/* * Copyright (C) 2014 The Android Open Source Project * Copyright (c) 1994, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.lang; import dalvik.annotation.optimization.FastNative; import dalvik.annotation.optimization.NeverInline; import java.io.ObjectStreamField; import java.io.UnsupportedEncodingException; import java.lang.annotation.Native; import java.lang.invoke.MethodHandles; import java.lang.constant.Constable; import java.lang.constant.ConstantDesc; import java.nio.charset.Charset; import java.nio.ByteBuffer; import java.util.Comparator; import java.util.Formatter; import java.util.List; import java.util.Locale; import java.util.Objects; import java.util.Optional; import java.util.Spliterator; import java.util.StringJoiner; import java.util.function.Function; import java.util.regex.Pattern; import java.util.regex.PatternSyntaxException; import java.util.stream.Collectors; import java.util.stream.IntStream; import java.util.stream.Stream; import java.util.stream.StreamSupport; import jdk.internal.vm.annotation.IntrinsicCandidate; import libcore.util.CharsetUtils; /** * The {@code String} class represents character strings. All * string literals in Java programs, such as {@code "abc"}, are * implemented as instances of this class. *

* Strings are constant; their values cannot be changed after they * are created. String buffers support mutable strings. * Because String objects are immutable they can be shared. For example: *

 *     String str = "abc";
 * 

* is equivalent to: *

 *     char data[] = {'a', 'b', 'c'};
 *     String str = new String(data);
 * 

* Here are some more examples of how strings can be used: *

 *     System.out.println("abc");
 *     String cde = "cde";
 *     System.out.println("abc" + cde);
 *     String c = "abc".substring(2,3);
 *     String d = cde.substring(1, 2);
 * 
*

* The class {@code String} includes methods for examining * individual characters of the sequence, for comparing strings, for * searching strings, for extracting substrings, and for creating a * copy of a string with all characters translated to uppercase or to * lowercase. Case mapping is based on the Unicode Standard version * specified by the {@link java.lang.Character Character} class. *

* The Java language provides special support for the string * concatenation operator ( + ), and for conversion of * other objects to strings. For additional information on string * concatenation and conversion, see The Java™ Language Specification. * *

Unless otherwise noted, passing a {@code null} argument to a constructor * or method in this class will cause a {@link NullPointerException} to be * thrown. * *

A {@code String} represents a string in the UTF-16 format * in which supplementary characters are represented by surrogate * pairs (see the section Unicode * Character Representations in the {@code Character} class for * more information). * Index values refer to {@code char} code units, so a supplementary * character uses two positions in a {@code String}. *

The {@code String} class provides methods for dealing with * Unicode code points (i.e., characters), in addition to those for * dealing with Unicode code units (i.e., {@code char} values). * *

Unless otherwise noted, methods for comparing Strings do not take locale * into account. The {@link java.text.Collator} class provides methods for * finer-grain, locale-sensitive String comparison. * * @implNote The implementation of the string concatenation operator is left to * the discretion of a Java compiler, as long as the compiler ultimately conforms * to The Java™ Language Specification. For example, the {@code javac} compiler * may implement the operator with {@code StringBuffer}, {@code StringBuilder}, * or {@code java.lang.invoke.StringConcatFactory} depending on the JDK version. The * implementation of string conversion is typically through the method {@code toString}, * defined by {@code Object} and inherited by all classes in Java. * * @author Lee Boynton * @author Arthur van Hoff * @author Martin Buchholz * @author Ulf Zibis * @see java.lang.Object#toString() * @see java.lang.StringBuffer * @see java.lang.StringBuilder * @see java.nio.charset.Charset * @since 1.0 * @jls 15.18.1 String Concatenation Operator + */ public final class String implements java.io.Serializable, Comparable, CharSequence, Constable, ConstantDesc { // BEGIN Android-changed: The character data is managed by the runtime. /* We only keep track of the length here and compression here. This has several consequences throughout this class: - References to value[i] are replaced by charAt(i). - References to value.length are replaced by calls to length(). - Sometimes the result of length() is assigned to a local variable to avoid repeated calls. - We skip several attempts at optimization where the values field was assigned to a local variable to avoid the getfield opcode. These changes are not all marked individually. If STRING_COMPRESSION_ENABLED, count stores the length shifted one bit to the left with the lowest bit used to indicate whether or not the bytes are compressed (see GetFlaggedCount in the native code). /** * The value is used for character storage. * * @implNote This field is trusted by the VM, and is a subject to * constant folding if String instance is constant. Overwriting this * field after construction will cause problems. * * Additionally, it is marked with {@link Stable} to trust the contents * of the array. No other facility in JDK provides this functionality (yet). * {@link Stable} is safe here, because value is never null. * @Stable private final byte[] value; */ private final int count; // END Android-changed: The character data is managed by the runtime. // Android-changed: We make use of new StringIndexOutOfBoundsException constructor signatures. // These improve some error messages. These changes are not all marked individually. /** Cache the hash code for the string */ private int hash; // Default to 0 /** use serialVersionUID from JDK 1.0.2 for interoperability */ private static final long serialVersionUID = -6849794470754667710L; // Android-changed: Modified the javadoc for the ART environment. // Note that this COMPACT_STRINGS value is mainly used by the StringBuilder, not by String. /** * If String compaction is disabled, the bytes in {@code value} are * always encoded in UTF16. * * For methods with several possible implementation paths, when String * compaction is disabled, only one code path is taken. * * The instance field value is generally opaque to optimizing JIT * compilers. Therefore, in performance-sensitive place, an explicit * check of the static boolean {@code COMPACT_STRINGS} is done first * before checking the {@code coder} field since the static boolean * {@code COMPACT_STRINGS} would be constant folded away by an * optimizing JIT compiler. The idioms for these cases are as follows. * * For code such as: * * if (coder == LATIN1) { ... } * * can be written more optimally as * * if (coder() == LATIN1) { ... } * * or: * * if (COMPACT_STRINGS && coder == LATIN1) { ... } * * An optimizing JIT compiler can fold the above conditional as: * * COMPACT_STRINGS == true => if (coder == LATIN1) { ... } * COMPACT_STRINGS == false => if (false) { ... } */ // Android-changed: Inline the constant on ART. static final boolean COMPACT_STRINGS = true; // Android-added: Add a canonical empty string used by ART. /** @hide */ public static final String EMPTY = ""; @Native static final byte LATIN1 = 0; @Native static final byte UTF16 = 1; /** * Class String is special cased within the Serialization Stream Protocol. * * A String instance is written into an ObjectOutputStream according to * * Object Serialization Specification, Section 6.2, "Stream Elements" */ private static final ObjectStreamField[] serialPersistentFields = new ObjectStreamField[0]; /** * Initializes a newly created {@code String} object so that it represents * an empty character sequence. Note that use of this constructor is * unnecessary since Strings are immutable. */ public String() { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* this.value = "".value; this.coder = "".coder; */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } /** * Initializes a newly created {@code String} object so that it represents * the same sequence of characters as the argument; in other words, the * newly created string is a copy of the argument string. Unless an * explicit copy of {@code original} is needed, use of this constructor is * unnecessary since Strings are immutable. * * @param original * A {@code String} */ @IntrinsicCandidate public String(String original) { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* this.value = original.value; this.coder = original.coder; this.hash = original.hash; */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } /** * Allocates a new {@code String} so that it represents the sequence of * characters currently contained in the character array argument. The * contents of the character array are copied; subsequent modification of * the character array does not affect the newly created string. * * @param value * The initial value of the string */ public String(char value[]) { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* this(value, 0, value.length, null); */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } /** * Allocates a new {@code String} that contains characters from a subarray * of the character array argument. The {@code offset} argument is the * index of the first character of the subarray and the {@code count} * argument specifies the length of the subarray. The contents of the * subarray are copied; subsequent modification of the character array does * not affect the newly created string. * * @param value * Array that is the source of characters * * @param offset * The initial offset * * @param count * The length * * @throws IndexOutOfBoundsException * If {@code offset} is negative, {@code count} is negative, or * {@code offset} is greater than {@code value.length - count} */ public String(char value[], int offset, int count) { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* this(value, offset, count, rangeCheck(value, offset, count)); } private static Void rangeCheck(char[] value, int offset, int count) { checkBoundsOffCount(offset, count, value.length); return null; */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } /** * Allocates a new {@code String} that contains characters from a subarray * of the Unicode code point array * argument. The {@code offset} argument is the index of the first code * point of the subarray and the {@code count} argument specifies the * length of the subarray. The contents of the subarray are converted to * {@code char}s; subsequent modification of the {@code int} array does not * affect the newly created string. * * @param codePoints * Array that is the source of Unicode code points * * @param offset * The initial offset * * @param count * The length * * @throws IllegalArgumentException * If any invalid Unicode code point is found in {@code * codePoints} * * @throws IndexOutOfBoundsException * If {@code offset} is negative, {@code count} is negative, or * {@code offset} is greater than {@code codePoints.length - count} * * @since 1.5 */ public String(int[] codePoints, int offset, int count) { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* checkBoundsOffCount(offset, count, codePoints.length); if (count == 0) { this.value = "".value; this.coder = "".coder; return; } if (COMPACT_STRINGS) { byte[] val = StringLatin1.toBytes(codePoints, offset, count); if (val != null) { this.coder = LATIN1; this.value = val; return; } } this.coder = UTF16; this.value = StringUTF16.toBytes(codePoints, offset, count); */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } /** * Allocates a new {@code String} constructed from a subarray of an array * of 8-bit integer values. * *

