/* * Copyright (c) 2014 - 2017, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "blit_engine_c2d.h" #include "hwc_debugger.h" #include "hwc_display.h" #include "hwc_tonemapper.h" #ifdef QTI_BSP #include #endif #define __CLASS__ "HWCDisplay" namespace sdm { void HWCColorMode::Init() { int ret = PopulateColorModes(); if (ret != 0) { DLOGW("Failed!!"); } return; } int HWCColorMode::SetColorMode(const std::string &color_mode) { if (color_modes_.empty()) { DLOGW("No Color Modes supported"); return -1; } std::vector::iterator it = std::find(color_modes_.begin(), color_modes_.end(), color_mode); if (it == color_modes_.end()) { DLOGE("Invalid colorMode request: %s", color_mode.c_str()); return -1; } DisplayError error = display_intf_->SetColorMode(color_mode); if (error != kErrorNone) { DLOGE("Failed to set color_mode = %s", color_mode.c_str()); return -1; } current_color_mode_ = color_mode; return 0; } const std::vector &HWCColorMode::GetColorModes() { return color_modes_; } int HWCColorMode::SetColorTransform(uint32_t matrix_count, const float *matrix) { if (matrix_count > kColorTransformMatrixCount) { DLOGE("Transform matrix count = %d, exceeds max = %d", matrix_count, kColorTransformMatrixCount); return -1; } double color_matrix[kColorTransformMatrixCount] = {0}; CopyColorTransformMatrix(matrix, color_matrix); DisplayError error = display_intf_->SetColorTransform(matrix_count, color_matrix); if (error != kErrorNone) { DLOGE("Failed!"); return -1; } return 0; } int HWCColorMode::PopulateColorModes() { uint32_t color_mode_count = 0; DisplayError error = display_intf_->GetColorModeCount(&color_mode_count); if (error != kErrorNone || (color_mode_count == 0)) { return -1; } DLOGI("Color Mode count = %d", color_mode_count); color_modes_.resize(color_mode_count); // SDM returns modes which is string error = display_intf_->GetColorModes(&color_mode_count, &color_modes_); if (error != kErrorNone) { DLOGE("GetColorModes Failed for count = %d", color_mode_count); return -1; } return 0; } HWCDisplay::HWCDisplay(CoreInterface *core_intf, hwc_procs_t const **hwc_procs, DisplayType type, int id, bool needs_blit, qService::QService *qservice, DisplayClass display_class) : core_intf_(core_intf), hwc_procs_(hwc_procs), type_(type), id_(id), needs_blit_(needs_blit), qservice_(qservice), display_class_(display_class) { } int HWCDisplay::Init() { DisplayError error = core_intf_->CreateDisplay(type_, this, &display_intf_); if (error != kErrorNone) { DLOGE("Display create failed. Error = %d display_type %d event_handler %p disp_intf %p", error, type_, this, &display_intf_); return -EINVAL; } HWCDebugHandler::Get()->GetProperty("sys.hwc_disable_hdr", &disable_hdr_handling_); if (disable_hdr_handling_) { DLOGI("HDR Handling disabled"); } int property_swap_interval = 1; HWCDebugHandler::Get()->GetProperty("debug.egl.swapinterval", &property_swap_interval); if (property_swap_interval == 0) { swap_interval_zero_ = true; } int blit_enabled = 0; HWCDebugHandler::Get()->GetProperty("persist.hwc.blit.comp", &blit_enabled); if (needs_blit_ && blit_enabled) { blit_engine_ = new BlitEngineC2d(); if (!blit_engine_) { DLOGI("Create Blit Engine C2D failed"); } else { if (blit_engine_->Init() < 0) { DLOGI("Blit Engine Init failed, Blit Composition will not be used!!"); delete blit_engine_; blit_engine_ = NULL; } } } tone_mapper_ = new HWCToneMapper(); display_intf_->GetRefreshRateRange(&min_refresh_rate_, &max_refresh_rate_); current_refresh_rate_ = max_refresh_rate_; s3d_format_hwc_to_sdm_.insert(std::pair(HAL_NO_3D, kS3dFormatNone)); s3d_format_hwc_to_sdm_.insert(std::pair(HAL_3D_SIDE_BY_SIDE_L_R, kS3dFormatLeftRight)); s3d_format_hwc_to_sdm_.insert(std::pair(HAL_3D_SIDE_BY_SIDE_R_L, kS3dFormatRightLeft)); s3d_format_hwc_to_sdm_.insert(std::pair(HAL_3D_TOP_BOTTOM, kS3dFormatTopBottom)); disable_animation_ = Debug::IsExtAnimDisabled(); return 0; } int HWCDisplay::Deinit() { DisplayError error = core_intf_->DestroyDisplay(display_intf_); if (error != kErrorNone) { DLOGE("Display destroy failed. Error = %d", error); return -EINVAL; } if (blit_engine_) { blit_engine_->DeInit(); delete blit_engine_; blit_engine_ = NULL; } delete tone_mapper_; tone_mapper_ = NULL; return 0; } int HWCDisplay::EventControl(int event, int enable) { DisplayError error = kErrorNone; if (shutdown_pending_) { return 0; } switch (event) { case HWC_EVENT_VSYNC: error = display_intf_->SetVSyncState(enable); break; default: DLOGW("Unsupported event = %d", event); } if (error != kErrorNone) { if (error == kErrorShutDown) { shutdown_pending_ = true; return 0; } DLOGE("Failed. event = %d, enable = %d, error = %d", event, enable, error); return -EINVAL; } return 0; } int HWCDisplay::SetPowerMode(int mode) { DLOGI("display = %d, mode = %d", id_, mode); DisplayState state = kStateOff; bool flush_on_error = flush_on_error_; if (shutdown_pending_) { return 0; } switch (mode) { case HWC_POWER_MODE_OFF: // During power off, all of the buffers are released. // Do not flush until a buffer is successfully submitted again. flush_on_error = false; state = kStateOff; tone_mapper_->Terminate(); break; case HWC_POWER_MODE_NORMAL: state = kStateOn; last_power_mode_ = HWC_POWER_MODE_NORMAL; break; case HWC_POWER_MODE_DOZE: state = kStateDoze; last_power_mode_ = HWC_POWER_MODE_DOZE; break; case HWC_POWER_MODE_DOZE_SUSPEND: