return Void(); } Return Effect::getSupportedConfigsForFeature(uint32_t featureId, uint32_t maxConfigs, uint32_t configSize, getSupportedConfigsForFeature_cb _hidl_cb) { uint32_t configCount = 0; hidl_vec result; Result retval = getSupportedConfigsImpl(featureId, maxConfigs, configSize, [&](uint32_t supportedConfigs, void* configsData) { configCount = supportedConfigs; result.resize(configCount * configSize); memcpy(&result[0], configsData, result.size()); }); _hidl_cb(retval, configCount, result); return Void(); } Return Effect::getCurrentConfigForFeature(uint32_t featureId, uint32_t configSize, getCurrentConfigForFeature_cb _hidl_cb) { hidl_vec result; Result retval = getCurrentConfigImpl(featureId, configSize, [&](void* configData) { result.resize(configSize); memcpy(&result[0], configData, result.size()); }); _hidl_cb(retval, result); return Void(); } Return Effect::setCurrentConfigForFeature(uint32_t featureId, const hidl_vec& configData) { std::vector halCmd(alignedSizeIn(sizeof(uint32_t) + configData.size()), 0); halCmd[0] = featureId; memcpy(&halCmd[1], &configData[0], configData.size()); return sendCommandReturningStatus(EFFECT_CMD_SET_FEATURE_CONFIG, "SET_FEATURE_CONFIG", halCmd.size(), &halCmd[0]); } std::tuple Effect::closeImpl() { if (mStopProcessThread.load(std::memory_order_relaxed)) { // only this thread modifies return {Result::INVALID_STATE, kInvalidEffectHandle}; } mStopProcessThread.store(true, std::memory_order_release); if (mEfGroup) { mEfGroup->wake(static_cast(MessageQueueFlagBits::REQUEST_QUIT)); } effect_handle_t handle = mHandle; mHandle = kInvalidEffectHandle; #if MAJOR_VERSION <= 5 return {Result::OK, handle}; #elif MAJOR_VERSION >= 6 // No need to join the processing thread, it is part of the API contract that the client // must finish processing before closing the effect. Result retval = analyzeStatus("EffectRelease", "", sContextCallFunction, EffectRelease(handle)); EffectMap::getInstance().remove(handle); return {retval, handle}; #endif } Return Effect::close() { RETURN_IF_EFFECT_CLOSED(); auto [result, _] = closeImpl(); return result; } Return Effect::debug(const hidl_handle& fd, const hidl_vec& /* options */) { if (fd.getNativeHandle() != nullptr && fd->numFds == 1) { uint32_t cmdData = fd->data[0]; (void)sendCommand(EFFECT_CMD_DUMP, "DUMP", sizeof(cmdData), &cmdData); const std::string s = mStatistics->dump(); if (s.size() != 0) write(cmdData, s.c_str(), s.size()); } return Void(); } } // namespace implementation } // namespace CPP_VERSION } // namespace effect } // namespace audio } // namespace hardware } // namespace android