The {@code offset} argument is the index of the first byte of the * subarray, and the {@code count} argument specifies the length of the * subarray. * *

Each {@code byte} in the subarray is converted to a {@code char} as * specified in the {@link #String(byte[],int) String(byte[],int)} constructor. * * @deprecated This method does not properly convert bytes into characters. * As of JDK 1.1, the preferred way to do this is via the * {@code String} constructors that take a {@link * java.nio.charset.Charset}, charset name, or that use the platform's * default charset. * * @param ascii * The bytes to be converted to characters * * @param hibyte * The top 8 bits of each 16-bit Unicode code unit * * @param offset * The initial offset * @param count * The length * * @throws IndexOutOfBoundsException * If {@code offset} is negative, {@code count} is negative, or * {@code offset} is greater than {@code ascii.length - count} * * @see #String(byte[], int) * @see #String(byte[], int, int, java.lang.String) * @see #String(byte[], int, int, java.nio.charset.Charset) * @see #String(byte[], int, int) * @see #String(byte[], java.lang.String) * @see #String(byte[], java.nio.charset.Charset) * @see #String(byte[]) */ @Deprecated(since="1.1") public String(byte ascii[], int hibyte, int offset, int count) { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* checkBoundsOffCount(offset, count, ascii.length); if (count == 0) { this.value = "".value; this.coder = "".coder; return; } if (COMPACT_STRINGS && (byte)hibyte == 0) { this.value = Arrays.copyOfRange(ascii, offset, offset + count); this.coder = LATIN1; } else { hibyte <<= 8; byte[] val = StringUTF16.newBytesFor(count); for (int i = 0; i < count; i++) { StringUTF16.putChar(val, i, hibyte | (ascii[offset++] & 0xff)); } this.value = val; this.coder = UTF16; } */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } /** * Allocates a new {@code String} containing characters constructed from * an array of 8-bit integer values. Each character c in the * resulting string is constructed from the corresponding component * b in the byte array such that: * *

     *     c == (char)(((hibyte & 0xff) << 8)
     *                         | (b & 0xff))
     * 
* * @deprecated This method does not properly convert bytes into * characters. As of JDK 1.1, the preferred way to do this is via the * {@code String} constructors that take a {@link * java.nio.charset.Charset}, charset name, or that use the platform's * default charset. * * @param ascii * The bytes to be converted to characters * * @param hibyte * The top 8 bits of each 16-bit Unicode code unit * * @see #String(byte[], int, int, java.lang.String) * @see #String(byte[], int, int, java.nio.charset.Charset) * @see #String(byte[], int, int) * @see #String(byte[], java.lang.String) * @see #String(byte[], java.nio.charset.Charset) * @see #String(byte[]) */ @Deprecated(since="1.1") public String(byte ascii[], int hibyte) { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* this(ascii, hibyte, 0, ascii.length); */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } // BEGIN Android-removed: checkBounds(byte[] bytes, int offset, int length) utility method. /* Common private utility method used to bounds check the byte array * and requested offset & length values used by the String(byte[],..) * constructors. * private static void checkBounds(byte[] bytes, int offset, int length) { if (length < 0) throw new StringIndexOutOfBoundsException(length); if (offset < 0) throw new StringIndexOutOfBoundsException(offset); if (offset > bytes.length - length) throw new StringIndexOutOfBoundsException(offset + length); } // END Android-removed: checkBounds(byte[] bytes, int offset, int length) utility method. /** * Constructs a new {@code String} by decoding the specified subarray of * bytes using the specified charset. The length of the new {@code String} * is a function of the charset, and hence may not be equal to the length * of the subarray. * *

