/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "vibrator-impl/Vibrator.h" #include #include namespace aidl { namespace android { namespace hardware { namespace vibrator { static constexpr int32_t COMPOSE_DELAY_MAX_MS = 1000; static constexpr int32_t COMPOSE_SIZE_MAX = 256; static constexpr int32_t COMPOSE_PWLE_SIZE_MAX = 127; static constexpr float Q_FACTOR = 11.0; static constexpr int32_t COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS = 16383; static constexpr float PWLE_LEVEL_MIN = 0.0; static constexpr float PWLE_LEVEL_MAX = 1.0; static constexpr float PWLE_FREQUENCY_RESOLUTION_HZ = 1.0; static constexpr float PWLE_FREQUENCY_MIN_HZ = 140.0; static constexpr float RESONANT_FREQUENCY_HZ = 150.0; static constexpr float PWLE_FREQUENCY_MAX_HZ = 160.0; static constexpr float PWLE_BW_MAP_SIZE = 1 + ((PWLE_FREQUENCY_MAX_HZ - PWLE_FREQUENCY_MIN_HZ) / PWLE_FREQUENCY_RESOLUTION_HZ); ndk::ScopedAStatus Vibrator::getCapabilities(int32_t* _aidl_return) { LOG(VERBOSE) << "Vibrator reporting capabilities"; *_aidl_return = IVibrator::CAP_ON_CALLBACK | IVibrator::CAP_PERFORM_CALLBACK | IVibrator::CAP_AMPLITUDE_CONTROL | IVibrator::CAP_EXTERNAL_CONTROL | IVibrator::CAP_EXTERNAL_AMPLITUDE_CONTROL | IVibrator::CAP_COMPOSE_EFFECTS | IVibrator::CAP_ALWAYS_ON_CONTROL | IVibrator::CAP_GET_RESONANT_FREQUENCY | IVibrator::CAP_GET_Q_FACTOR | IVibrator::CAP_FREQUENCY_CONTROL | IVibrator::CAP_COMPOSE_PWLE_EFFECTS; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::off() { LOG(VERBOSE) << "Vibrator off"; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::on(int32_t timeoutMs, const std::shared_ptr& callback) { LOG(VERBOSE) << "Vibrator on for timeoutMs: " << timeoutMs; if (callback != nullptr) { // Note that thread lambdas aren't using implicit capture [=], to avoid capturing "this", // which may be asynchronously destructed. // If "this" is needed, use [sharedThis = this->ref()]. std::thread([timeoutMs, callback] { LOG(VERBOSE) << "Starting on on another thread"; usleep(timeoutMs * 1000); LOG(VERBOSE) << "Notifying on complete"; if (!callback->onComplete().isOk()) { LOG(ERROR) << "Failed to call onComplete"; } }).detach(); } return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::perform(Effect effect, EffectStrength strength, const std::shared_ptr& callback, int32_t* _aidl_return) { LOG(VERBOSE) << "Vibrator perform"; if (effect != Effect::CLICK && effect != Effect::TICK) { return ndk::ScopedAStatus(AStatus_fromExceptionCode(EX_UNSUPPORTED_OPERATION)); } if (strength != EffectStrength::LIGHT && strength != EffectStrength::MEDIUM && strength != EffectStrength::STRONG) { return ndk::ScopedAStatus(AStatus_fromExceptionCode(EX_UNSUPPORTED_OPERATION)); } constexpr size_t kEffectMillis = 100; if (callback != nullptr) { std::thread([callback] { LOG(VERBOSE) << "Starting perform on another thread"; usleep(kEffectMillis * 1000); LOG(VERBOSE) << "Notifying perform complete"; callback->onComplete(); }).detach(); } *_aidl_return = kEffectMillis; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getSupportedEffects(std::vector* _aidl_return) { *_aidl_return = {Effect::CLICK, Effect::TICK}; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::setAmplitude(float amplitude) { LOG(VERBOSE) << "Vibrator set amplitude: " << amplitude; if (amplitude <= 0.0f || amplitude > 1.0f) { return ndk::ScopedAStatus(AStatus_fromExceptionCode(EX_ILLEGAL_ARGUMENT)); } return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::setExternalControl(bool enabled) { LOG(VERBOSE) << "Vibrator set external control: " << enabled; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getCompositionDelayMax(int32_t* maxDelayMs) { *maxDelayMs = COMPOSE_DELAY_MAX_MS; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getCompositionSizeMax(int32_t* maxSize) { *maxSize = COMPOSE_SIZE_MAX; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getSupportedPrimitives(std::vector* supported) { *supported = { CompositePrimitive::NOOP, CompositePrimitive::CLICK, CompositePrimitive::THUD, CompositePrimitive::SPIN, CompositePrimitive::QUICK_RISE, CompositePrimitive::SLOW_RISE, CompositePrimitive::QUICK_FALL, CompositePrimitive::LIGHT_TICK, CompositePrimitive::LOW_TICK, }; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getPrimitiveDuration(CompositePrimitive