/* * Copyright (C) 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include using aidl::android::hardware::secure_element::BnSecureElement; using aidl::android::hardware::secure_element::ISecureElementCallback; using aidl::android::hardware::secure_element::LogicalChannelResponse; using android::base::HexString; using ndk::ScopedAStatus; static const std::vector kIssuerSecurityDomainSelectResponse = {0x00, 0x00, 0x90, 0x00}; namespace se { // Application identifier. using Aid = std::vector; // ISO7816 APDU status codes. enum Status : uint16_t { SW_WRONG_DATA = 0x6A80, SW_LOGICAL_CHANNEL_NOT_SUPPORTED = 0x6881, SW_CONDITIONS_NOT_SATISFIED = 0x6985, SW_INCORRECT_P1P2 = 0x6A86, SW_BYTES_REMAINING_00 = 0x6100, SW_WRONG_LENGTH = 0x6700, SW_CORRECT_LENGTH_00 = 0x6C00, SW_INS_NOT_SUPPORTED = 0x6D00, SW_NO_ERROR = 0x9000, }; // Type for raw APDUs. using RawApdu = std::vector; // Wrap a command APDU (Application Processing Data Unit) to provide // accessors for header fields. struct Apdu { public: // Construct a command Apdu. Apdu(std::vector packet) : bytes_(std::move(packet)) { CHECK(bytes_.size() >= kHeaderSize) << "command APDU created with invalid length"; size_t payload_len = bytes_.size() - kHeaderSize; // TODO(b/123254068) - add support for extended command APDUs. // Pre compute Lc and Le. // Case 1: CLA | INS | P1 | P2 if (payload_len == 0) { lc_ = 0; le_ = 0; return; } // Case 2: CLA | INS | P1 | P2 | Le // Le has a value of 1 to 255. if (payload_len == 1) { le_ = bytes_[kHeaderSize]; le_ = le_ == 0 ? 256 : le_; lc_ = 0; return; } // Case 3: CLA | INS | P1 | P2 | Lc | Data // Lc is less than 256 bytes // of data, and Le is zero. lc_ = bytes_[kHeaderSize]; if (payload_len <= (1 + lc_)) { le_ = 0; } // Case 4: CLA | INS | P1 | P2 | Lc | Data | Le // The legacy Case 4. Lc and Le // are less than 256 bytes of data. else { le_ = bytes_[bytes_.size() - 1]; le_ = le_ == 0 ? 256 : le_; } } // Construct a response Apdu with data. static RawApdu CreateResponse(std::vector data, Status status) { // Append status word. data.push_back(status >> 8); data.push_back(status); return data; } // Construct a response Apdu with no data. static RawApdu CreateResponse(Status status) { // Append status word. return std::vector{static_cast(status >> 8), static_cast(status)}; } // Return if command APDU is extended. // The ISO/IEC 7816-4:2013 specification defines an extended APDU as any APDU // whose payload data, response data or expected data length exceeds the 256 // byte limit. bool IsExtended() const { return (bytes_.size() - kHeaderSize) > 256; } // Return if command APDU has payload bytes. bool HasPayload() const { return bytes_.size() > kHeaderSize; } uint8_t get_cla() const { return bytes_[0]; } uint8_t get_ins() const { return bytes_[1]; } uint8_t get_p1() const { return bytes_[2]; } uint8_t get_p2() const { return bytes_[3]; } // Return the channel number encoded in the CLA field. uint8_t get_channel_number() const { // Type 4 commands — Encode legacy ISO/IEC 7816-4 logical channel // information. Type 16 commands — Defined by the ISO/IEC 7816-4:2013 // specification to // encode information for additional 16 logical channels in the card. uint8_t cla = get_cla(); return (cla & 0x40) == 0 ? cla & 0x3 : 4 + (cla & 0xf); } // Return the length of the command data field. uint16_t get_lc() const { return lc_; } // Return the expected length of the response data field. // Le should be have the same format as Lc. uint16_t get_le() const { return le_; } // Get