The behavior of this constructor when the given bytes are not valid * in the given charset is unspecified. The {@link * java.nio.charset.CharsetDecoder} class should be used when more control * over the decoding process is required. * * @param bytes * The bytes to be decoded into characters * * @param offset * The index of the first byte to decode * * @param length * The number of bytes to decode * @param charsetName * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @throws UnsupportedEncodingException * If the named charset is not supported * * @throws IndexOutOfBoundsException * If {@code offset} is negative, {@code length} is negative, or * {@code offset} is greater than {@code bytes.length - length} * * @since 1.1 */ public String(byte bytes[], int offset, int length, String charsetName) throws UnsupportedEncodingException { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* if (charsetName == null) throw new NullPointerException("charsetName"); checkBoundsOffCount(offset, length, bytes.length); StringCoding.Result ret = StringCoding.decode(charsetName, bytes, offset, length); this.value = ret.value; this.coder = ret.coder; */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } /** * Constructs a new {@code String} by decoding the specified subarray of * bytes using the specified {@linkplain java.nio.charset.Charset charset}. * The length of the new {@code String} is a function of the charset, and * hence may not be equal to the length of the subarray. * *

This method always replaces malformed-input and unmappable-character * sequences with this charset's default replacement string. The {@link * java.nio.charset.CharsetDecoder} class should be used when more control * over the decoding process is required. * * @param bytes * The bytes to be decoded into characters * * @param offset * The index of the first byte to decode * * @param length * The number of bytes to decode * * @param charset * The {@linkplain java.nio.charset.Charset charset} to be used to * decode the {@code bytes} * * @throws IndexOutOfBoundsException * If {@code offset} is negative, {@code length} is negative, or * {@code offset} is greater than {@code bytes.length - length} * * @since 1.6 */ public String(byte bytes[], int offset, int length, Charset charset) { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* if (charset == null) throw new NullPointerException("charset"); checkBoundsOffCount(offset, length, bytes.length); StringCoding.Result ret = StringCoding.decode(charset, bytes, offset, length); this.value = ret.value; this.coder = ret.coder; */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } /** * Constructs a new {@code String} by decoding the specified array of bytes * using the specified {@linkplain java.nio.charset.Charset charset}. The * length of the new {@code String} is a function of the charset, and hence * may not be equal to the length of the byte array. * *

The behavior of this constructor when the given bytes are not valid * in the given charset is unspecified. The {@link * java.nio.charset.CharsetDecoder} class should be used when more control * over the decoding process is required. * * @param bytes * The bytes to be decoded into characters * * @param charsetName * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @throws UnsupportedEncodingException * If the named charset is not supported * * @since 1.1 */ public String(byte bytes[], String charsetName) throws UnsupportedEncodingException { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* this(bytes, 0, bytes.length, charsetName); */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } /** * Constructs a new {@code String} by decoding the specified array of * bytes using the specified {@linkplain java.nio.charset.Charset charset}. * The length of the new {@code String} is a function of the charset, and * hence may not be equal to the length of the byte array. * *

This method always replaces malformed-input and unmappable-character * sequences with this charset's default replacement string. The {@link * java.nio.charset.CharsetDecoder} class should be used when more control * over the decoding process is required. * * @param bytes * The bytes to be decoded into characters * * @param charset * The {@linkplain java.nio.charset.Charset charset} to be used to * decode the {@code bytes} * * @since 1.6 */ public String(byte bytes[], Charset charset) { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* this(bytes, 0, bytes.length, charset); */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } /** * Constructs a new {@code String} by decoding the specified subarray of * bytes using the platform's default charset. The length of the new * {@code String} is a function of the charset, and hence may not be equal * to the length of the subarray. * *

The behavior of this constructor when the given bytes are not valid * in the default charset is unspecified. The {@link * java.nio.charset.CharsetDecoder} class should be used when more control * over the decoding process is required. * * @param bytes * The bytes to be decoded into characters * * @param offset * The index of the first byte to decode * * @param length * The number of bytes to decode * * @throws IndexOutOfBoundsException * If {@code offset} is negative, {@code length} is negative, or * {@code offset} is greater than {@code bytes.length - length} * * @since 1.1 */ public String(byte bytes[], int offset, int length) { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* checkBoundsOffCount(offset, length, bytes.length); StringCoding.Result ret = StringCoding.decode(bytes, offset, length); this.value = ret.value; this.coder = ret.coder; */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } /** * Constructs a new {@code String} by decoding the specified array of bytes * using the platform's default charset. The length of the new {@code * String} is a function of the charset, and hence may not be equal to the * length of the byte array. * *

The behavior of this constructor when the given bytes are not valid * in the default charset is unspecified. The {@link * java.nio.charset.CharsetDecoder} class should be used when more control * over the decoding process is required. * * @param bytes * The bytes to be decoded into characters * * @since 1.1 */ public String(byte[] bytes) { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* this(bytes, 0, bytes.length); */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } /** * Allocates a new string that contains the sequence of characters * currently contained in the string buffer argument. The contents of the * string buffer are copied; subsequent modification of the string buffer * does not affect the newly created string. * * @param buffer * A {@code StringBuffer} */ public String(StringBuffer buffer) { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* this(buffer.toString()); */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } /** * Allocates a new string that contains the sequence of characters * currently contained in the string builder argument. The contents of the * string builder are copied; subsequent modification of the string builder * does not affect the newly created string. * *

