/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "SensorsHidlEnvironmentV2_X.h" #include "convertV2_1.h" #include "sensors-vts-utils/SensorsHidlTestBase.h" #include "sensors-vts-utils/SensorsTestSharedMemory.h" #include #include #include #include #include #include #include #include #include #include #include #include #include /** * This file contains the core tests and test logic for both sensors HAL 2.0 * and 2.1. To make it easier to share the code between both VTS test suites, * this is defined as a header so they can both include and use all pieces of * code. */ using ::android::sp; using ::android::hardware::Return; using ::android::hardware::Void; using ::android::hardware::sensors::V1_0::MetaDataEventType; using ::android::hardware::sensors::V1_0::OperationMode; using ::android::hardware::sensors::V1_0::SensorsEventFormatOffset; using ::android::hardware::sensors::V1_0::SensorStatus; using ::android::hardware::sensors::V1_0::SharedMemType; using ::android::hardware::sensors::V1_0::Vec3; using ::android::hardware::sensors::V2_1::implementation::convertToOldSensorInfos; using std::chrono::duration_cast; using std::chrono::nanoseconds; using EventV1_0 = ::android::hardware::sensors::V1_0::Event; using ISensorsType = ::android::hardware::sensors::V2_1::ISensors; using SensorTypeVersion = ::android::hardware::sensors::V2_1::SensorType; using EventType = ::android::hardware::sensors::V2_1::Event; using SensorInfoType = ::android::hardware::sensors::V2_1::SensorInfo; using SensorsHidlTestBaseV2_X = SensorsHidlTestBase; constexpr size_t kEventSize = static_cast(SensorsEventFormatOffset::TOTAL_LENGTH); class EventCallback : public IEventCallback { public: void reset() { mFlushMap.clear(); mEventMap.clear(); } void onEvent(const EventType& event) override { if (event.sensorType == SensorTypeVersion::META_DATA && event.u.meta.what == MetaDataEventType::META_DATA_FLUSH_COMPLETE) { std::unique_lock lock(mFlushMutex); mFlushMap[event.sensorHandle]++; mFlushCV.notify_all(); } else if (event.sensorType != SensorTypeVersion::ADDITIONAL_INFO) { std::unique_lock lock(mEventMutex); mEventMap[event.sensorHandle].push_back(event); mEventCV.notify_all(); } } int32_t getFlushCount(int32_t sensorHandle) { std::unique_lock lock(mFlushMutex); return mFlushMap[sensorHandle]; } void waitForFlushEvents(const std::vector& sensorsToWaitFor, int32_t numCallsToFlush, std::chrono::milliseconds timeout) { std::unique_lock lock(mFlushMutex); mFlushCV.wait_for(lock, timeout, [&] { return flushesReceived(sensorsToWaitFor, numCallsToFlush); }); } const std::vector getEvents(int32_t sensorHandle) { std::unique_lock lock(mEventMutex); return mEventMap[sensorHandle]; } void waitForEvents(const std::vector& sensorsToWaitFor, std::chrono::milliseconds timeout) { std::unique_lock lock(mEventMutex); mEventCV.wait_for(lock, timeout, [&] { return eventsReceived(sensorsToWaitFor); }); } protected: bool flushesReceived(const std::vector& sensorsToWaitFor, int32_t numCallsToFlush) { for (const SensorInfoType& sensor : sensorsToWaitFor) { if (getFlushCount(sensor.sensorHandle) < numCallsToFlush) { return false; } } return true; } bool eventsReceived(const std::vector& sensorsToWaitFor) { for (const SensorInfoType& sensor : sensorsToWaitFor) { if (getEvents(sensor.sensorHandle).size() == 0) { return false; } } return true; } std::map mFlushMap; std::recursive_mutex mFlushMutex; std::condition_variable_any mFlushCV; std::map> mEventMap; std::recursive_mutex mEventMutex; std::condition_variable_any mEventCV; }; /** * Define the template specific versions of the static helper methods in * SensorsHidlTestBase used to test that hinge angle is exposed properly. */ template <> SensorFlagBits expectedReportModeForType(::android::hardware::sensors::V2_1::SensorType type) { switch (type) { case ::android::hardware::sensors::V2_1::SensorType::HINGE_ANGLE: return SensorFlagBits::ON_CHANGE_MODE; default: return