the pointer to the APDU raw data. std::vector const& get_data() const { return bytes_; } private: // Size of command header, including CLA, INS, P1, P2 fields. const size_t kHeaderSize = 4; // Command or response buffer. std::vector bytes_{}; // Lengths of command data field and expected response data field. uint16_t lc_{0}; uint16_t le_{0}; }; // Type of SE applets. class Applet { public: virtual ~Applet() {} // Called to inform this applet that it has been selected. virtual RawApdu Select(Aid const& aid, uint8_t p2) = 0; // Called by the Java Card runtime environment to process an // incoming APDU command. SELECT commands are processed by \ref select // instead. virtual RawApdu Process(Apdu const& apdu) = 0; }; }; // namespace se // Implement the Google-eSE-test.cap test applet for passing OMAPI CTS tests // on Cuttlefish. The reference can be found here: // cts/tests/tests/secure_element/sample_applet/src/com/android/cts/omapi/test/CtsAndroidOmapiTestApplet.java class CtsAndroidOmapiTestApplet : public se::Applet { public: CtsAndroidOmapiTestApplet() {} virtual ~CtsAndroidOmapiTestApplet() {} se::RawApdu Select(se::Aid const& aid, uint8_t /*p2*/) override { if (aid[aid.size() - 1] == 0x31) { // AID: A000000476416E64726F696443545331 return se::Apdu::CreateResponse(se::Status::SW_NO_ERROR); } else { // AID: A000000476416E64726F696443545332 return se::Apdu::CreateResponse(GenerateBerTLVBytes(SELECT_RESPONSE_DATA_LENGTH), se::Status::SW_NO_ERROR); } } se::RawApdu ReadNextResponseChunk(uint16_t max_output_len) { uint16_t output_len = static_cast(response_.size() - response_offset_); output_len = std::min(max_output_len, output_len); std::vector output{ &response_[response_offset_], &response_[response_offset_ + output_len], }; response_offset_ += output_len; uint16_t remaining_len = response_.size() - response_offset_; se::Status status = se::Status::SW_NO_ERROR; if (remaining_len > 0) { if (remaining_len > 256) { remaining_len = 0x00; } status = se::Status(se::Status::SW_BYTES_REMAINING_00 | remaining_len); } else { response_.clear(); response_offset_ = 0; } return se::Apdu::CreateResponse(output, status); } se::RawApdu Process(se::Apdu const& apdu) override { uint16_t lc; uint16_t le = apdu.get_le(); uint8_t p1 = apdu.get_p1(); uint8_t p2 = apdu.get_p2(); switch (apdu.get_ins()) { case NO_DATA_INS_1: case NO_DATA_INS_2: LOG(INFO) << __func__ << ": NO_DATA_INS_1|2"; return se::Apdu::CreateResponse(se::Status::SW_NO_ERROR); case DATA_INS_1: case DATA_INS_2: // Return 256 bytes of data. LOG(INFO) << __func__ << ": DATA_INS_1|2"; return se::Apdu::CreateResponse(GeneratesBytes(256), se::Status::SW_NO_ERROR); case GET_RESPONSE_INS: // ISO GET_RESPONSE command. LOG(INFO) << __func__ << ": GET_RESPONSE_INS"; if (response_.empty()) { return se::Apdu::CreateResponse(se::Status::SW_CONDITIONS_NOT_SATISFIED); } return ReadNextResponseChunk(apdu.get_le()); case SW_62xx_APDU_INS: LOG(INFO) << __func__ << ": SW_62xx_APDU_INS"; if (p1 < 1 || p1 > 16) { return se::Apdu::CreateResponse(se::Status::SW_INCORRECT_P1P2); } if (p2 == SW_62xx_DATA_APDU_P2) { return se::Apdu::CreateResponse(GeneratesBytes(3), se::Status(SW_62xx_resp[p1 - 1])); } if (p2 == SW_62xx_VALIDATE_DATA_P2) { std::vector output{SW_62xx_VALIDATE_DATA_RESP.begin(), SW_62xx_VALIDATE_DATA_RESP.end()}; output[2] = p1; return se::Apdu::CreateResponse(std::move(output), se::Status(SW_62xx_resp[p1 - 1])); } return se::Apdu::CreateResponse(se::Status(SW_62xx_resp[p1 - 1])); case SEGMENTED_RESP_INS_1: case SEGMENTED_RESP_INS_2: LOG(INFO) << __func__ << ": SEGMENTED_RESP_INS_1|2"; response_ = GeneratesBytes((static_cast(p1) << 8) | p2); response_offset_ = 0; return ReadNextResponseChunk(std::min(apdu.get_le(), 256)); case SEGMENTED_RESP_INS_3: case SEGMENTED_RESP_INS_4: LOG(INFO) << __func__ << ": SEGMENTED_RESP_INS_3|4"; response_ = GeneratesBytes((static_cast(p1) << 8) | p2); response_offset_ = 0; return ReadNextResponseChunk(apdu.get_le()); case SEGMENTED_RESP_INS_5: LOG(INFO) << __func__ << ": SEGMENTED_RESP_INS_5"; if (le == 0xff) { return se::Apdu::CreateResponse( se::Status(se::Status::SW_CORRECT_LENGTH_00 | 0xff)); } response_ = GeneratesBytes((static_cast(p1) << 8) | p2); response_offset_ = 0; return ReadNextResponseChunk(apdu.get_le()); case CHECK_SELECT_P2_APDU: LOG(INFO) << __func__ << ": CHECK_SELECT_P2_APDU"; return se::Apdu::CreateResponse(std::vector{apdu.get_p2()}, se::Status::SW_NO_ERROR); default: // Case is not known. LOG(INFO) << __func__ << ": UNKNOWN_INS"; return se::Apdu::CreateResponse(se::Status::SW_INS_NOT_SUPPORTED); } } private: std::vector response_{}; uint16_t response_offset_{0}; static const uint8_t NO_DATA_INS_1 = 0x06; static const uint8_t NO_DATA_INS_2 = 0x0A; static const uint8_t DATA_INS_1 = 0x08; static const uint8_t DATA_INS_2 = 0x0C; static const uint8_t SW_62xx_APDU_INS = 0xF3; static const uint8_t SW_62xx_DATA_APDU_P2 = 0x08; static const uint8_t SW_62xx_VALIDATE_DATA_P2 = 0x0C; static constexpr std::array SW_62xx_VALIDATE_DATA_RESP = {0x01, 0xF3, 0x00, 0x0C, 0x01, 0xAA, 0x00}; static constexpr uint16_t SW_62xx_resp[] = { 0x6200, 0x6281, 0x6282, 0x6283, 0x6285, 0x62F1, 0x62F2, 0x63F1, 0x63F2, 0x63C2, 0x6202, 0x6280, 0x6284, 0x6286, 0x6300, 0x6381, }; static const uint8_t SEGMENTED_RESP_INS_1 = 0xC2; static const uint8_t SEGMENTED_RESP_INS_2 = 0xC4; static const uint8_t SEGMENTED_RESP_INS_3 = 0xC6; static const uint8_t SEGMENTED_RESP_INS_4 = 0xC8; static const uint8_t SEGMENTED_RESP_INS_5 = 0xCF; static const uint8_t CHECK_SELECT_P2_APDU = 0xF4; static const uint8_t GET_RESPONSE_INS = 0xC0; static const uint8_t BER_TLV_TYPE = 0x1F; static const uint16_t SELECT_RESPONSE_DATA_LENGTH = 252; static const uint16_t LENGTH_256 = 0x0100; static constexpr std::array resp_bytes256{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F, 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF, 0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xBB, 0xBC, 0xBD, 0xBE, 0xBF, 0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF, 0xD0, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF, 0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF, 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF}; // Generate a response buffer of the selected length containing valid // BER TLV bytes. static std::vector GenerateBerTLVBytes(uint16_t le) { // Support length from 0x00 - 0x7FFF. uint16_t le_len = 1; if (le < (uint16_t)0x80) { le_len = 1; } else if (le < (uint16_t)0x100) { le_len = 2; } else { le_len = 3; } uint16_t total_len = (uint16_t)(le + 2 + le_len); std::vector output(total_len); uint16_t i = 0; output[i++] = BER_TLV_TYPE; output[i++] = 0x00; // second byte of Type if (le < 0x80) { output[i++] = le; } else if (le < 0x100) { output[i++] = 0x81; output[i++] = le; } else { output[i++] = 0x82; output[i++] = (le >> 8); output[i++] = (le & 0xFF); } while (i < total_len) { output[i++] = ((i - 2 - le_len) & 0xFF); } // Set the last byte to 0xFF for CTS validation. output[total_len - 1] = 0xFF; return