This constructor is provided to ease migration to {@code * StringBuilder}. Obtaining a string from a string builder via the {@code * toString} method is likely to run faster and is generally preferred. * * @param builder * A {@code StringBuilder} * * @since 1.5 */ public String(StringBuilder builder) { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. /* this(builder, null); */ throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } // BEGIN Android-removed: Unused package-private constructor String(char[] value, boolean share). /* /* * Package private constructor which shares value array for speed. * this constructor is always expected to be called with share==true. * a separate constructor is needed because we already have a public * String(char[]) constructor that makes a copy of the given char[]. * String(char[] value, boolean share) { // assert share : "unshared not supported"; this.value = value; } */ // END Android-removed: Unused package-private constructor String(char[] value, boolean share). // BEGIN Android-added: Constructor for internal use. // Not implemented in java as all calls are intercepted by the runtime. /** * Package private constructor * * @deprecated Use {@link #String(char[],int,int)} instead. */ @Deprecated String(int offset, int count, char[] value) { throw new UnsupportedOperationException("Use StringFactory instead."); } // END Android-added: Constructor for internal use. /** * Returns the length of this string. * The length is equal to the number of Unicode * code units in the string. * * @return the length of the sequence of characters represented by this * object. */ public int length() { // BEGIN Android-changed: Get length from count field rather than value array (see above). /* return value.length >> coder(); */ final boolean STRING_COMPRESSION_ENABLED = true; if (STRING_COMPRESSION_ENABLED) { // For the compression purposes (save the characters as 8-bit if all characters // are ASCII), the least significant bit of "count" is used as the compression flag. return (count >>> 1); } else { return count; } // END Android-changed: Get length from count field rather than value array (see above). } /** * Returns {@code true} if, and only if, {@link #length()} is {@code 0}. * * @return {@code true} if {@link #length()} is {@code 0}, otherwise * {@code false} * * @since 1.6 */ @Override public boolean isEmpty() { // BEGIN Android-changed: Get length from count field rather than value array (see above). // Empty string has {@code count == 0} with or without string compression enabled. /* return value.length == 0; */ return count == 0; // END Android-changed: Get length from count field rather than value array (see above). } /** * Returns the {@code char} value at the * specified index. An index ranges from {@code 0} to * {@code length() - 1}. The first {@code char} value of the sequence * is at index {@code 0}, the next at index {@code 1}, * and so on, as for array indexing. * *

If the {@code char} value specified by the index is a * surrogate, the surrogate * value is returned. * * @param index the index of the {@code char} value. * @return the {@code char} value at the specified index of this string. * The first {@code char} value is at index {@code 0}. * @exception IndexOutOfBoundsException if the {@code index} * argument is negative or not less than the length of this * string. */ // BEGIN Android-changed: Replace with implementation in runtime to access chars (see above). /* public char charAt(int index) { if (isLatin1()) { return StringLatin1.charAt(value, index); } else { return StringUTF16.charAt(value, index); } } */ @FastNative public native char charAt(int index); // END Android-changed: Replace with implementation in runtime to access chars (see above). /** * Returns the character (Unicode code point) at the specified * index. The index refers to {@code char} values * (Unicode code units) and ranges from {@code 0} to * {@link #length()}{@code - 1}. * *

If the {@code char} value specified at the given index * is in the high-surrogate range, the following index is less * than the length of this {@code String}, and the * {@code char} value at the following index is in the * low-surrogate range, then the supplementary code point * corresponding to this surrogate pair is returned. Otherwise, * the {@code char} value at the given index is returned. * * @param index the index to the {@code char} values * @return the code point value of the character at the * {@code index} * @exception IndexOutOfBoundsException if the {@code index} * argument is negative or not less than the length of this * string. * @since 1.5 */ public int codePointAt(int index) { // BEGIN Android-changed: delegate codePointAt() to Character class. /* if (isLatin1()) { checkIndex(index, value.length); return value[index] & 0xff; } int length = value.length >> 1; checkIndex(index, length); return StringUTF16.codePointAt(value, index, length); */ checkIndex(index, length()); return Character.codePointAt(this, index); } /** * Returns the character (Unicode code point) before the specified * index. The index refers to {@code char} values * (Unicode code units) and ranges from {@code 1} to {@link * CharSequence#length() length}. * *

If the {@code char} value at {@code (index - 1)} * is in the low-surrogate range, {@code (index - 2)} is not * negative, and the {@code char} value at {@code (index - * 2)} is in the high-surrogate range, then the * supplementary code point value of the surrogate pair is * returned. If the {@code char} value at {@code index - * 1} is an unpaired low-surrogate or a high-surrogate, the * surrogate value is returned. * * @param index the index following the code point that should be returned * @return the Unicode code point value before the given index. * @exception IndexOutOfBoundsException if the {@code index} * argument is less than 1 or greater than the length * of this string. * @since 1.5 */ public int codePointBefore(int index) { int i = index - 1; if (i < 0 || i >= length()) { throw new StringIndexOutOfBoundsException(index); } // BEGIN Android-changed: delegate codePointBefore to Character class. /* if (isLatin1()) { return (value[i] & 0xff); } return StringUTF16.codePointBefore(value, index); */ return Character.codePointBefore(this, index); } /** * Returns the number of Unicode code points in the specified text * range of this {@code String}. The text range begins at the * specified {@code beginIndex} and extends to the * {@code char} at index {@code endIndex - 1}. Thus the * length (in {@code char}s) of the text range is * {@code endIndex-beginIndex}. Unpaired surrogates within * the text range count as one code point each. * * @param beginIndex the index to the first {@code char} of * the text range. * @param endIndex the index after the last {@code char} of * the text range. * @return the number of Unicode code points in the specified text * range * @exception IndexOutOfBoundsException if the * {@code beginIndex} is negative, or {@code endIndex} * is larger than the length of this {@code String}, or * {@code beginIndex} is larger than {@code endIndex}. * @since 1.5 */ public int codePointCount(int beginIndex, int endIndex) { if (beginIndex < 0 || beginIndex > endIndex || endIndex > length()) { throw new IndexOutOfBoundsException(); } // BEGIN Android-changed: delegate codePointCount to Character class. /* if (isLatin1()) { return endIndex - beginIndex; } return StringUTF16.codePointCount(value, beginIndex, endIndex); */ return Character.codePointCount(this, beginIndex, endIndex); // END Android-changed: delegate codePointCount to Character class. } /** * Returns the index within this {@code String} that is * offset from the given {@code index} by * {@code codePointOffset} code points. Unpaired surrogates * within the text range given by {@code index} and * {@code codePointOffset} count as one code point each. * * @param index the index to be offset * @param codePointOffset the offset in code points * @return the index within this {@code String} * @exception IndexOutOfBoundsException if {@code index} * is negative or larger then the length of this * {@code String}, or if {@code codePointOffset} is positive * and the substring starting with {@code index} has fewer * than {@code codePointOffset} code points, * or if {@code codePointOffset} is negative and the substring * before {@code index} has fewer than the absolute value * of {@code codePointOffset} code points. * @since 1.5 */ public int offsetByCodePoints(int index, int codePointOffset) { if (index < 0 || index > length()) { throw new IndexOutOfBoundsException(); } return Character.offsetByCodePoints(this, index, codePointOffset); } /** * Copy characters from this string into dst starting at dstBegin. * This method doesn't perform any range checking. */ void getChars(char dst[], int dstBegin) { // Android-changed: Replace arraycopy with native call since chars are managed by runtime. // System.arraycopy(value, 0, dst, dstBegin, value.length); getCharsNoCheck(0, length(), dst, dstBegin); } /** * Copies characters from this string into the destination character * array. *