expectedReportModeForType( static_cast<::android::hardware::sensors::V1_0::SensorType>(type)); } } template <> void assertTypeMatchStringType(::android::hardware::sensors::V2_1::SensorType type, const hidl_string& stringType) { switch (type) { case (::android::hardware::sensors::V2_1::SensorType::HINGE_ANGLE): ASSERT_STREQ(SENSOR_STRING_TYPE_HINGE_ANGLE, stringType.c_str()); break; default: assertTypeMatchStringType( static_cast<::android::hardware::sensors::V1_0::SensorType>(type), stringType); break; } } // The main test class for SENSORS HIDL HAL. class SensorsHidlTest : public SensorsHidlTestBaseV2_X { public: virtual void SetUp() override { mEnvironment = new SensorsHidlEnvironmentV2_X(GetParam()); mEnvironment->SetUp(); // Ensure that we have a valid environment before performing tests ASSERT_NE(getSensors(), nullptr); } virtual void TearDown() override { mEnvironment->TearDown(); } protected: SensorInfoType defaultSensorByType(SensorTypeVersion type) override; std::vector getSensorsList(); // implementation wrapper Return getSensorsList(ISensorsType::getSensorsList_cb _hidl_cb) override { return getSensors()->getSensorsList( [&](const auto& list) { _hidl_cb(convertToOldSensorInfos(list)); }); } Return activate(int32_t sensorHandle, bool enabled) override; Return batch(int32_t sensorHandle, int64_t samplingPeriodNs, int64_t maxReportLatencyNs) override { return getSensors()->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs); } Return flush(int32_t sensorHandle) override { return getSensors()->flush(sensorHandle); } Return injectSensorData(const EventType& event) override { return getSensors()->injectSensorData(event); } Return registerDirectChannel(const SharedMemInfo& mem, ISensorsType::registerDirectChannel_cb _hidl_cb) override; Return unregisterDirectChannel(int32_t channelHandle) override { return getSensors()->unregisterDirectChannel(channelHandle); } Return configDirectReport(int32_t sensorHandle, int32_t channelHandle, RateLevel rate, ISensorsType::configDirectReport_cb _hidl_cb) override { return getSensors()->configDirectReport(sensorHandle, channelHandle, rate, _hidl_cb); } inline sp& getSensors() { return mEnvironment->mSensors; } SensorsVtsEnvironmentBase* getEnvironment() override { return mEnvironment; } // Test helpers void runSingleFlushTest(const std::vector& sensors, bool activateSensor, int32_t expectedFlushCount, Result expectedResponse); void runFlushTest(const std::vector& sensors, bool activateSensor, int32_t flushCalls, int32_t expectedFlushCount, Result expectedResponse); // Helper functions void activateAllSensors(bool enable); std::vector getNonOneShotSensors(); std::vector getNonOneShotAndNonSpecialSensors(); std::vector getNonOneShotAndNonOnChangeAndNonSpecialSensors(); std::vector getOneShotSensors(); std::vector getInjectEventSensors(); int32_t getInvalidSensorHandle(); bool getDirectChannelSensor(SensorInfoType* sensor, SharedMemType* memType, RateLevel* rate); void verifyDirectChannel(SharedMemType memType); void verifyRegisterDirectChannel( std::shared_ptr> mem, int32_t* directChannelHandle, bool supportsSharedMemType, bool supportsAnyDirectChannel); void verifyConfigure(const SensorInfoType& sensor, SharedMemType memType, int32_t directChannelHandle, bool directChannelSupported); void verifyUnregisterDirectChannel(int32_t directChannelHandle, bool directChannelSupported); void checkRateLevel(const SensorInfoType& sensor, int32_t directChannelHandle, RateLevel rateLevel); void queryDirectChannelSupport(SharedMemType memType, bool* supportsSharedMemType, bool* supportsAnyDirectChannel); private: // Test environment for sensors HAL. SensorsHidlEnvironmentV2_X* mEnvironment; }; Return SensorsHidlTest::activate(int32_t sensorHandle, bool enabled) { // If activating a sensor, add the handle in a set so that when test fails it can be turned off. // The handle is not removed when it is deactivating on purpose so that it is not necessary to // check the return value of deactivation. Deactivating a sensor more than once does not have // negative effect. if (enabled) { mSensorHandles.insert(sensorHandle); } return getSensors()->activate(sensorHandle, enabled); } Return SensorsHidlTest::registerDirectChannel(const SharedMemInfo& mem, ISensors::registerDirectChannel_cb cb) { // If registeration of a channel succeeds, add the handle of channel to a set so that it can be // unregistered when test fails. Unregister a channel does not remove the handle on purpose. // Unregistering a channel more than once should not have negative effect. getSensors()->registerDirectChannel(mem, [&](auto result, auto channelHandle) { if (result == Result::OK) { mDirectChannelHandles.insert(channelHandle); } cb(result, channelHandle); }); return Void(); } SensorInfoType SensorsHidlTest::defaultSensorByType(SensorTypeVersion type) { SensorInfoType ret; ret.type = (SensorTypeVersion)-1; getSensors()->getSensorsList([&](const auto& list) { const size_t count = list.size(); for (size_t i = 0; i < count; ++i) { if (list[i].type == type) { ret = list[i]; return; } } }); return ret; } std::vector SensorsHidlTest::getSensorsList() { std::vector ret; getSensors()->getSensorsList([&](const auto& list) { const size_t count = list.size(); ret.reserve(list.size()); for (size_t i = 0; i < count; ++i) { ret.push_back(list[i]); } }); return ret; } std::vector SensorsHidlTest::getNonOneShotSensors() { std::vector sensors; for (const SensorInfoType& info : getSensorsList()) { if (extractReportMode(info.flags) != SensorFlagBits::ONE_SHOT_MODE) { sensors.push_back(info); } } return sensors; } std::vector SensorsHidlTest::getNonOneShotAndNonSpecialSensors() { std::vector sensors; for (const SensorInfoType& info : getSensorsList()) { SensorFlagBits reportMode = extractReportMode(info.flags); if (reportMode != SensorFlagBits::ONE_SHOT_MODE && reportMode != SensorFlagBits::SPECIAL_REPORTING_MODE) { sensors.push_back(info); } } return sensors; } std::vector SensorsHidlTest::getNonOneShotAndNonOnChangeAndNonSpecialSensors() { std::vector sensors; for (const SensorInfoType& info : getSensorsList()) { SensorFlagBits reportMode = extractReportMode(info.flags); if (reportMode != SensorFlagBits::ONE_SHOT_MODE && reportMode != SensorFlagBits::ON_CHANGE_MODE && reportMode != SensorFlagBits::SPECIAL_REPORTING_MODE) { sensors.push_back(info); } } return sensors; } std::vector SensorsHidlTest::getOneShotSensors() { std::vector sensors; for (const SensorInfoType& info : getSensorsList()) { if (extractReportMode(info.flags) == SensorFlagBits::ONE_SHOT_MODE) { sensors.push_back(info); } } return sensors; } std::vector SensorsHidlTest::getInjectEventSensors() { std::vector sensors; for (const SensorInfoType& info : getSensorsList()) { if (info.flags & static_cast(SensorFlagBits::DATA_INJECTION)) { sensors.push_back(info); } } return sensors; } int32_t SensorsHidlTest::getInvalidSensorHandle() { // Find a sensor handle that does not exist in the sensor list int32_t maxHandle = 0; for (const SensorInfoType& sensor : getSensorsList()) { maxHandle = std::max(maxHandle, sensor.sensorHandle); } return maxHandle + 42; } // Test if sensor list returned is valid TEST_P(SensorsHidlTest, SensorListValid) { getSensors()->getSensorsList([&](const auto& list) { const size_t count = list.size(); std::unordered_map> sensorTypeNameMap; for (size_t i = 0; i < count; ++i) { const auto& s = list[i]; SCOPED_TRACE(::testing::Message() << i << "/" << count << ": " << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << s.sensorHandle << std::dec << " type=" << static_cast(s.type) << " name=" << s.name); // Test type string non-empty only for private sensor types. if (s.type >= SensorTypeVersion::DEVICE_PRIVATE_BASE) { EXPECT_FALSE(s.typeAsString.empty()); } else if (!s.typeAsString.empty()) { // Test type string matches framework string if specified for non-private