primitive, int32_t* durationMs) { std::vector supported; getSupportedPrimitives(&supported); if (std::find(supported.begin(), supported.end(), primitive) == supported.end()) { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } if (primitive != CompositePrimitive::NOOP) { *durationMs = 100; } else { *durationMs = 0; } return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::compose(const std::vector& composite, const std::shared_ptr& callback) { if (composite.size() > COMPOSE_SIZE_MAX) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } std::vector supported; getSupportedPrimitives(&supported); for (auto& e : composite) { if (e.delayMs > COMPOSE_DELAY_MAX_MS) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (e.scale < 0.0f || e.scale > 1.0f) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (std::find(supported.begin(), supported.end(), e.primitive) == supported.end()) { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } } // The thread may theoretically outlive the vibrator, so take a proper reference to it. std::thread([sharedThis = this->ref(), composite, callback] { LOG(VERBOSE) << "Starting compose on another thread"; for (auto& e : composite) { if (e.delayMs) { usleep(e.delayMs * 1000); } LOG(VERBOSE) << "triggering primitive " << static_cast(e.primitive) << " @ scale " << e.scale; int32_t durationMs; sharedThis->getPrimitiveDuration(e.primitive, &durationMs); usleep(durationMs * 1000); } if (callback != nullptr) { LOG(VERBOSE) << "Notifying perform complete"; callback->onComplete(); } }).detach(); return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getSupportedAlwaysOnEffects(std::vector* _aidl_return) { return getSupportedEffects(_aidl_return); } ndk::ScopedAStatus Vibrator::alwaysOnEnable(int32_t id, Effect effect, EffectStrength strength) { std::vector effects; getSupportedAlwaysOnEffects(&effects); if (std::find(effects.begin(), effects.end(), effect) == effects.end()) { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } else { LOG(VERBOSE) << "Enabling always-on ID " << id << " with " << toString(effect) << "/" << toString(strength); return ndk::ScopedAStatus::ok(); } } ndk::ScopedAStatus Vibrator::alwaysOnDisable(int32_t id) { LOG(VERBOSE) << "Disabling always-on ID " << id; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getResonantFrequency(float *resonantFreqHz) { *resonantFreqHz = RESONANT_FREQUENCY_HZ; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getQFactor(float *qFactor) { *qFactor = Q_FACTOR; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getFrequencyResolution(float *freqResolutionHz) { *freqResolutionHz = PWLE_FREQUENCY_RESOLUTION_HZ; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getFrequencyMinimum(float *freqMinimumHz) { *freqMinimumHz = PWLE_FREQUENCY_MIN_HZ; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getBandwidthAmplitudeMap(std::vector *_aidl_return) { // The output BandwidthAmplitudeMap will be as below and the maximum // amplitude 1.0 will be set on RESONANT_FREQUENCY_HZ // {0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1, 0.99, 0.98, 0.97, // 0.96, 0.95, 0.94, 0.93, 0.92, 0.91, 0.9} int32_t capabilities = 0; int halfMapSize = PWLE_BW_MAP_SIZE / 2; Vibrator::getCapabilities(&capabilities); if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) { std::vector bandwidthAmplitudeMap(PWLE_BW_MAP_SIZE, PWLE_LEVEL_MAX); for (int i = 0; i < halfMapSize; ++i) { bandwidthAmplitudeMap[halfMapSize + i + 1] = bandwidthAmplitudeMap[halfMapSize + i] - 0.01; bandwidthAmplitudeMap[halfMapSize - i - 1] = bandwidthAmplitudeMap[halfMapSize - i] - 0.01; } *_aidl_return = bandwidthAmplitudeMap; return ndk::ScopedAStatus::ok(); } else { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } } ndk::ScopedAStatus Vibrator::getPwlePrimitiveDurationMax(int32_t *durationMs) { *durationMs = COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getPwleCompositionSizeMax(int32_t *maxSize) { *maxSize = COMPOSE_PWLE_SIZE_MAX; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getSupportedBraking(std::vector *supported) { *supported = { Braking::NONE, Braking::CLAB, }; return ndk::ScopedAStatus::ok(); } void resetPreviousEndAmplitudeEndFrequency(float &prevEndAmplitude, float &prevEndFrequency) { const float reset = -1.0; prevEndAmplitude = reset; prevEndFrequency = reset; } void incrementIndex(int &index) { index += 1; } void constructActiveDefaults(std::ostringstream &pwleBuilder, const int &segmentIdx) { pwleBuilder << ",C" << segmentIdx << ":1"; pwleBuilder << ",B" << segmentIdx << ":0"; pwleBuilder << ",AR" << segmentIdx << ":0"; pwleBuilder << ",V" << segmentIdx << ":0"; } void constructActiveSegment(std::ostringstream &pwleBuilder, const int &segmentIdx, int duration, float amplitude, float frequency) { pwleBuilder << ",T" << segmentIdx << ":" << duration; pwleBuilder << ",L" << segmentIdx << ":" << amplitude; pwleBuilder << ",F" << segmentIdx << ":" << frequency; constructActiveDefaults(pwleBuilder, segmentIdx); } void constructBrakingSegment(std::ostringstream &pwleBuilder, const int &segmentIdx, int duration, Braking brakingType) { pwleBuilder << ",T" << segmentIdx << ":" << duration; pwleBuilder << ",L" << segmentIdx << ":" << 0; pwleBuilder << ",F" << segmentIdx << ":" << 0; pwleBuilder << ",C" << segmentIdx << ":0"; pwleBuilder << ",B" << segmentIdx << ":" << static_cast::type>(brakingType); pwleBuilder << ",AR" << segmentIdx << ":0"; pwleBuilder << ",V" << segmentIdx << ":0"; } ndk::ScopedAStatus Vibrator::composePwle(const std::vector &composite, const std::shared_ptr &callback) { std::ostringstream pwleBuilder; std::string pwleQueue; int compositionSizeMax; getPwleCompositionSizeMax(&compositionSizeMax); if (composite.size() <= 0 || composite.size() > compositionSizeMax) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } float prevEndAmplitude; float prevEndFrequency; resetPreviousEndAmplitudeEndFrequency(prevEndAmplitude, prevEndFrequency); int segmentIdx = 0; uint32_t totalDuration = 0; pwleBuilder << "S:0,WF:4,RP:0,WT:0"; for (auto &e : composite) { switch (e.getTag()) { case PrimitivePwle::active: { auto active = e.get(); if (active.duration < 0 || active.duration > COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (active.startAmplitude < PWLE_LEVEL_MIN || active.startAmplitude > PWLE_LEVEL_MAX || active.endAmplitude < PWLE_LEVEL_MIN || active.endAmplitude > PWLE_LEVEL_MAX) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (active.startFrequency < PWLE_FREQUENCY_MIN_HZ || active.startFrequency > PWLE_FREQUENCY_MAX_HZ || active.endFrequency < PWLE_FREQUENCY_MIN_HZ || active.endFrequency > PWLE_FREQUENCY_MAX_HZ) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (!((active.startAmplitude == prevEndAmplitude) && (active.startFrequency == prevEndFrequency))) { constructActiveSegment(pwleBuilder, segmentIdx, 0, active.startAmplitude, active.startFrequency); incrementIndex(segmentIdx); } constructActiveSegment(pwleBuilder, segmentIdx, active.duration, active.endAmplitude, active.endFrequency); incrementIndex(segmentIdx); prevEndAmplitude = active.endAmplitude; prevEndFrequency = active.endFrequency; totalDuration += active.duration; break; } case PrimitivePwle::braking: { auto braking = e.get(); if (braking.braking > Braking::CLAB) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (braking.duration > COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } constructBrakingSegment(pwleBuilder, segmentIdx, 0, braking.braking); incrementIndex(segmentIdx); constructBrakingSegment(pwleBuilder, segmentIdx, braking.duration, braking.braking); incrementIndex(segmentIdx); resetPreviousEndAmplitudeEndFrequency(prevEndAmplitude, prevEndFrequency); totalDuration += braking.duration; break; } } } std::thread([totalDuration, callback] { LOG(VERBOSE) << "Starting composePwle on another thread"; usleep(totalDuration * 1000); if (callback != nullptr) { LOG(VERBOSE) << "Notifying compose PWLE complete"; callback->onComplete(); } }).detach(); return ndk::ScopedAStatus::ok(); } } // namespace vibrator } // namespace hardware } // namespace android } // namespace aidl