state = kStateDozeSuspend; last_power_mode_ = HWC_POWER_MODE_DOZE_SUSPEND; break; default: return -EINVAL; } DisplayError error = display_intf_->SetDisplayState(state); if (error == kErrorNone) { flush_on_error_ = flush_on_error; } else { if (error == kErrorShutDown) { shutdown_pending_ = true; return 0; } DLOGE("Set state failed. Error = %d", error); return -EINVAL; } return 0; } int HWCDisplay::GetDisplayConfigs(uint32_t *configs, size_t *num_configs) { if (*num_configs > 0) { configs[0] = 0; *num_configs = 1; } return 0; } int HWCDisplay::GetDisplayAttributes(uint32_t config, const uint32_t *display_attributes, int32_t *values) { DisplayConfigVariableInfo variable_config; DisplayError error = display_intf_->GetFrameBufferConfig(&variable_config); if (error != kErrorNone) { DLOGV("Get variable config failed. Error = %d", error); return -EINVAL; } for (int i = 0; display_attributes[i] != HWC_DISPLAY_NO_ATTRIBUTE; i++) { switch (display_attributes[i]) { case HWC_DISPLAY_VSYNC_PERIOD: values[i] = INT32(variable_config.vsync_period_ns); break; case HWC_DISPLAY_WIDTH: values[i] = INT32(variable_config.x_pixels); break; case HWC_DISPLAY_HEIGHT: values[i] = INT32(variable_config.y_pixels); break; case HWC_DISPLAY_DPI_X: values[i] = INT32(variable_config.x_dpi * 1000.0f); break; case HWC_DISPLAY_DPI_Y: values[i] = INT32(variable_config.y_dpi * 1000.0f); break; default: DLOGW("Spurious attribute type = %d", display_attributes[i]); return -EINVAL; } } return 0; } int HWCDisplay::GetActiveConfig() { return 0; } int HWCDisplay::SetActiveConfig(int index) { return -1; } DisplayError HWCDisplay::SetMixerResolution(uint32_t width, uint32_t height) { return kErrorNotSupported; } void HWCDisplay::SetFrameDumpConfig(uint32_t count, uint32_t bit_mask_layer_type) { dump_frame_count_ = count; dump_frame_index_ = 0; dump_input_layers_ = ((bit_mask_layer_type & (1 << INPUT_LAYER_DUMP)) != 0); if (blit_engine_) { blit_engine_->SetFrameDumpConfig(count); } if (tone_mapper_) { tone_mapper_->SetFrameDumpConfig(count); } DLOGI("num_frame_dump %d, input_layer_dump_enable %d", dump_frame_count_, dump_input_layers_); } uint32_t HWCDisplay::GetLastPowerMode() { return last_power_mode_; } DisplayError HWCDisplay::VSync(const DisplayEventVSync &vsync) { const hwc_procs_t *hwc_procs = *hwc_procs_; if (!hwc_procs) { return kErrorParameters; } hwc_procs->vsync(hwc_procs, id_, vsync.timestamp); return kErrorNone; } DisplayError HWCDisplay::Refresh() { return kErrorNotSupported; } DisplayError HWCDisplay::CECMessage(char *message) { if (qservice_) { qservice_->onCECMessageReceived(message, 0); } else { DLOGW("Qservice instance not available."); } return kErrorNone; } int HWCDisplay::AllocateLayerStack(hwc_display_contents_1_t *content_list) { if (!content_list || !content_list->numHwLayers) { DLOGW("Invalid content list"); return -EINVAL; } size_t num_hw_layers = content_list->numHwLayers; uint32_t blit_target_count = 0; if (blit_engine_) { blit_target_count = kMaxBlitTargetLayers; } FreeLayerStack(); for (size_t i = 0; i < num_hw_layers + blit_target_count; i++) { Layer *layer = new Layer(); layer_stack_.layers.push_back(layer); } return 0; } void HWCDisplay::FreeLayerStack() { for (Layer *layer : layer_stack_.layers) { delete layer; } layer_stack_ = {}; } int HWCDisplay::PrepareLayerParams(hwc_layer_1_t *hwc_layer, Layer* layer) { const private_handle_t *pvt_handle = static_cast(hwc_layer->handle); LayerBuffer &layer_buffer = layer->input_buffer; if (pvt_handle) { layer_buffer.planes[0].fd = pvt_handle->fd; layer_buffer.format = GetSDMFormat(pvt_handle->format, pvt_handle->flags); int aligned_width, aligned_height; int unaligned_width, unaligned_height; AdrenoMemInfo::getInstance().getAlignedWidthAndHeight(pvt_handle, aligned_width, aligned_height); AdrenoMemInfo::getInstance().getUnalignedWidthAndHeight(pvt_handle, unaligned_width, unaligned_height); layer_buffer.width = UINT32(aligned_width); layer_buffer.height = UINT32(aligned_height); layer_buffer.unaligned_width = UINT32(unaligned_width); layer_buffer.unaligned_height = UINT32(unaligned_height); if (SetMetaData(pvt_handle, layer) != kErrorNone) { return -EINVAL; } if (pvt_handle->bufferType == BUFFER_TYPE_VIDEO) { layer_stack_.flags.video_present = true; layer_buffer.flags.video = true; } // TZ Protected Buffer - L1 if (pvt_handle->flags & private_handle_t::PRIV_FLAGS_SECURE_BUFFER) { layer_stack_.flags.secure_present = true; layer_buffer.flags.secure = true; if (pvt_handle->flags & private_handle_t::PRIV_FLAGS_CAMERA_WRITE) { layer_buffer.flags.secure_camera = true; } } // Gralloc Usage Protected Buffer - L3 - which needs to be treated as Secure & avoid fallback if (pvt_handle->flags & private_handle_t::PRIV_FLAGS_PROTECTED_BUFFER) { layer_stack_.flags.secure_present = true; } if (pvt_handle->flags & private_handle_t::PRIV_FLAGS_SECURE_DISPLAY) { layer_buffer.flags.secure_display = true; } // check if this is special solid_fill layer without input_buffer. if (solid_fill_enable_ && pvt_handle->fd == -1) { layer->flags.solid_fill = true; layer->solid_fill_color = solid_fill_color_; } } else { // for FBT layer if (hwc_layer->compositionType == HWC_FRAMEBUFFER_TARGET) { uint32_t x_pixels; uint32_t y_pixels; int aligned_width; int aligned_height; int usage = GRALLOC_USAGE_HW_FB; int format = HAL_PIXEL_FORMAT_RGBA_8888; int ubwc_enabled = 0; int flags = 0; HWCDebugHandler::Get()->GetProperty("debug.gralloc.enable_fb_ubwc", &ubwc_enabled); bool linear = layer_stack_.output_buffer && !IsUBWCFormat(layer_stack_.output_buffer->format); if ((ubwc_enabled == 1) && !linear) { usage |= GRALLOC_USAGE_PRIVATE_ALLOC_UBWC; flags |= private_handle_t::PRIV_FLAGS_UBWC_ALIGNED; } GetFrameBufferResolution(&x_pixels, &y_pixels); AdrenoMemInfo::getInstance().getAlignedWidthAndHeight(INT(x_pixels), INT(y_pixels), format, usage, aligned_width, aligned_height); layer_buffer.width = UINT32(aligned_width); layer_buffer.height = UINT32(aligned_height); layer_buffer.unaligned_width = x_pixels; layer_buffer.unaligned_height = y_pixels; layer_buffer.format = GetSDMFormat(format, flags); } } return 0; } void HWCDisplay::CommitLayerParams(hwc_layer_1_t *hwc_layer, Layer *layer) { const private_handle_t *pvt_handle = static_cast(hwc_layer->handle); LayerBuffer &layer_buffer = layer->input_buffer; if (pvt_handle) { layer_buffer.planes[0].fd = pvt_handle->fd; layer_buffer.planes[0].offset = pvt_handle->offset; layer_buffer.planes[0].stride = UINT32(pvt_handle->width); layer_buffer.size = pvt_handle->size; } // if swapinterval property is set to 0 then close and reset the acquireFd if (swap_interval_zero_ && hwc_layer->acquireFenceFd >= 0) { close(hwc_layer->acquireFenceFd); hwc_layer->acquireFenceFd = -1; } layer_buffer.acquire_fence_fd = hwc_layer->acquireFenceFd; } int HWCDisplay::PrePrepareLayerStack(hwc_display_contents_1_t *content_list) { if (shutdown_pending_) { return 0; } size_t num_hw_layers = content_list->numHwLayers; use_blit_comp_ = false; metadata_refresh_rate_ = 0; display_rect_ = LayerRect(); // Configure each layer for (size_t i = 0; i < num_hw_layers; i++) { hwc_layer_1_t &hwc_layer = content_list->hwLayers[i]; const private_handle_t *pvt_handle = static_cast(hwc_layer.handle); Layer *layer = layer_stack_.layers.at(i); int ret = PrepareLayerParams(&content_list->hwLayers[i], layer); if (ret != kErrorNone) { return ret; } layer->flags.skip = ((hwc_layer.flags & HWC_SKIP_LAYER) > 0); layer->flags.solid_fill = (hwc_layer.flags & kDimLayer) || solid_fill_enable_; if (layer->flags.skip || layer->flags.solid_fill) { layer->dirty_regions.clear(); } hwc_rect_t scaled_display_frame = hwc_layer.displayFrame; ApplyScanAdjustment(&scaled_display_frame); SetRect(scaled_display_frame, &layer->dst_rect); if (pvt_handle) { bool NonIntegralSourceCrop = IsNonIntegralSourceCrop(hwc_layer.sourceCropf); bool secure = (pvt_handle->flags & private_handle_t::PRIV_FLAGS_SECURE_BUFFER) || (pvt_handle->flags & private_handle_t::PRIV_FLAGS_PROTECTED_BUFFER) || (pvt_handle->flags & private_handle_t::PRIV_FLAGS_SECURE_DISPLAY); if (NonIntegralSourceCrop && (!secure && pvt_handle->bufferType != BUFFER_TYPE_VIDEO)) { layer->flags.skip = true; } } SetRect(hwc_layer.sourceCropf, &layer->src_rect); uint32_t num_visible_rects = UINT32(hwc_layer.visibleRegionScreen.numRects); uint32_t num_dirty_rects = UINT32(hwc_layer.surfaceDamage.numRects); for (uint32_t j = 0; j < num_visible_rects; j++) { LayerRect visible_rect = {}; SetRect(hwc_layer.visibleRegionScreen.rects[j], &visible_rect); layer->visible_regions.push_back(visible_rect); } for (uint32_t j = 0; j < num_dirty_rects; j++) { LayerRect dirty_rect = {}; SetRect(hwc_layer.surfaceDamage.rects[j], &dirty_rect); layer->dirty_regions.push_back(dirty_rect); } if (blit_engine_) { for (uint32_t j = 0; j < kMaxBlitTargetLayers; j++) { LayerRect blit_rect = {}; layer->blit_regions.push_back(blit_rect); } } SetComposition(hwc_layer.compositionType, &layer->composition); if (hwc_layer.compositionType != HWC_FRAMEBUFFER_TARGET) { display_rect_ = Union(display_rect_, layer->dst_rect); } // For dim layers, SurfaceFlinger // - converts planeAlpha to per pixel alpha, // - sets appropriate RGB color, // - sets planeAlpha to 0xff, // - blending to Premultiplied. // This can be achieved at hardware by // - solid fill ARGB to appropriate value, // - incoming planeAlpha, // - blending to Coverage. if (hwc_layer.flags & kDimLayer) { layer->input_buffer.format = kFormatARGB8888; layer->solid_fill_color = 0xff000000; #ifdef QTI_BSP // Get ARGB color from HWC Dim Layer color uint32_t a = UINT32(hwc_layer.color.a) << 24; uint32_t r = UINT32(hwc_layer.color.r) << 16; uint32_t g = UINT32(hwc_layer.color.g) << 8; uint32_t b = UINT32(hwc_layer.color.b); layer->solid_fill_color = a | r | g | b; #endif SetBlending(HWC_BLENDING_COVERAGE, &layer->blending); } else { SetBlending(hwc_layer.blending, &layer->blending); LayerTransform &layer_transform = layer->transform; uint32_t &hwc_transform = hwc_layer.transform; layer_transform.flip_horizontal = ((hwc_transform & HWC_TRANSFORM_FLIP_H) > 0); layer_transform.flip_vertical = ((hwc_transform & HWC_TRANSFORM_FLIP_V) > 0); layer_transform.rotation = ((hwc_transform & HWC_TRANSFORM_ROT_90) ? 