types. EXPECT_NO_FATAL_FAILURE(assertTypeMatchStringType(s.type, s.typeAsString)); } // Test if all sensor has name and vendor EXPECT_FALSE(s.name.empty()); EXPECT_FALSE(s.vendor.empty()); // Make sure that sensors of the same type have a unique name. std::vector& v = sensorTypeNameMap[static_cast(s.type)]; bool isUniqueName = std::find(v.begin(), v.end(), s.name) == v.end(); EXPECT_TRUE(isUniqueName) << "Duplicate sensor Name: " << s.name; if (isUniqueName) { v.push_back(s.name); } // Test power > 0, maxRange > 0 EXPECT_LE(0, s.power); EXPECT_LT(0, s.maxRange); // Info type, should have no sensor EXPECT_FALSE(s.type == SensorTypeVersion::ADDITIONAL_INFO || s.type == SensorTypeVersion::META_DATA); // Test fifoMax >= fifoReserved EXPECT_GE(s.fifoMaxEventCount, s.fifoReservedEventCount) << "max=" << s.fifoMaxEventCount << " reserved=" << s.fifoReservedEventCount; // Test Reporting mode valid EXPECT_NO_FATAL_FAILURE(assertTypeMatchReportMode(s.type, extractReportMode(s.flags))); // Test min max are in the right order EXPECT_LE(s.minDelay, s.maxDelay); // Test min/max delay matches reporting mode EXPECT_NO_FATAL_FAILURE( assertDelayMatchReportMode(s.minDelay, s.maxDelay, extractReportMode(s.flags))); } }); } // Test that SetOperationMode returns the expected value TEST_P(SensorsHidlTest, SetOperationMode) { std::vector sensors = getInjectEventSensors(); if (getInjectEventSensors().size() > 0) { ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::NORMAL)); ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::DATA_INJECTION)); ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::NORMAL)); } else { ASSERT_EQ(Result::BAD_VALUE, getSensors()->setOperationMode(OperationMode::DATA_INJECTION)); } } // Test that an injected event is written back to the Event FMQ TEST_P(SensorsHidlTest, InjectSensorEventData) { std::vector sensors = getInjectEventSensors(); if (sensors.size() == 0) { return; } ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::DATA_INJECTION)); EventCallback callback; getEnvironment()->registerCallback(&callback); // AdditionalInfo event should not be sent to Event FMQ EventType additionalInfoEvent; additionalInfoEvent.sensorType = SensorTypeVersion::ADDITIONAL_INFO; additionalInfoEvent.timestamp = android::elapsedRealtimeNano(); EventType injectedEvent; injectedEvent.timestamp = android::elapsedRealtimeNano(); Vec3 data = {1, 2, 3, SensorStatus::ACCURACY_HIGH}; injectedEvent.u.vec3 = data; for (const auto& s : sensors) { additionalInfoEvent.sensorHandle = s.sensorHandle; EXPECT_EQ(Result::OK, getSensors()->injectSensorData(additionalInfoEvent)); injectedEvent.sensorType = s.type; injectedEvent.sensorHandle = s.sensorHandle; EXPECT_EQ(Result::OK, getSensors()->injectSensorData(injectedEvent)); } // Wait for events to be written back to the Event FMQ callback.waitForEvents(sensors, std::chrono::milliseconds(1000) /* timeout */); getEnvironment()->unregisterCallback(); for (const auto& s : sensors) { auto events = callback.getEvents(s.sensorHandle); auto lastEvent = events.back(); SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << s.sensorHandle << std::dec << " type=" << static_cast(s.type) << " name=" << s.name); // Verify that only a single event has been received ASSERT_EQ(events.size(), 1); // Verify that the event received matches the event injected and is not the additional // info event ASSERT_EQ(lastEvent.sensorType, s.type); ASSERT_EQ(lastEvent.sensorType, s.type); ASSERT_EQ(lastEvent.timestamp, injectedEvent.timestamp); ASSERT_EQ(lastEvent.u.vec3.x, injectedEvent.u.vec3.x); ASSERT_EQ(lastEvent.u.vec3.y, injectedEvent.u.vec3.y); ASSERT_EQ(lastEvent.u.vec3.z, injectedEvent.u.vec3.z); ASSERT_EQ(lastEvent.u.vec3.status, injectedEvent.u.vec3.status); } ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::NORMAL)); } void SensorsHidlTest::activateAllSensors(bool enable) { for (const SensorInfoType& sensorInfo : getSensorsList()) { if (isValidType(sensorInfo.type)) { batch(sensorInfo.sensorHandle, sensorInfo.minDelay, 0 /* maxReportLatencyNs */); activate(sensorInfo.sensorHandle, enable); } } } // Test that if initialize is called twice, then the HAL writes events to the FMQs from the second // call to the function. TEST_P(SensorsHidlTest, CallInitializeTwice) { // Create a helper class so that a second environment is able to be instantiated class SensorsHidlEnvironmentTest : public SensorsHidlEnvironmentV2_X { public: SensorsHidlEnvironmentTest(const std::string& service_name) : SensorsHidlEnvironmentV2_X(service_name) {} }; if (getSensorsList().size() == 0) { // No sensors return; } constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000; // 1s constexpr int32_t kNumEvents = 1; // Create a new environment that calls initialize() std::unique_ptr newEnv = std::make_unique(GetParam()); newEnv->SetUp(); if (HasFatalFailure()) { return; // Exit early if setting up the new environment failed } activateAllSensors(true); // Verify that the old environment does not receive any events EXPECT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0); // Verify that the new event queue receives sensor events EXPECT_GE(newEnv.get()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents); activateAllSensors(false); // Cleanup the test environment newEnv->TearDown(); // Restore the test environment for future tests getEnvironment()->TearDown(); getEnvironment()->SetUp(); if (HasFatalFailure()) { return; // Exit early if resetting the environment failed } // Ensure that the original environment is receiving events activateAllSensors(true); EXPECT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents); activateAllSensors(false); } TEST_P(SensorsHidlTest, CleanupConnectionsOnInitialize) { if (getSensorsList().size() == 0) { // No sensors return; } activateAllSensors(true); // Verify that events are received constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000; // 1s constexpr int32_t kNumEvents = 1; ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents); // Clear the active sensor handles so they are not disabled during TearDown auto handles = mSensorHandles; mSensorHandles.clear(); getEnvironment()->TearDown(); getEnvironment()->SetUp(); if (HasFatalFailure()) { return; // Exit early if resetting the environment failed } // Verify no events are received until sensors are re-activated ASSERT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0); activateAllSensors(true); ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents); // Disable sensors activateAllSensors(false); // Restore active sensors prior to clearing the environment mSensorHandles = handles; } void SensorsHidlTest::runSingleFlushTest(const std::vector& sensors, bool activateSensor, int32_t expectedFlushCount, Result expectedResponse) { runFlushTest(sensors, activateSensor, 1 /* flushCalls */, expectedFlushCount, expectedResponse); } void SensorsHidlTest::runFlushTest(const std::vector& sensors, bool activateSensor, int32_t flushCalls, int32_t expectedFlushCount, Result expectedResponse) { EventCallback callback; getEnvironment()->registerCallback(&callback); // 10 sensors per group constexpr size_t kSensorsPerGroup = 10; for (size_t sensorOffset = 0; sensorOffset < sensors.size(); sensorOffset += kSensorsPerGroup) { std::vector sensorGroup( sensors.begin() + sensorOffset, sensors.begin() + std::min(sensorOffset + kSensorsPerGroup, sensors.size())); for (const SensorInfoType& sensor : sensorGroup) { // Configure and activate the sensor batch(sensor.sensorHandle, sensor.maxDelay, 0 /* maxReportLatencyNs */); activate(sensor.sensorHandle, activateSensor); // Flush the sensor for (int32_t i = 0; i < flushCalls; i++) { SCOPED_TRACE(::testing::Message() << "Flush " << i << "/" << flushCalls << ": " << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); Result flushResult = flush(sensor.sensorHandle); EXPECT_EQ(flushResult, expectedResponse); } } // Wait up to one second