* The first character to be copied is at index {@code srcBegin}; * the last character to be copied is at index {@code srcEnd-1} * (thus the total number of characters to be copied is * {@code srcEnd-srcBegin}). The characters are copied into the * subarray of {@code dst} starting at index {@code dstBegin} * and ending at index: *

     *     dstBegin + (srcEnd-srcBegin) - 1
     * 
* * @param srcBegin index of the first character in the string * to copy. * @param srcEnd index after the last character in the string * to copy. * @param dst the destination array. * @param dstBegin the start offset in the destination array. * @exception IndexOutOfBoundsException If any of the following * is true: * */ public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) { // BEGIN Android-added: Null pointer check. if (dst == null) { throw new NullPointerException("dst == null"); } // END Android-added: Null pointer check. checkBoundsBeginEnd(srcBegin, srcEnd, length()); // BEGIN Android-changed: Implement in terms of length() and native getCharsNoCheck method. /* checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length); if (isLatin1()) { StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin); } else { StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin); } */ if (dstBegin < 0) { throw new ArrayIndexOutOfBoundsException("dstBegin < 0. dstBegin=" + dstBegin); } // dstBegin can be equal to dst.length, but only in the case where zero chars are to be // copied. if (dstBegin > dst.length) { throw new ArrayIndexOutOfBoundsException( "dstBegin > dst.length. dstBegin=" + dstBegin + ", dst.length=" + dst.length); } int n = srcEnd - srcBegin; if (n > dst.length - dstBegin) { throw new ArrayIndexOutOfBoundsException( "n > dst.length - dstBegin. n=" + n + ", dst.length=" + dst.length + "dstBegin=" + dstBegin); } getCharsNoCheck(srcBegin, srcEnd, dst, dstBegin); // END Android-changed: Implement in terms of length() and native getCharsNoCheck method. } // BEGIN Android-added: Native method to access char storage managed by runtime. /** * getChars without bounds checks, for use by other classes * within the java.lang package only. The caller is responsible for * ensuring that start >= 0 && start <= end && end <= count. */ @FastNative native void getCharsNoCheck(int start, int end, char[] buffer, int index); // END Android-added: Native method to access char storage managed by runtime. /** * Copies characters from this string into the destination byte array. Each * byte receives the 8 low-order bits of the corresponding character. The * eight high-order bits of each character are not copied and do not * participate in the transfer in any way. * *

The first character to be copied is at index {@code srcBegin}; the * last character to be copied is at index {@code srcEnd-1}. The total * number of characters to be copied is {@code srcEnd-srcBegin}. The * characters, converted to bytes, are copied into the subarray of {@code * dst} starting at index {@code dstBegin} and ending at index: * *

     *     dstBegin + (srcEnd-srcBegin) - 1
     * 
* * @deprecated This method does not properly convert characters into * bytes. As of JDK 1.1, the preferred way to do this is via the * {@link #getBytes()} method, which uses the platform's default charset. * * @param srcBegin * Index of the first character in the string to copy * * @param srcEnd * Index after the last character in the string to copy * * @param dst * The destination array * * @param dstBegin * The start offset in the destination array * * @throws IndexOutOfBoundsException * If any of the following is true: * */ @Deprecated(since="1.1") public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) { checkBoundsBeginEnd(srcBegin, srcEnd, length()); Objects.requireNonNull(dst); checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length); // BEGIN Android-changed: Implement in terms of charAt(). /* if (isLatin1()) { StringLatin1.getBytes(value, srcBegin, srcEnd, dst, dstBegin); } else { StringUTF16.getBytes(value, srcBegin, srcEnd, dst, dstBegin); } */ int j = dstBegin; int n = srcEnd; int i = srcBegin; while (i < n) { dst[j++] = (byte)charAt(i++); } // END Android-changed: Implement in terms of charAt(). } /** * Encodes this {@code String} into a sequence of bytes using the named * charset, storing the result into a new byte array. * *

The behavior of this method when this string cannot be encoded in * the given charset is unspecified. The {@link * java.nio.charset.CharsetEncoder} class should be used when more control * over the encoding process is required. * * @param charsetName * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @return The resultant byte array * * @throws UnsupportedEncodingException * If the named charset is not supported * * @since 1.1 */ public byte[] getBytes(String charsetName) throws UnsupportedEncodingException { if (charsetName == null) throw new NullPointerException(); // BEGIN Android-changed: Skip StringCoding optimization that needs access to java chars. /* return StringCoding.encode(charsetName, coder(), value); */ return getBytes(Charset.forNameUEE(charsetName)); // END Android-changed: Skip StringCoding optimization that needs access to java chars. } /** * Encodes this {@code String} into a sequence of bytes using the given * {@linkplain java.nio.charset.Charset charset}, storing the result into a * new byte array. * *