90.0f : 0.0f); } // TODO(user): Remove below block. // For solid fill, only dest rect need to be specified. if (layer->flags.solid_fill) { LayerBuffer &input_buffer = layer->input_buffer; input_buffer.width = UINT32(layer->dst_rect.right - layer->dst_rect.left); input_buffer.height = UINT32(layer->dst_rect.bottom - layer->dst_rect.top); input_buffer.unaligned_width = input_buffer.width; input_buffer.unaligned_height = input_buffer.height; layer->src_rect.left = 0; layer->src_rect.top = 0; layer->src_rect.right = input_buffer.width; layer->src_rect.bottom = input_buffer.height; } layer->plane_alpha = hwc_layer.planeAlpha; layer->flags.cursor = ((hwc_layer.flags & HWC_IS_CURSOR_LAYER) > 0); layer->flags.updating = true; if (num_hw_layers <= kMaxLayerCount) { layer->flags.updating = IsLayerUpdating(content_list, layer); } #ifdef QTI_BSP if (hwc_layer.flags & HWC_SCREENSHOT_ANIMATOR_LAYER) { layer_stack_.flags.animating = true; } #endif if (layer->flags.skip) { layer_stack_.flags.skip_present = true; } if (layer->flags.cursor) { layer_stack_.flags.cursor_present = true; } PrepareDynamicRefreshRate(layer); layer->input_buffer.buffer_id = reinterpret_cast(hwc_layer.handle); } // Prepare the Blit Target if (blit_engine_) { // TODO(user): Fix this to enable BLIT #if 0 int ret = blit_engine_->Prepare(&layer_stack_); if (ret) { // Blit engine cannot handle this layer stack, hence set the layer stack // count to num_hw_layers layer_stack_.layer_count -= kMaxBlitTargetLayers; } else { use_blit_comp_ = true; } #endif } // Configure layer stack layer_stack_.flags.geometry_changed = ((content_list->flags & HWC_GEOMETRY_CHANGED) > 0); return 0; } void HWCDisplay::SetLayerS3DMode(const LayerBufferS3DFormat &source, uint32_t *target) { #ifdef QTI_BSP switch (source) { case kS3dFormatNone: *target = HWC_S3DMODE_NONE; break; case kS3dFormatLeftRight: *target = HWC_S3DMODE_LR; break; case kS3dFormatRightLeft: *target = HWC_S3DMODE_RL; break; case kS3dFormatTopBottom: *target = HWC_S3DMODE_TB; break; case kS3dFormatFramePacking: *target = HWC_S3DMODE_FP; break; default: *target = HWC_S3DMODE_MAX; break; } #endif } int HWCDisplay::PrepareLayerStack(hwc_display_contents_1_t *content_list) { if (shutdown_pending_) { return 0; } size_t num_hw_layers = content_list->numHwLayers; if (!skip_prepare_cnt) { DisplayError error = display_intf_->Prepare(&layer_stack_); if (error != kErrorNone) { if (error == kErrorShutDown) { shutdown_pending_ = true; } else if ((error != kErrorPermission) && (error != kErrorNoAppLayers)) { DLOGE("Prepare failed. Error = %d", error); // To prevent surfaceflinger infinite wait, flush the previous frame during Commit() // so that previous buffer and fences are released, and override the error. flush_ = true; } else { DLOGV("Prepare failed for Display = %d Error = %d", type_, error); } return 0; } } else { // Skip is not set MarkLayersForGPUBypass(content_list); skip_prepare_cnt = skip_prepare_cnt - 1; DLOGI("SecureDisplay %s, Skip Prepare/Commit and Flush", secure_display_active_ ? "Starting" : "Stopping"); flush_ = true; } for (size_t i = 0; i < num_hw_layers; i++) { hwc_layer_1_t &hwc_layer = content_list->hwLayers[i]; Layer *layer = layer_stack_.layers.at(i); LayerComposition composition = layer->composition; private_handle_t* pvt_handle = static_cast (const_cast(hwc_layer.handle)); MetaData_t *meta_data = pvt_handle ? reinterpret_cast(pvt_handle->base_metadata) : NULL; if ((composition == kCompositionSDE) || (composition == kCompositionHybrid) || (composition == kCompositionBlit)) { hwc_layer.hints |= HWC_HINT_CLEAR_FB; } SetComposition(composition, &hwc_layer.compositionType); if (meta_data != NULL) { if (composition == kCompositionGPUS3D) { // Align HWC and client's dispaly ID in case of HDMI as primary meta_data->s3dComp.displayId = display_intf_->IsPrimaryDisplay() ? HWC_DISPLAY_PRIMARY: id_; SetLayerS3DMode(layer->input_buffer.s3d_format, &meta_data->s3dComp.s3dMode); } } } return 0; } int HWCDisplay::CommitLayerStack(hwc_display_contents_1_t *content_list) { if (!content_list || !content_list->numHwLayers) { DLOGW("Invalid content list"); return -EINVAL; } if (shutdown_pending_) { return 0; } int status = 0; size_t num_hw_layers = content_list->numHwLayers; DumpInputBuffers(content_list); if (!flush_) { for (size_t i = 0; i < num_hw_layers; i++) { CommitLayerParams(&content_list->hwLayers[i], layer_stack_.layers.at(i)); } if (use_blit_comp_) { status = blit_engine_->PreCommit(content_list, &layer_stack_); if (status == 0) { status = blit_engine_->Commit(content_list, &layer_stack_); if (status != 0) { DLOGE("Blit Comp Failed!"); } } } if (layer_stack_.flags.hdr_present) { status = tone_mapper_->HandleToneMap(content_list, &layer_stack_); if (status != 0) { DLOGE("Error handling HDR in ToneMapper"); } } else { tone_mapper_->Terminate(); } DisplayError error = kErrorUndefined; if (status == 0) { error = display_intf_->Commit(&layer_stack_); status = 0; } if (error == kErrorNone) { // A commit is successfully submitted, start flushing on failure now onwards. flush_on_error_ = true; } else { if (error == kErrorShutDown) { shutdown_pending_ = true; return status; } else if (error != kErrorPermission) { DLOGE("Commit failed. Error = %d", error); // To prevent surfaceflinger infinite wait, flush the previous frame during Commit() // so that previous buffer and fences are released, and override the error. flush_ = true; } else { DLOGI("Commit failed for Display = %d Error = %d", type_, error); } } } return status; } int HWCDisplay::PostCommitLayerStack(hwc_display_contents_1_t *content_list) { size_t num_hw_layers = content_list->numHwLayers; int status = 0; // Do no call flush on errors, if a successful buffer is never submitted. if (flush_ && flush_on_error_) { display_intf_->Flush(); } if (tone_mapper_ && tone_mapper_->IsActive()) { tone_mapper_->PostCommit(&layer_stack_); } // Set the release fence fd to the blit engine if (use_blit_comp_ && blit_engine_->BlitActive()) { blit_engine_->PostCommit(&layer_stack_); } for (size_t i = 0; i < num_hw_layers; i++) { hwc_layer_1_t &hwc_layer = content_list->hwLayers[i]; Layer *layer = layer_stack_.layers.at(i); LayerBuffer &layer_buffer = layer->input_buffer; if (!flush_) { // If swapinterval property is set to 0 or for single buffer layers, do not update f/w // release fences and discard fences from driver if (swap_interval_zero_ || layer->flags.single_buffer) { hwc_layer.releaseFenceFd = -1; close(layer_buffer.release_fence_fd); layer_buffer.release_fence_fd = -1; } else if (layer->composition != kCompositionGPU) { hwc_layer.releaseFenceFd = layer_buffer.release_fence_fd; } // During animation on external/virtual display, SDM will use the cached // framebuffer layer throughout animation and do not allow framework to do eglswapbuffer on // framebuffer target. So graphics doesn't close the release fence fd of framebuffer target, // Hence close the release fencefd of framebuffer target here. if (disable_animation_) { if (layer->composition == kCompositionGPUTarget && animating_) { close(hwc_layer.releaseFenceFd); hwc_layer.releaseFenceFd = -1; } } } if (hwc_layer.acquireFenceFd >= 0) { close(hwc_layer.acquireFenceFd); hwc_layer.acquireFenceFd = -1; } } if (!flush_) { animating_ = layer_stack_.flags.animating; // if swapinterval property is set to 0 then close and reset the list retire fence if (swap_interval_zero_) { close(layer_stack_.retire_fence_fd); layer_stack_.retire_fence_fd = -1; } content_list->retireFenceFd = layer_stack_.retire_fence_fd; if (dump_frame_count_) { dump_frame_count_--; dump_frame_index_++; } } flush_ = false; return status; } bool HWCDisplay::IsLayerUpdating(hwc_display_contents_1_t *content_list, const Layer *layer) { // Layer should be considered updating if // a) layer is in single buffer mode, or // b) valid dirty_regions(android specific hint for updating status), or // c) layer stack geometry has changed return (layer->flags.single_buffer || IsSurfaceUpdated(layer->dirty_regions) || (layer_stack_.flags.geometry_changed)); } bool HWCDisplay::IsNonIntegralSourceCrop(const hwc_frect_t &source) { if ((source.left != roundf(source.left)) || (source.top != roundf(source.top)) || (source.right != roundf(source.right)) || (source.bottom != roundf(source.bottom))) { return true; } else { return false; } } void HWCDisplay::SetRect(const hwc_rect_t &source, LayerRect *target) { target->left = FLOAT(source.left); target->top = FLOAT(source.top); target->right = FLOAT(source.right); target->bottom = FLOAT(source.bottom); } void HWCDisplay::SetRect(const hwc_frect_t &source, LayerRect *target) { target->left = floorf(source.left); target->top = floorf(source.top); target->right = ceilf(source.right); target->bottom = ceilf(source.bottom); } void HWCDisplay::SetComposition(const int32_t &source, LayerComposition *target) { switch (source) { case HWC_FRAMEBUFFER_TARGET: *target = kCompositionGPUTarget; break; default: *target = kCompositionGPU; break; } } void HWCDisplay::SetComposition(const LayerComposition &source, int32_t *target) { switch (source) { case kCompositionGPUTarget: *target = HWC_FRAMEBUFFER_TARGET; break; case kCompositionGPU: *target = HWC_FRAMEBUFFER; break; case kCompositionGPUS3D: *target = HWC_FRAMEBUFFER; break; case kCompositionHWCursor: *target = HWC_CURSOR_OVERLAY; break; default: *target = HWC_OVERLAY; break; } } void HWCDisplay::SetBlending(const int32_t &source, LayerBlending *target) { switch (source) { case HWC_BLENDING_PREMULT: *target = kBlendingPremultiplied; break; case HWC_BLENDING_COVERAGE: *target = kBlendingCoverage; break; default: *target = kBlendingOpaque; break; } } void HWCDisplay::SetIdleTimeoutMs(uint32_t timeout_ms) { return; } DisplayError HWCDisplay::SetMaxMixerStages(uint32_t max_mixer_stages) { DisplayError error = kErrorNone; if (display_intf_) { error = display_intf_->SetMaxMixerStages(max_mixer_stages); } return error; } LayerBufferFormat HWCDisplay::GetSDMFormat(const int32_t &source, const int flags) { LayerBufferFormat format = kFormatInvalid; if (flags & private_handle_t::PRIV_FLAGS_UBWC_ALIGNED) { switch (source) { case HAL_PIXEL_FORMAT_RGBA_8888: format = kFormatRGBA8888Ubwc; break; case HAL_PIXEL_FORMAT_RGBX_8888: format = kFormatRGBX8888Ubwc; break; case HAL_PIXEL_FORMAT_BGR_565: format = kFormatBGR565Ubwc; break; case HAL_PIXEL_FORMAT_YCbCr_420_SP_VENUS: case HAL_PIXEL_FORMAT_YCbCr_420_SP_VENUS_UBWC: case HAL_PIXEL_FORMAT_NV12_ENCODEABLE: format = kFormatYCbCr420SPVenusUbwc; break; case HAL_PIXEL_FORMAT_RGBA_1010102: format = kFormatRGBA1010102Ubwc; break; case HAL_PIXEL_FORMAT_RGBX_1010102: format = kFormatRGBX1010102Ubwc; break; case HAL_PIXEL_FORMAT_YCbCr_420_TP10_UBWC: format = kFormatYCbCr420TP10Ubwc; break; case HAL_PIXEL_FORMAT_YCbCr_420_P010_UBWC: format = kFormatYCbCr420P010Ubwc; break; default: DLOGE("Unsupported format type for UBWC %d", source); return kFormatInvalid; } return format; } switch (source) { case HAL_PIXEL_FORMAT_RGBA_8888: format = kFormatRGBA8888; break; case HAL_PIXEL_FORMAT_RGBA_5551: format = kFormatRGBA5551; break; case