for the flush events callback.waitForFlushEvents(sensorGroup, flushCalls, std::chrono::milliseconds(1000) /* timeout */); // Deactivate all sensors after waiting for flush events so pending flush events are not // abandoned by the HAL. for (const SensorInfoType& sensor : sensorGroup) { activate(sensor.sensorHandle, false); } // Check that the correct number of flushes are present for each sensor for (const SensorInfoType& sensor : sensorGroup) { SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); ASSERT_EQ(callback.getFlushCount(sensor.sensorHandle), expectedFlushCount); } } getEnvironment()->unregisterCallback(); } TEST_P(SensorsHidlTest, FlushSensor) { // Find a sensor that is not a one-shot sensor std::vector sensors = getNonOneShotSensors(); if (sensors.size() == 0) { return; } constexpr int32_t kFlushes = 5; runSingleFlushTest(sensors, true /* activateSensor */, 1 /* expectedFlushCount */, Result::OK); runFlushTest(sensors, true /* activateSensor */, kFlushes, kFlushes, Result::OK); } TEST_P(SensorsHidlTest, FlushOneShotSensor) { // Find a sensor that is a one-shot sensor std::vector sensors = getOneShotSensors(); if (sensors.size() == 0) { return; } runSingleFlushTest(sensors, true /* activateSensor */, 0 /* expectedFlushCount */, Result::BAD_VALUE); } TEST_P(SensorsHidlTest, FlushInactiveSensor) { // Attempt to find a non-one shot sensor, then a one-shot sensor if necessary std::vector sensors = getNonOneShotSensors(); if (sensors.size() == 0) { sensors = getOneShotSensors(); if (sensors.size() == 0) { return; } } runSingleFlushTest(sensors, false /* activateSensor */, 0 /* expectedFlushCount */, Result::BAD_VALUE); } TEST_P(SensorsHidlTest, Batch) { if (getSensorsList().size() == 0) { return; } activateAllSensors(false /* enable */); for (const SensorInfoType& sensor : getSensorsList()) { SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); // Call batch on inactive sensor // One shot sensors have minDelay set to -1 which is an invalid // parameter. Use 0 instead to avoid errors. int64_t samplingPeriodNs = extractReportMode(sensor.flags) == SensorFlagBits::ONE_SHOT_MODE ? 0 : sensor.minDelay; ASSERT_EQ(batch(sensor.sensorHandle, samplingPeriodNs, 0 /* maxReportLatencyNs */), Result::OK); // Activate the sensor activate(sensor.sensorHandle, true /* enabled */); // Call batch on an active sensor ASSERT_EQ(batch(sensor.sensorHandle, sensor.maxDelay, 0 /* maxReportLatencyNs */), Result::OK); } activateAllSensors(false /* enable */); // Call batch on an invalid sensor SensorInfoType sensor = getSensorsList().front(); sensor.sensorHandle = getInvalidSensorHandle(); ASSERT_EQ(batch(sensor.sensorHandle, sensor.minDelay, 0 /* maxReportLatencyNs */), Result::BAD_VALUE); } TEST_P(SensorsHidlTest, Activate) { if (getSensorsList().size() == 0) { return; } // Verify that sensor events are generated when activate is called for (const SensorInfoType& sensor : getSensorsList()) { SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); batch(sensor.sensorHandle, sensor.minDelay, 0 /* maxReportLatencyNs */); ASSERT_EQ(activate(sensor.sensorHandle, true), Result::OK); // Call activate on a sensor that is already activated ASSERT_EQ(activate(sensor.sensorHandle, true), Result::OK); // Deactivate the sensor ASSERT_EQ(activate(sensor.sensorHandle, false), Result::OK); // Call deactivate on a sensor that is already deactivated ASSERT_EQ(activate(sensor.sensorHandle, false), Result::OK); } // Attempt to activate an invalid sensor int32_t invalidHandle = getInvalidSensorHandle(); ASSERT_EQ(activate(invalidHandle, true), Result::BAD_VALUE); ASSERT_EQ(activate(invalidHandle, false), Result::BAD_VALUE); } TEST_P(SensorsHidlTest, NoStaleEvents) { constexpr std::chrono::milliseconds kFiveHundredMs(500); constexpr std::chrono::milliseconds kOneSecond(1000); // Register the callback to receive sensor events EventCallback callback; getEnvironment()->registerCallback(&callback); // This