output; } // Generate a response buffer of the selected length using the // array resp_bytes256 as input. static std::vector GeneratesBytes(uint16_t total_len) { std::vector output(total_len); uint16_t i = 0; while (i < total_len) { if ((total_len - i) >= resp_bytes256.size()) { std::memcpy(&output[i], resp_bytes256.data(), resp_bytes256.size()); i += resp_bytes256.size(); } else { output[i] = i & 0xFF; i += 1; } } // Set the last byte to 0xFF for CTS validation. output[total_len - 1] = 0xFF; return output; } }; class EmulatedSecureElement : public BnSecureElement { public: EmulatedSecureElement() { std::shared_ptr test_applet = std::make_shared(); applets_.push_back(std::pair{se::Aid{0xA0, 0x00, 0x00, 0x04, 0x76, 0x41, 0x6E, 0x64, 0x72, 0x6F, 0x69, 0x64, 0x43, 0x54, 0x53, 0x31}, test_applet}); applets_.push_back(std::pair{se::Aid{0xA0, 0x00, 0x00, 0x04, 0x76, 0x41, 0x6E, 0x64, 0x72, 0x6F, 0x69, 0x64, 0x43, 0x54, 0x53, 0x32}, test_applet}); } ScopedAStatus init(const std::shared_ptr& client_callback) override { LOG(INFO) << __func__ << " callback: " << client_callback.get(); if (client_callback == nullptr) { return ScopedAStatus::fromExceptionCode(EX_NULL_POINTER); } for (auto& channel : channels_) { channel = Channel(); } client_callback_ = client_callback; client_callback_->onStateChange(true, "init"); return ScopedAStatus::ok(); } ScopedAStatus getAtr(std::vector* aidl_return) override { LOG(INFO) << __func__; if (client_callback_ == nullptr) { return ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } *aidl_return = atr_; return ScopedAStatus::ok(); } ScopedAStatus reset() override { LOG(INFO) << __func__; if (client_callback_ == nullptr) { return ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } client_callback_->onStateChange(false, "reset"); client_callback_->onStateChange(true, "reset"); // All channels are closed after reset. for (auto& channel : channels_) { channel = Channel(); } return ScopedAStatus::ok(); } ScopedAStatus isCardPresent(bool* aidl_return) override { LOG(INFO) << __func__; if (client_callback_ == nullptr) { return ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } *aidl_return = true; return ScopedAStatus::ok(); } ScopedAStatus openBasicChannel(const std::vector& aid, int8_t p2, std::vector* aidl_return) override { LOG(INFO) << __func__ << " aid: " << HexString(aid.data(), aid.size()) << " (" << aid.size() << ") p2 " << p2; if (client_callback_ == nullptr) { return ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } std::vector select_response; std::shared_ptr applet = nullptr; // The basic channel can only be opened once, and stays opened // and locked until the channel is closed. if (channels_[0].opened) { LOG(INFO) << __func__ << " basic channel already opened"; return ScopedAStatus::fromServiceSpecificError(CHANNEL_NOT_AVAILABLE); } // If the AID is defined (the AID is not Null and the length of the // AID is not 0) and the channel is not locked then the corresponding // applet shall be selected. if (aid.size() > 0) { applet = SelectApplet(aid); if (applet == nullptr) { // No applet registered with matching AID. LOG(INFO) << __func__ << " basic channel AID not found"; return ScopedAStatus::fromServiceSpecificError(NO_SUCH_ELEMENT_ERROR); } select_response = applet->Select(aid, p2); } // If the AID is a 0 length AID and the channel is not locked, the // method will select the Issuer Security Domain of the SE by sending a // SELECT command with a 0 length AID as defined in // [GP Card specification]. if (aid.size() == 0) { select_response = kIssuerSecurityDomainSelectResponse; } LOG(INFO) << __func__ << " sending response: " << HexString(select_response.data(), select_response.size()); // TODO(b/123254068) - this is not an implementation of the OMAPI protocol // or APDU. The functionality here is enough to exercise the framework, // but actual calls to the secure element will fail. This implementation // does not model channel isolation or any other aspects important to // implementing secure element. channels_[0] = Channel(aid, p2, applet); *aidl_return = select_response; return ScopedAStatus::ok(); } ScopedAStatus openLogicalChannel( const std::vector& aid, int8_t p2, ::aidl::android::hardware::secure_element::LogicalChannelResponse* aidl_return) override { LOG(INFO) << __func__ << " aid: " << HexString(aid.data(), aid.size()) << " (" << aid.size() << ") p2 " << p2; if (client_callback_ == nullptr) { return ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } size_t channel_number = 1; std::vector select_response; std::shared_ptr applet = nullptr; // Look for an available channel number. for (; channel_number < channels_.size(); channel_number++) { if (channels_[channel_number].opened == false) { break; } } // All channels are currently allocated. if (channel_number >= channels_.size()) { LOG(INFO) << __func__ << " all logical channels already opened"; return ScopedAStatus::fromServiceSpecificError(CHANNEL_NOT_AVAILABLE); } // If the AID is defined (the AID is not Null and the length of the // AID is not 0) then the corresponding applet shall be selected. if (aid.size() > 0) { applet = SelectApplet(aid); if (applet == nullptr) { // No applet registered with matching AID. LOG(INFO) << __func__ << " logical channel AID not found"; return ScopedAStatus::fromServiceSpecificError(NO_SUCH_ELEMENT_ERROR); } select_response = applet->Select(aid, p2); } // If the length of the AID is 0, the method will select the // Issuer Security Domain of the SE by sending a SELECT command // with 0 length AID as defined in [GPCS]. if (aid.size() == 0) { select_response = kIssuerSecurityDomainSelectResponse; } LOG(INFO) << __func__ << " sending response: " << HexString(select_response.data(), select_response.size()); // TODO(b/123254068) - this is not an implementation of the OMAPI protocol // or APDU. The functionality here is enough to exercise the framework, // but actual calls to the secure element will fail. This implementation // does not model channel isolation or any other aspects important to // implementing secure element. channels_[channel_number] = Channel(aid, p2, applet); *aidl_return = LogicalChannelResponse{ .channelNumber = static_cast(channel_number), .selectResponse = select_response, }; return ScopedAStatus::ok(); } ScopedAStatus closeChannel(int8_t channel_number) override { LOG(INFO) << __func__ << " channel number: " << static_cast(channel_number); if (client_callback_ == nullptr) { return ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } // The selected basic or logical channel is not opened. if (channel_number >= channels_.size() || !channels_[channel_number].opened) { return ScopedAStatus::fromServiceSpecificError(FAILED); } // TODO(b/123254068) - this is not an implementation of the OMAPI protocol // or APDU. The functionality here is enough to exercise the framework, // but actual calls to the secure element will fail. This implementation // does not model channel isolation or any other aspects important to // implementing