This method always replaces malformed-input and unmappable-character * sequences with this charset's default replacement byte array. The * {@link java.nio.charset.CharsetEncoder} class should be used when more * control over the encoding process is required. * * @param charset * The {@linkplain java.nio.charset.Charset} to be used to encode * the {@code String} * * @return The resultant byte array * * @since 1.6 */ public byte[] getBytes(Charset charset) { if (charset == null) throw new NullPointerException(); // BEGIN Android-changed: Skip StringCoding optimization that needs access to java chars. /* return StringCoding.encode(charset, coder(), value); */ final int len = length(); final String name = charset.name(); if ("UTF-8".equals(name)) { return CharsetUtils.toUtf8Bytes(this, 0, len); } else if ("ISO-8859-1".equals(name)) { return CharsetUtils.toIsoLatin1Bytes(this, 0, len); } else if ("US-ASCII".equals(name)) { return CharsetUtils.toAsciiBytes(this, 0, len); } else if ("UTF-16BE".equals(name)) { return CharsetUtils.toBigEndianUtf16Bytes(this, 0, len); } ByteBuffer buffer = charset.encode(this); byte[] bytes = new byte[buffer.limit()]; buffer.get(bytes); return bytes; // END Android-changed: Skip StringCoding optimization that needs access to java chars. } /** * Encodes this {@code String} into a sequence of bytes using the * platform's default charset, storing the result into a new byte array. * *

The behavior of this method when this string cannot be encoded in * the default charset is unspecified. The {@link * java.nio.charset.CharsetEncoder} class should be used when more control * over the encoding process is required. * * @return The resultant byte array * * @since 1.1 */ public byte[] getBytes() { // BEGIN Android-changed: Skip StringCoding optimization that needs access to java chars. /* return StringCoding.encode(coder(), value); */ return getBytes(Charset.defaultCharset()); // END Android-changed: Skip StringCoding optimization that needs access to java chars. } /** * Compares this string to the specified object. The result is {@code * true} if and only if the argument is not {@code null} and is a {@code * String} object that represents the same sequence of characters as this * object. * *

For finer-grained String comparison, refer to * {@link java.text.Collator}. * * @param anObject * The object to compare this {@code String} against * * @return {@code true} if the given object represents a {@code String} * equivalent to this string, {@code false} otherwise * * @see #compareTo(String) * @see #equalsIgnoreCase(String) */ public boolean equals(Object anObject) { if (this == anObject) { return true; } if (anObject instanceof String) { // BEGIN Android-changed: Implement in terms of charAt(). /* String aString = (String)anObject; if (coder() == aString.coder()) { return isLatin1() ? StringLatin1.equals(value, aString.value) : StringUTF16.equals(value, aString.value); } */ String anotherString = (String)anObject; int n = length(); if (n == anotherString.length()) { int i = 0; while (n-- != 0) { if (charAt(i) != anotherString.charAt(i)) return false; i++; } return true; } // END Android-changed: Implement in terms of charAt(). } return false; } /** * Compares this string to the specified {@code StringBuffer}. The result * is {@code true} if and only if this {@code String} represents the same * sequence of characters as the specified {@code StringBuffer}. This method * synchronizes on the {@code StringBuffer}. * *

For finer-grained String comparison, refer to * {@link java.text.Collator}. * * @param sb * The {@code StringBuffer} to compare this {@code String} against * * @return {@code true} if this {@code String} represents the same * sequence of characters as the specified {@code StringBuffer}, * {@code false} otherwise * * @since 1.4 */ public boolean contentEquals(StringBuffer sb) { return contentEquals((CharSequence)sb); } private boolean nonSyncContentEquals(AbstractStringBuilder sb) { int len = length(); if (len != sb.length()) { return false; } // BEGIN Android-changed: Implement in terms of charAt(). /* byte v1[] = value; byte v2[] = sb.getValue(); if (coder() == sb.getCoder()) { int n = v1.length; for (int i = 0; i < n; i++) { if (v1[i] != v2[i]) { return false; } } } else { if (!isLatin1()) { // utf16 str and latin1 abs can never be "equal" return false; } return StringUTF16.contentEquals(v1, v2, len); } */ for (int i = 0; i < len; i++) { if (charAt(i) != sb.charAt(i)) { return false; } } // END Android-changed: Implement in terms of charAt(). return true; } /** * Compares this string to the specified {@code CharSequence}. The * result is {@code true} if and only if this {@code String} represents the * same sequence of char values as the specified sequence. Note that if the * {@code CharSequence} is a {@code StringBuffer} then the method * synchronizes on it. * *

For finer-grained String comparison, refer to * {@link java.text.Collator}. * * @param cs * The sequence to compare this {@code String} against * * @return {@code true} if this {@code String} represents the same * sequence of char values as the specified sequence, {@code * false} otherwise * * @since 1.5 */ public boolean contentEquals(CharSequence cs) { // Argument is a StringBuffer, StringBuilder if (cs instanceof AbstractStringBuilder) { if (cs instanceof StringBuffer) { synchronized(cs) { return nonSyncContentEquals((AbstractStringBuilder)cs); } } else { return nonSyncContentEquals((AbstractStringBuilder)cs); } } // Argument is a String if (cs instanceof String) { return equals(cs); } // Argument is a generic CharSequence int n = cs.length(); if (n != length()) { return false; } // BEGIN Android-changed: Implement in terms of charAt(). /* byte[] val = this.value; if (isLatin1()) { for (int i = 0; i < n; i++) { if ((val[i] & 0xff) != cs.charAt(i)) { return false; } } } else { if (!StringUTF16.contentEquals(val, cs, n)) { */ for (int i = 0; i < n; i++) { if (charAt(i) != cs.charAt(i)) { // END Android-changed: Implement in terms of charAt(). return false; } } return true; } /** * Compares this {@code String} to another {@code String}, ignoring case * considerations. Two strings are considered equal ignoring case if they * are of the same length and corresponding characters in the two strings * are equal ignoring case. * *

Two characters {@code c1} and {@code c2} are considered the same * ignoring case if at least one of the following is true: *

* *

Note that this method does not take locale into account, and * will result in unsatisfactory results for certain locales. The * {@link java.text.Collator} class provides locale-sensitive comparison. * * @param anotherString * The {@code String} to compare this {@code String} against * * @return {@code true} if the argument is not {@code null} and it * represents an equivalent {@code String} ignoring case; {@code * false} otherwise * * @see #equals(Object) */ public boolean equalsIgnoreCase(String anotherString) { // Android-added: Cache length() result so it's called once. final int len = length(); return (this == anotherString) ? true : (anotherString != null) && (anotherString.length() == len) && regionMatches(true, 0, anotherString, 0, len); } /** * Compares two strings lexicographically. * The comparison is based on the Unicode value of each character in * the strings. The character sequence represented by this * {@code String} object is compared lexicographically to the * character sequence represented by the argument string. The result is * a negative integer if this {@code String} object * lexicographically precedes the argument string. The result is a * positive integer if this {@code String} object lexicographically * follows the argument string. The result is zero if the strings * are equal; {@code compareTo} returns {@code 0} exactly when * the {@link #equals(Object)} method would return {@code true}. *