test is not valid for one-shot, on-change or special-report-mode sensors const std::vector sensors = getNonOneShotAndNonOnChangeAndNonSpecialSensors(); std::chrono::milliseconds maxMinDelay(0); for (const SensorInfoType& sensor : sensors) { std::chrono::milliseconds minDelay = duration_cast( std::chrono::microseconds(sensor.minDelay)); maxMinDelay = std::chrono::milliseconds(std::max(maxMinDelay.count(), minDelay.count())); } // Activate the sensors so that they start generating events activateAllSensors(true); // According to the CDD, the first sample must be generated within 400ms + 2 * sample_time // and the maximum reporting latency is 100ms + 2 * sample_time. Wait a sufficient amount // of time to guarantee that a sample has arrived. callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay)); activateAllSensors(false); // Save the last received event for each sensor std::map lastEventTimestampMap; for (const SensorInfoType& sensor : sensors) { SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); if (callback.getEvents(sensor.sensorHandle).size() >= 1) { lastEventTimestampMap[sensor.sensorHandle] = callback.getEvents(sensor.sensorHandle).back().timestamp; } } // Allow some time to pass, reset the callback, then reactivate the sensors usleep(duration_cast(kOneSecond + (5 * maxMinDelay)).count()); callback.reset(); activateAllSensors(true); callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay)); activateAllSensors(false); getEnvironment()->unregisterCallback(); for (const SensorInfoType& sensor : sensors) { SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); // Skip sensors that did not previously report an event if (lastEventTimestampMap.find(sensor.sensorHandle) == lastEventTimestampMap.end()) { continue; } // Skip sensors with no events const std::vector events = callback.getEvents(sensor.sensorHandle); if (events.empty()) { continue; } // Ensure that the first event received is not stale by ensuring that its timestamp is // sufficiently different from the previous event const EventType newEvent = events.front(); std::chrono::milliseconds delta = duration_cast( nanoseconds(newEvent.timestamp - lastEventTimestampMap[sensor.sensorHandle])); std::chrono::milliseconds sensorMinDelay = duration_cast( std::chrono::microseconds(sensor.minDelay)); ASSERT_GE(delta, kFiveHundredMs + (3 * sensorMinDelay)); } } void SensorsHidlTest::checkRateLevel(const SensorInfoType& sensor, int32_t directChannelHandle, RateLevel rateLevel) { configDirectReport(sensor.sensorHandle, directChannelHandle, rateLevel, [&](Result result, int32_t reportToken) { SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); if (isDirectReportRateSupported(sensor, rateLevel)) { ASSERT_EQ(result, Result::OK); if (rateLevel != RateLevel::STOP) { ASSERT_GT(reportToken, 0); } } else { ASSERT_EQ(result, Result::BAD_VALUE); } }); } void SensorsHidlTest::queryDirectChannelSupport(SharedMemType memType, bool* supportsSharedMemType, bool* supportsAnyDirectChannel) { *supportsSharedMemType = false; *supportsAnyDirectChannel = false; for (const SensorInfoType& curSensor : getSensorsList()) { if (isDirectChannelTypeSupported(curSensor, memType)) { *supportsSharedMemType = true; } if (isDirectChannelTypeSupported(curSensor, SharedMemType::ASHMEM) || isDirectChannelTypeSupported(curSensor, SharedMemType::GRALLOC)) { *supportsAnyDirectChannel = true; } if (*supportsSharedMemType && *supportsAnyDirectChannel) { break; } } } void SensorsHidlTest::verifyRegisterDirectChannel( std::shared_ptr> mem, int32_t* directChannelHandle, bool supportsSharedMemType, bool supportsAnyDirectChannel) { char* buffer = mem->getBuffer(); size_t size = mem->getSize(); if (supportsSharedMemType) { memset(buffer, 0xff, size); } registerDirectChannel(mem->getSharedMemInfo(), [&](Result result, int32_t channelHandle) { if (supportsSharedMemType) { ASSERT_EQ(result, Result::OK); ASSERT_GT(channelHandle, 0); // Verify that the