secure element. channels_[channel_number].opened = false; return ScopedAStatus::ok(); } ScopedAStatus transmit(const std::vector& data, std::vector* aidl_return) override { LOG(INFO) << __func__ << " data: " << HexString(data.data(), data.size()) << " (" << data.size() << ")"; if (client_callback_ == nullptr) { return ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } se::Apdu apdu(data); uint8_t channel_number = apdu.get_channel_number(); std::vector response_apdu; switch (apdu.get_ins()) { // TODO(b/123254068) - Implement support channel management APDUs. case MANAGE_CHANNEL_INS: // P1 = '00' to open // P1 = '80' to close LOG(INFO) << __func__ << " MANAGE_CHANNEL apdu"; response_apdu = se::Apdu::CreateResponse(se::Status::SW_LOGICAL_CHANNEL_NOT_SUPPORTED); break; // TODO(b/123254068) - Implement support channel management APDUs. case SELECT_INS: LOG(INFO) << __func__ << " SELECT apdu"; response_apdu = se::Apdu::CreateResponse(se::Status::SW_LOGICAL_CHANNEL_NOT_SUPPORTED); break; default: CHECK(channel_number < channels_.size()) << " invalid channel number"; if (!channels_[channel_number].opened) { LOG(INFO) << __func__ << " the channel " << static_cast(channel_number) << " is not opened"; response_apdu = se::Apdu::CreateResponse(se::Status::SW_LOGICAL_CHANNEL_NOT_SUPPORTED); break; } // Send the APDU to the applet for processing. // Applet implementation is optional, default to sending // SW_INS_NOT_SUPPORTED. if (channels_[channel_number].applet == nullptr) { response_apdu = se::Apdu::CreateResponse(se::Status::SW_INS_NOT_SUPPORTED); } else { response_apdu = channels_[channel_number].applet->Process(apdu); } break; } aidl_return->assign(response_apdu.begin(), response_apdu.end()); LOG(INFO) << __func__ << " response: " << HexString(aidl_return->data(), aidl_return->size()) << " (" << aidl_return->size() << ")"; return ScopedAStatus::ok(); } private: struct Channel { public: Channel() = default; Channel(Channel const&) = default; Channel(se::Aid const& aid, uint8_t p2, std::shared_ptr applet) : opened(true), aid(aid), p2(p2), applet(std::move(applet)) {} Channel& operator=(Channel const&) = default; bool opened{false}; se::Aid aid{}; uint8_t p2{0}; std::shared_ptr applet{nullptr}; }; // OMAPI abstraction. // Channel 0 is the basic channel, channels 1-19 are the logical channels. std::array channels_{}; std::shared_ptr client_callback_{nullptr}; // Secure element abstraction. static const uint8_t MANAGE_CHANNEL_INS = 0x70; static const uint8_t SELECT_INS = 0xa4; // Secure element ATR (Answer-To-Reset). // The format is specified by ISO/IEC 1816-4 2020 and lists // the capabilities of the card. // // TODO(b/123254068): encode the default SE properties in the ATR: // support for extended Lc / Le fields, maximum number of logical channels. // The CTS tests are *not* checking this value. std::vector const atr_{}; // Applet registration. std::vector>> applets_{}; // Return the first applet that matches the selected aid. std::shared_ptr SelectApplet(se::Aid const& aid) { for (auto& [applet_aid, applet] : applets_) { if (applet_aid == aid) { return applet; } } return nullptr; } }; int main() { ABinderProcess_setThreadPoolMaxThreadCount(0); auto se = ndk::SharedRefBase::make(); const std::string name = std::string() + BnSecureElement::descriptor + "/eSE1"; binder_status_t status = AServiceManager_addService(se->asBinder().get(), name.c_str()); CHECK_EQ(status, STATUS_OK); ABinderProcess_joinThreadPool(); return EXIT_FAILURE; // should not reach }