HAL_PIXEL_FORMAT_RGBA_4444: format = kFormatRGBA4444; break; case HAL_PIXEL_FORMAT_BGRA_8888: format = kFormatBGRA8888; break; case HAL_PIXEL_FORMAT_RGBX_8888: format = kFormatRGBX8888; break; case HAL_PIXEL_FORMAT_BGRX_8888: format = kFormatBGRX8888; break; case HAL_PIXEL_FORMAT_RGB_888: format = kFormatRGB888; break; case HAL_PIXEL_FORMAT_RGB_565: format = kFormatRGB565; break; case HAL_PIXEL_FORMAT_BGR_565: format = kFormatBGR565; break; case HAL_PIXEL_FORMAT_NV12_ENCODEABLE: case HAL_PIXEL_FORMAT_YCbCr_420_SP_VENUS: format = kFormatYCbCr420SemiPlanarVenus; break; case HAL_PIXEL_FORMAT_YCrCb_420_SP_VENUS: format = kFormatYCrCb420SemiPlanarVenus; break; case HAL_PIXEL_FORMAT_YCbCr_420_SP_VENUS_UBWC: format = kFormatYCbCr420SPVenusUbwc; break; case HAL_PIXEL_FORMAT_YV12: format = kFormatYCrCb420PlanarStride16; break; case HAL_PIXEL_FORMAT_YCrCb_420_SP: format = kFormatYCrCb420SemiPlanar; break; case HAL_PIXEL_FORMAT_YCbCr_420_SP: format = kFormatYCbCr420SemiPlanar; break; case HAL_PIXEL_FORMAT_YCbCr_422_SP: format = kFormatYCbCr422H2V1SemiPlanar; break; case HAL_PIXEL_FORMAT_YCbCr_422_I: format = kFormatYCbCr422H2V1Packed; break; case HAL_PIXEL_FORMAT_CbYCrY_422_I: format = kFormatCbYCrY422H2V1Packed; break; case HAL_PIXEL_FORMAT_RGBA_1010102: format = kFormatRGBA1010102; break; case HAL_PIXEL_FORMAT_ARGB_2101010: format = kFormatARGB2101010; break; case HAL_PIXEL_FORMAT_RGBX_1010102: format = kFormatRGBX1010102; break; case HAL_PIXEL_FORMAT_XRGB_2101010: format = kFormatXRGB2101010; break; case HAL_PIXEL_FORMAT_BGRA_1010102: format = kFormatBGRA1010102; break; case HAL_PIXEL_FORMAT_ABGR_2101010: format = kFormatABGR2101010; break; case HAL_PIXEL_FORMAT_BGRX_1010102: format = kFormatBGRX1010102; break; case HAL_PIXEL_FORMAT_XBGR_2101010: format = kFormatXBGR2101010; break; case HAL_PIXEL_FORMAT_YCbCr_420_P010: format = kFormatYCbCr420P010; break; case HAL_PIXEL_FORMAT_YCbCr_420_TP10_UBWC: format = kFormatYCbCr420TP10Ubwc; break; case HAL_PIXEL_FORMAT_YCbCr_420_P010_UBWC: format = kFormatYCbCr420P010Ubwc; break; default: DLOGW("Unsupported format type = %d", source); return kFormatInvalid; } return format; } void HWCDisplay::DumpInputBuffers(hwc_display_contents_1_t *content_list) { size_t num_hw_layers = content_list->numHwLayers; char dir_path[PATH_MAX]; if (!dump_frame_count_ || flush_ || !dump_input_layers_) { return; } snprintf(dir_path, sizeof(dir_path), "/data/misc/display/frame_dump_%s", GetDisplayString()); if (mkdir(dir_path, 0777) != 0 && errno != EEXIST) { DLOGW("Failed to create %s directory errno = %d, desc = %s", dir_path, errno, strerror(errno)); return; } // if directory exists already, need to explicitly change the permission. if (errno == EEXIST && chmod(dir_path, 0777) != 0) { DLOGW("Failed to change permissions on %s directory", dir_path); return; } for (uint32_t i = 0; i < num_hw_layers; i++) { hwc_layer_1_t &hwc_layer = content_list->hwLayers[i]; const private_handle_t *pvt_handle = static_cast(hwc_layer.handle); if (hwc_layer.acquireFenceFd >= 0) { int error = sync_wait(hwc_layer.acquireFenceFd, 1000); if (error < 0) { DLOGW("sync_wait error errno = %d, desc = %s", errno, strerror(errno)); return; } } if (pvt_handle && pvt_handle->base) { char dump_file_name[PATH_MAX]; size_t result = 0; snprintf(dump_file_name, sizeof(dump_file_name), "%s/input_layer%d_%dx%d_%s_frame%d.raw", dir_path, i, pvt_handle->width, pvt_handle->height, qdutils::GetHALPixelFormatString(pvt_handle->format), dump_frame_index_); FILE* fp = fopen(dump_file_name, "w+"); if (fp) { result = fwrite(reinterpret_cast(pvt_handle->base), pvt_handle->size, 1, fp); fclose(fp); } DLOGI("Frame Dump %s: is %s", dump_file_name, result ? "Successful" : "Failed"); } } } void HWCDisplay::DumpOutputBuffer(const BufferInfo& buffer_info, void *base, int fence) { char dir_path[PATH_MAX]; snprintf(dir_path, sizeof(dir_path), "/data/misc/display/frame_dump_%s", GetDisplayString()); if (mkdir(dir_path, 777) != 0 && errno != EEXIST) { DLOGW("Failed to create %s directory errno = %d, desc = %s", dir_path, errno, strerror(errno)); return; } // if directory exists already, need to explicitly change the permission. if (errno == EEXIST && chmod(dir_path, 0777) != 0) { DLOGW("Failed to change permissions on %s directory", dir_path); return; } if (base) { char dump_file_name[PATH_MAX]; size_t result = 0; if (fence >= 0) { int error = sync_wait(fence, 1000); if (error < 0) { DLOGW("sync_wait error errno = %d, desc = %s", errno, strerror(errno)); return; } } snprintf(dump_file_name, sizeof(dump_file_name), "%s/output_layer_%dx%d_%s_frame%d.raw", dir_path, buffer_info.alloc_buffer_info.aligned_width, buffer_info.alloc_buffer_info.aligned_height, GetFormatString(buffer_info.buffer_config.format), dump_frame_index_); FILE* fp = fopen(dump_file_name, "w+"); if (fp) { result = fwrite(base, buffer_info.alloc_buffer_info.size, 1, fp); fclose(fp); } DLOGI("Frame Dump of %s is %s", dump_file_name, result ? "Successful" : "Failed"); } } const char *HWCDisplay::GetDisplayString() { switch (type_) { case kPrimary: return "primary"; case kHDMI: return "hdmi"; case kVirtual: return "virtual"; default: return "invalid"; } } int HWCDisplay::SetFrameBufferResolution(uint32_t x_pixels, uint32_t y_pixels) { DisplayConfigVariableInfo fb_config; DisplayError error = display_intf_->GetFrameBufferConfig(&fb_config); if (error != kErrorNone) { DLOGV("Get frame buffer config failed. Error = %d", error); return -EINVAL; } fb_config.x_pixels = x_pixels; fb_config.y_pixels = y_pixels; error = display_intf_->SetFrameBufferConfig(fb_config); if (error != kErrorNone) { DLOGV("Set frame buffer config failed. Error = %d", error); return -EINVAL; } DLOGI("New framebuffer resolution (%dx%d)", x_pixels, y_pixels); return 0; } void HWCDisplay::GetFrameBufferResolution(uint32_t *x_pixels, uint32_t *y_pixels) { DisplayConfigVariableInfo fb_config; display_intf_->GetFrameBufferConfig(&fb_config); *x_pixels = fb_config.x_pixels; *y_pixels = fb_config.y_pixels; } DisplayError HWCDisplay::GetMixerResolution(uint32_t *x_pixels, uint32_t *y_pixels) { return display_intf_->GetMixerResolution(x_pixels, y_pixels); } void HWCDisplay::GetPanelResolution(uint32_t *x_pixels, uint32_t *y_pixels) { DisplayConfigVariableInfo display_config; uint32_t active_index = 0; display_intf_->GetActiveConfig(&active_index); display_intf_->GetConfig(active_index, &display_config); *x_pixels = display_config.x_pixels; *y_pixels = display_config.y_pixels; } int HWCDisplay::SetDisplayStatus(uint32_t display_status) { int status = 0; const hwc_procs_t *hwc_procs = *hwc_procs_; switch (display_status) { case kDisplayStatusResume: display_paused_ = false; case kDisplayStatusOnline: status = SetPowerMode(HWC_POWER_MODE_NORMAL); break; case kDisplayStatusPause: display_paused_ = true; case kDisplayStatusOffline: status = SetPowerMode(HWC_POWER_MODE_OFF); break; default: DLOGW("Invalid display status %d", display_status); return -EINVAL; } if (display_status == kDisplayStatusResume || display_status == kDisplayStatusPause) { hwc_procs->invalidate(hwc_procs); } return status; } int HWCDisplay::SetCursorPosition(int x, int y) { DisplayError error = kErrorNone; if (shutdown_pending_) { return 0; } error = display_intf_->SetCursorPosition(x, y); if (error != kErrorNone) { if (error == kErrorShutDown) { shutdown_pending_ = true; return 0; } DLOGE("Failed for x = %d y = %d, Error = %d", x, y, error); return -1; } return 0; } int HWCDisplay::OnMinHdcpEncryptionLevelChange(uint32_t min_enc_level) { DisplayError error = display_intf_->OnMinHdcpEncryptionLevelChange(min_enc_level); if (error != kErrorNone) { DLOGE("Failed. Error = %d", error); return -1; } return 0; } void HWCDisplay::MarkLayersForGPUBypass(hwc_display_contents_1_t *content_list) { for (size_t i = 0 ; i < (content_list->numHwLayers - 1); i++) { hwc_layer_1_t *layer = &content_list->hwLayers[i]; layer->compositionType = HWC_OVERLAY; } } void HWCDisplay::ApplyScanAdjustment(hwc_rect_t *display_frame) { } DisplayError HWCDisplay::SetCSC(const MetaData_t *meta_data, ColorMetaData *color_metadata) { if (meta_data->operation & COLOR_METADATA) { #ifdef USE_COLOR_METADATA *color_metadata = meta_data->color; #endif } else if (meta_data->operation & UPDATE_COLOR_SPACE) { ColorSpace_t csc = meta_data->colorSpace; color_metadata->range = Range_Limited; if (csc == ITU_R_601_FR || csc == ITU_R_2020_FR) { color_metadata->range = Range_Full; } switch (csc) { case ITU_R_601: case ITU_R_601_FR: // display driver uses 601 irrespective of 525 or 625 color_metadata->colorPrimaries = ColorPrimaries_BT601_6_525; break; case ITU_R_709: color_metadata->colorPrimaries = ColorPrimaries_BT709_5; break; case ITU_R_2020: case ITU_R_2020_FR: color_metadata->colorPrimaries = ColorPrimaries_BT2020; break; default: DLOGE("Unsupported CSC: %d", csc); return kErrorNotSupported; } } return kErrorNone; } DisplayError HWCDisplay::SetIGC(IGC_t source, LayerIGC *target) { switch (source) { case IGC_NotSpecified: *target = kIGCNotSpecified; break; case IGC_sRGB: *target = kIGCsRGB; break; default: DLOGE("Unsupported IGC: %d", source); return kErrorNotSupported; } return kErrorNone; } DisplayError HWCDisplay::SetMetaData(const private_handle_t *pvt_handle, Layer *layer) { const MetaData_t *meta_data = reinterpret_cast(pvt_handle->base_metadata); LayerBuffer &layer_buffer = layer->input_buffer; if (!meta_data) { return kErrorNone; } if (SetCSC(meta_data, &layer_buffer.color_metadata) != kErrorNone) { return kErrorNotSupported; } bool hdr_layer = layer_buffer.color_metadata.colorPrimaries == ColorPrimaries_BT2020 && (layer_buffer.color_metadata.transfer == Transfer_SMPTE_ST2084 || layer_buffer.color_metadata.transfer == Transfer_HLG); if (hdr_layer && !disable_hdr_handling_) { // dont honor HDR when its handling is disabled layer_buffer.flags.hdr = true; layer_stack_.flags.hdr_present = true; } if (meta_data->operation & SET_IGC) { if (SetIGC(meta_data->igc, &layer_buffer.igc) != kErrorNone) { return kErrorNotSupported; } } if (meta_data->operation & UPDATE_REFRESH_RATE) { layer->frame_rate = RoundToStandardFPS(meta_data->refreshrate); } if ((meta_data->operation & PP_PARAM_INTERLACED) && meta_data->interlaced) { layer_buffer.flags.interlace = true; } if (meta_data->operation & LINEAR_FORMAT) { layer_buffer.format = GetSDMFormat(INT32(meta_data->linearFormat), 0); } if (meta_data->operation & SET_SINGLE_BUFFER_MODE) { layer->flags.single_buffer = meta_data->isSingleBufferMode; // Graphics can set this operation on all types of layers including FB and set the actual value // to 0. To protect against SET operations of 0 value, we need to do