* This is the definition of lexicographic ordering. If two strings are * different, then either they have different characters at some index * that is a valid index for both strings, or their lengths are different, * or both. If they have different characters at one or more index * positions, let k be the smallest such index; then the string * whose character at position k has the smaller value, as * determined by using the {@code <} operator, lexicographically precedes the * other string. In this case, {@code compareTo} returns the * difference of the two character values at position {@code k} in * the two string -- that is, the value: *

     * this.charAt(k)-anotherString.charAt(k)
     * 
* If there is no index position at which they differ, then the shorter * string lexicographically precedes the longer string. In this case, * {@code compareTo} returns the difference of the lengths of the * strings -- that is, the value: *
     * this.length()-anotherString.length()
     * 
* *

For finer-grained String comparison, refer to * {@link java.text.Collator}. * * @param anotherString the {@code String} to be compared. * @return the value {@code 0} if the argument string is equal to * this string; a value less than {@code 0} if this string * is lexicographically less than the string argument; and a * value greater than {@code 0} if this string is * lexicographically greater than the string argument. */ // BEGIN Android-changed: Replace with implementation in runtime to access chars (see above). /* public int compareTo(String anotherString) { byte v1[] = value; byte v2[] = anotherString.value; if (coder() == anotherString.coder()) { return isLatin1() ? StringLatin1.compareTo(v1, v2) : StringUTF16.compareTo(v1, v2); } return isLatin1() ? StringLatin1.compareToUTF16(v1, v2) : StringUTF16.compareToLatin1(v1, v2); } */ @FastNative public native int compareTo(String anotherString); // END Android-changed: Replace with implementation in runtime to access chars (see above). /** * A Comparator that orders {@code String} objects as by * {@code compareToIgnoreCase}. This comparator is serializable. *

* Note that this Comparator does not take locale into account, * and will result in an unsatisfactory ordering for certain locales. * The {@link java.text.Collator} class provides locale-sensitive comparison. * * @see java.text.Collator * @since 1.2 */ public static final Comparator CASE_INSENSITIVE_ORDER = new CaseInsensitiveComparator(); private static class CaseInsensitiveComparator implements Comparator, java.io.Serializable { // use serialVersionUID from JDK 1.2.2 for interoperability private static final long serialVersionUID = 8575799808933029326L; public int compare(String s1, String s2) { // BEGIN Android-changed: Implement in terms of charAt(). /* byte v1[] = s1.value; byte v2[] = s2.value; if (s1.coder() == s2.coder()) { return s1.isLatin1() ? StringLatin1.compareToCI(v1, v2) : StringUTF16.compareToCI(v1, v2); } return s1.isLatin1() ? StringLatin1.compareToCI_UTF16(v1, v2) : StringUTF16.compareToCI_Latin1(v1, v2); */ int n1 = s1.length(); int n2 = s2.length(); int min = Math.min(n1, n2); for (int i = 0; i < min; i++) { char c1 = s1.charAt(i); char c2 = s2.charAt(i); if (c1 != c2) { c1 = Character.toUpperCase(c1); c2 = Character.toUpperCase(c2); if (c1 != c2) { c1 = Character.toLowerCase(c1); c2 = Character.toLowerCase(c2); if (c1 != c2) { // No overflow because of numeric promotion return c1 - c2; } } } } return n1 - n2; // END Android-changed: Implement in terms of charAt(). } /** Replaces the de-serialized object. */ private Object readResolve() { return CASE_INSENSITIVE_ORDER; } } /** * Compares two strings lexicographically, ignoring case * differences. This method returns an integer whose sign is that of * calling {@code compareTo} with normalized versions of the strings * where case differences have been eliminated by calling * {@code Character.toLowerCase(Character.toUpperCase(character))} on * each character. *

* Note that this method does not take locale into account, * and will result in an unsatisfactory ordering for certain locales. * The {@link java.text.Collator} class provides locale-sensitive comparison. * * @param str the {@code String} to be compared. * @return a negative integer, zero, or a positive integer as the * specified String is greater than, equal to, or less * than this String, ignoring case considerations. * @see java.text.Collator * @since 1.2 */ public int compareToIgnoreCase(String str) { return CASE_INSENSITIVE_ORDER.compare(this, str); } /** * Tests if two string regions are equal. *

* A substring of this {@code String} object is compared to a substring * of the argument other. The result is true if these substrings * represent identical character sequences. The substring of this * {@code String} object to be compared begins at index {@code toffset} * and has length {@code len}. The substring of other to be compared * begins at index {@code ooffset} and has length {@code len}. The * result is {@code false} if and only if at least one of the following * is true: *

* *

Note that this method does not take locale into account. The * {@link java.text.Collator} class provides locale-sensitive comparison. * * @param toffset the starting offset of the subregion in this string. * @param other the string argument. * @param ooffset the starting offset of the subregion in the string * argument. * @param len the number of characters to compare. * @return {@code true} if the specified subregion of this string * exactly matches the specified subregion of the string argument; * {@code false} otherwise. */ public boolean regionMatches(int toffset, String other, int ooffset, int len) { // BEGIN Android-removed: Implement in terms of charAt(). /* byte tv[] = value; byte ov[] = other.value; */ // Note: toffset, ooffset, or len might be near -1>>>1. if ((ooffset < 0) || (toffset < 0) || (toffset > (long)length() - len) || (ooffset > (long)other.length() - len)) { return false; } // BEGIN Android-removed: Implement in terms of charAt(). /* if (coder() == other.coder()) { if (!isLatin1() && (len > 0)) { toffset = toffset << 1; ooffset = ooffset << 1; len = len << 1; } while (len-- > 0) { if (tv[toffset++] != ov[ooffset++]) { return false; } } } else { if (coder() == LATIN1) { while (len-- > 0) { if (StringLatin1.getChar(tv, toffset++) != StringUTF16.getChar(ov, ooffset++)) { return false; } } } else { while (len-- > 0) { if (StringUTF16.getChar(tv, toffset++) != StringLatin1.getChar(ov, ooffset++)) { return false; } } */ while (len-- > 0) { if (charAt(toffset++) != other.charAt(ooffset++)) { return false; // END Android-removed: Implement in terms of charAt(). } } return true; } /** * Tests if two string regions are equal. *