memory has been zeroed for (size_t i = 0; i < mem->getSize(); i++) { ASSERT_EQ(buffer[i], 0x00); } } else { Result expectedResult = supportsAnyDirectChannel ? Result::BAD_VALUE : Result::INVALID_OPERATION; ASSERT_EQ(result, expectedResult); ASSERT_EQ(channelHandle, -1); } *directChannelHandle = channelHandle; }); } void SensorsHidlTest::verifyConfigure(const SensorInfoType& sensor, SharedMemType memType, int32_t directChannelHandle, bool supportsAnyDirectChannel) { SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); if (isDirectChannelTypeSupported(sensor, memType)) { // Verify that each rate level is properly supported checkRateLevel(sensor, directChannelHandle, RateLevel::NORMAL); checkRateLevel(sensor, directChannelHandle, RateLevel::FAST); checkRateLevel(sensor, directChannelHandle, RateLevel::VERY_FAST); checkRateLevel(sensor, directChannelHandle, RateLevel::STOP); // Verify that a sensor handle of -1 is only acceptable when using RateLevel::STOP configDirectReport(-1 /* sensorHandle */, directChannelHandle, RateLevel::NORMAL, [](Result result, int32_t /* reportToken */) { ASSERT_EQ(result, Result::BAD_VALUE); }); configDirectReport( -1 /* sensorHandle */, directChannelHandle, RateLevel::STOP, [](Result result, int32_t /* reportToken */) { ASSERT_EQ(result, Result::OK); }); } else { // directChannelHandle will be -1 here, HAL should either reject it as a bad value if there // is some level of direct channel report, otherwise return INVALID_OPERATION if direct // channel is not supported at all Result expectedResult = supportsAnyDirectChannel ? Result::BAD_VALUE : Result::INVALID_OPERATION; configDirectReport(sensor.sensorHandle, directChannelHandle, RateLevel::NORMAL, [expectedResult](Result result, int32_t /* reportToken */) { ASSERT_EQ(result, expectedResult); }); } } void SensorsHidlTest::verifyUnregisterDirectChannel(int32_t directChannelHandle, bool supportsAnyDirectChannel) { Result expectedResult = supportsAnyDirectChannel ? Result::OK : Result::INVALID_OPERATION; ASSERT_EQ(unregisterDirectChannel(directChannelHandle), expectedResult); } void SensorsHidlTest::verifyDirectChannel(SharedMemType memType) { constexpr size_t kNumEvents = 1; constexpr size_t kMemSize = kNumEvents * kEventSize; std::shared_ptr> mem( SensorsTestSharedMemory::create(memType, kMemSize)); ASSERT_NE(mem, nullptr); bool supportsSharedMemType; bool supportsAnyDirectChannel; queryDirectChannelSupport(memType, &supportsSharedMemType, &supportsAnyDirectChannel); for (const SensorInfoType& sensor : getSensorsList()) { int32_t directChannelHandle = 0; verifyRegisterDirectChannel(mem, &directChannelHandle, supportsSharedMemType, supportsAnyDirectChannel); verifyConfigure(sensor, memType, directChannelHandle, supportsAnyDirectChannel); verifyUnregisterDirectChannel(directChannelHandle, supportsAnyDirectChannel); } } TEST_P(SensorsHidlTest, DirectChannelAshmem) { verifyDirectChannel(SharedMemType::ASHMEM); } TEST_P(SensorsHidlTest, DirectChannelGralloc) { verifyDirectChannel(SharedMemType::GRALLOC); } bool SensorsHidlTest::getDirectChannelSensor(SensorInfoType* sensor, SharedMemType* memType, RateLevel* rate) { bool found = false; for (const SensorInfoType& curSensor : getSensorsList()) { if (isDirectChannelTypeSupported(curSensor, SharedMemType::ASHMEM)) { *memType = SharedMemType::ASHMEM; *sensor = curSensor; found = true; break; } else if (isDirectChannelTypeSupported(curSensor, SharedMemType::GRALLOC)) { *memType = SharedMemType::GRALLOC; *sensor = curSensor; found = true; break; } } if (found) { // Find a supported rate level constexpr int kNumRateLevels = 3; RateLevel rates[kNumRateLevels] = {RateLevel::NORMAL, RateLevel::FAST, RateLevel::VERY_FAST}; *rate = RateLevel::STOP; for (int i = 0; i < kNumRateLevels; i++) { if (isDirectReportRateSupported(*sensor, rates[i])) { *rate = rates[i]; } } // At least one rate level must be supported EXPECT_NE(*rate, RateLevel::STOP); } return found; }