a logical OR. layer_stack_.flags.single_buffered_layer_present |= meta_data->isSingleBufferMode; } if (meta_data->operation & S3D_FORMAT) { std::map::iterator it = s3d_format_hwc_to_sdm_.find(INT32(meta_data->s3dFormat)); if (it != s3d_format_hwc_to_sdm_.end()) { layer->input_buffer.s3d_format = it->second; } else { DLOGW("Invalid S3D format %d", meta_data->s3dFormat); } } return kErrorNone; } int HWCDisplay::SetPanelBrightness(int level) { int ret = 0; if (display_intf_) ret = display_intf_->SetPanelBrightness(level); else ret = -EINVAL; return ret; } int HWCDisplay::GetPanelBrightness(int *level) { return display_intf_->GetPanelBrightness(level); } int HWCDisplay::CachePanelBrightness(int level) { int ret = 0; if (display_intf_) ret = display_intf_->CachePanelBrightness(level); else ret = -EINVAL; return ret; } int HWCDisplay::ToggleScreenUpdates(bool enable) { const hwc_procs_t *hwc_procs = *hwc_procs_; display_paused_ = enable ? false : true; hwc_procs->invalidate(hwc_procs); return 0; } int HWCDisplay::ColorSVCRequestRoute(const PPDisplayAPIPayload &in_payload, PPDisplayAPIPayload *out_payload, PPPendingParams *pending_action) { int ret = 0; if (display_intf_) ret = display_intf_->ColorSVCRequestRoute(in_payload, out_payload, pending_action); else ret = -EINVAL; return ret; } int HWCDisplay::GetVisibleDisplayRect(hwc_rect_t* visible_rect) { if (!IsValid(display_rect_)) { return -EINVAL; } visible_rect->left = INT(display_rect_.left); visible_rect->top = INT(display_rect_.top); visible_rect->right = INT(display_rect_.right); visible_rect->bottom = INT(display_rect_.bottom); DLOGI("Dpy = %d Visible Display Rect(%d %d %d %d)", visible_rect->left, visible_rect->top, visible_rect->right, visible_rect->bottom); return 0; } void HWCDisplay::SetSecureDisplay(bool secure_display_active, bool force_flush) { secure_display_active_ = secure_display_active; return; } int HWCDisplay::SetActiveDisplayConfig(int config) { return display_intf_->SetActiveConfig(UINT32(config)) == kErrorNone ? 0 : -1; } int HWCDisplay::GetActiveDisplayConfig(uint32_t *config) { return display_intf_->GetActiveConfig(config) == kErrorNone ? 0 : -1; } int HWCDisplay::GetDisplayConfigCount(uint32_t *count) { return display_intf_->GetNumVariableInfoConfigs(count) == kErrorNone ? 0 : -1; } int HWCDisplay::GetDisplayAttributesForConfig(int config, DisplayConfigVariableInfo *display_attributes) { return display_intf_->GetConfig(UINT32(config), display_attributes) == kErrorNone ? 0 : -1; } int HWCDisplay::GetDisplayFixedConfig(DisplayConfigFixedInfo *fixed_info) { return display_intf_->GetConfig(fixed_info) == kErrorNone ? 0 : -1; } // TODO(user): HWC needs to know updating for dyn_fps, cpu hint features, // once the features are moved to SDM, the two functions below can be removed. uint32_t HWCDisplay::GetUpdatingLayersCount(uint32_t app_layer_count) { uint32_t updating_count = 0; for (uint i = 0; i < app_layer_count; i++) { Layer *layer = layer_stack_.layers.at(i); if (layer->flags.updating) { updating_count++; } } return updating_count; } bool HWCDisplay::SingleVideoLayerUpdating(uint32_t app_layer_count) { uint32_t updating_count = 0; for (uint i = 0; i < app_layer_count; i++) { Layer *layer = layer_stack_.layers[i]; // TODO(user): disable DRC feature in S3D playbacl case.S3D video // need play in dedicate resolution and fps, if DRC switch the // mode to an non S3D supported mode, it would break S3D playback. // Need figure out a way to make S3D and DRC co-exist. if (layer->flags.updating && (layer->input_buffer.flags.video == true) && (layer->input_buffer.s3d_format == kS3dFormatNone)) { updating_count++; } } return (updating_count == 1); } uint32_t HWCDisplay::RoundToStandardFPS(float fps) { static const uint32_t standard_fps[4] = {30, 24, 48, 60}; uint32_t frame_rate = (uint32_t)(fps); int count = INT(sizeof(standard_fps) / sizeof(standard_fps[0])); for (int i = 0; i < count; i++) { if ((standard_fps[i] - frame_rate) < 2) { // Most likely used for video, the fps can fluctuate // Ex: b/w 29 and 30 for 30 fps clip return standard_fps[i]; } } return frame_rate; } uint32_t HWCDisplay::SanitizeRefreshRate(uint32_t req_refresh_rate) { uint32_t refresh_rate = req_refresh_rate; if (refresh_rate < min_refresh_rate_) { // Pick the next multiple of request which is within the range refresh_rate = (((min_refresh_rate_ / refresh_rate) + ((min_refresh_rate_ % refresh_rate) ? 1 : 0)) * refresh_rate); } if (refresh_rate > max_refresh_rate_) { refresh_rate = max_refresh_rate_; } return refresh_rate; } DisplayClass HWCDisplay::GetDisplayClass() { return display_class_; } void HWCDisplay::PrepareDynamicRefreshRate(Layer *layer) { if (layer->frame_rate > metadata_refresh_rate_) { metadata_refresh_rate_ = SanitizeRefreshRate(layer->frame_rate); } else { layer->frame_rate = current_refresh_rate_; } } bool HWCDisplay::IsSurfaceUpdated(const std::vector &dirty_regions) { // based on dirty_regions determine if its updating // dirty_rect count = 0 - whole layer - updating. // dirty_rect count = 1 or more valid rects - updating. // dirty_rect count = 1 with (0,0,0,0) - not updating. return (dirty_regions.empty() || IsValid(dirty_regions.at(0))); } int HWCDisplay::GetDisplayPort(DisplayPort *port) { return display_intf_->GetDisplayPort(port) == kErrorNone ? 0 : -1; } } // namespace sdm