* A substring of this {@code String} object is compared to a substring * of the argument {@code other}. The result is {@code true} if these * substrings represent character sequences that are the same, ignoring * case if and only if {@code ignoreCase} is true. The substring of * this {@code String} object to be compared begins at index * {@code toffset} and has length {@code len}. The substring of * {@code other} to be compared begins at index {@code ooffset} and * has length {@code len}. The result is {@code false} if and only if * at least one of the following is true: *

* *

Note that this method does not take locale into account, * and will result in unsatisfactory results for certain locales when * {@code ignoreCase} is {@code true}. The {@link java.text.Collator} class * provides locale-sensitive comparison. * * @param ignoreCase if {@code true}, ignore case when comparing * characters. * @param toffset the starting offset of the subregion in this * string. * @param other the string argument. * @param ooffset the starting offset of the subregion in the string * argument. * @param len the number of characters to compare. * @return {@code true} if the specified subregion of this string * matches the specified subregion of the string argument; * {@code false} otherwise. Whether the matching is exact * or case insensitive depends on the {@code ignoreCase} * argument. */ public boolean regionMatches(boolean ignoreCase, int toffset, String other, int ooffset, int len) { if (!ignoreCase) { return regionMatches(toffset, other, ooffset, len); } // Note: toffset, ooffset, or len might be near -1>>>1. if ((ooffset < 0) || (toffset < 0) || (toffset > (long)length() - len) || (ooffset > (long)other.length() - len)) { return false; } // BEGIN Android-changed: Implement in terms of charAt(). /* byte tv[] = value; byte ov[] = other.value; if (coder() == other.coder()) { return isLatin1() ? StringLatin1.regionMatchesCI(tv, toffset, ov, ooffset, len) : StringUTF16.regionMatchesCI(tv, toffset, ov, ooffset, len); } return isLatin1() ? StringLatin1.regionMatchesCI_UTF16(tv, toffset, ov, ooffset, len) : StringUTF16.regionMatchesCI_Latin1(tv, toffset, ov, ooffset, len); */ while (len-- > 0) { char c1 = charAt(toffset++); char c2 = other.charAt(ooffset++); if (c1 == c2) { continue; } if (ignoreCase) { // If characters don't match but case may be ignored, // try converting both characters to uppercase. // If the results match, then the comparison scan should // continue. char u1 = Character.toUpperCase(c1); char u2 = Character.toUpperCase(c2); if (u1 == u2) { continue; } // Unfortunately, conversion to uppercase does not work properly // for the Georgian alphabet, which has strange rules about case // conversion. So we need to make one last check before // exiting. if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) { continue; } } return false; } return true; // END Android-changed: Implement in terms of charAt(). } /** * Tests if the substring of this string beginning at the * specified index starts with the specified prefix. * * @param prefix the prefix. * @param toffset where to begin looking in this string. * @return {@code true} if the character sequence represented by the * argument is a prefix of the substring of this object starting * at index {@code toffset}; {@code false} otherwise. * The result is {@code false} if {@code toffset} is * negative or greater than the length of this * {@code String} object; otherwise the result is the same * as the result of the expression *

     *          this.substring(toffset).startsWith(prefix)
     *          
*/ public boolean startsWith(String prefix, int toffset) { // Android-added: Cache length() result so it's called once. int pc = prefix.length(); // Note: toffset might be near -1>>>1. if (toffset < 0 || toffset > length() - pc) { return false; } // BEGIN Android-changed: Implement in terms of charAt(). /* byte ta[] = value; byte pa[] = prefix.value; int po = 0; int pc = pa.length; if (coder() == prefix.coder()) { int to = isLatin1() ? toffset : toffset << 1; while (po < pc) { if (ta[to++] != pa[po++]) { return false; } } } else { if (isLatin1()) { // && pcoder == UTF16 return false; } // coder == UTF16 && pcoder == LATIN1) while (po < pc) { if (StringUTF16.getChar(ta, toffset++) != (pa[po++] & 0xff)) { return false; } } */ int po = 0; while (--pc >= 0) { if (charAt(toffset++) != prefix.charAt(po++)) { return false; } // END Android-changed: Implement in terms of charAt(). } return true; } /** * Tests if this string starts with the specified prefix. * * @param prefix the prefix. * @return {@code true} if the character sequence represented by the * argument is a prefix of the character sequence represented by * this string; {@code false} otherwise. * Note also that {@code true} will be returned if the * argument is an empty string or is equal to this * {@code String} object as determined by the * {@link #equals(Object)} method. * @since 1.0 */ public boolean startsWith(String prefix) { return startsWith(prefix, 0); } /** * Tests if this string ends with the specified suffix. * * @param suffix the suffix. * @return {@code true} if the character sequence represented by the * argument is a suffix of the character sequence represented by * this object; {@code false} otherwise. Note that the * result will be {@code true} if the argument is the * empty string or is equal to this {@code String} object * as determined by the {@link #equals(Object)} method. */ public boolean endsWith(String suffix) { return startsWith(suffix, length() - suffix.length()); } /** * Returns a hash code for this string. The hash code for a * {@code String} object is computed as *
     * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
     * 
* using {@code int} arithmetic, where {@code s[i]} is the * ith character of the string, {@code n} is the length of * the string, and {@code ^} indicates exponentiation. * (The hash value of the empty string is zero.) * * @return a hash code value for this object. */ public int hashCode() { int h = hash; // BEGIN Android-changed: Implement in terms of charAt(). /* if (h == 0 && value.length > 0) { hash = h = isLatin1() ? StringLatin1.hashCode(value) : StringUTF16.hashCode(value); */ final int len = length(); if (h == 0 && len > 0) { for (int i = 0; i < len; i++) { h = 31 * h + charAt(i); } hash = h; // END Android-changed: Implement in terms of charAt(). } return h; } /** * Returns the index within this string of the first occurrence of * the specified character. If a character with value * {@code ch} occurs in the character sequence represented by * this {@code String} object, then the index (in Unicode * code units) of the first such occurrence is returned. For * values of {@code ch} in the range from 0 to 0xFFFF * (inclusive), this is the smallest value k such that: *
     * this.charAt(k) == ch
     * 
* is true. For other values of {@code ch}, it is the * smallest value k such that: *
     * this.codePointAt(k) == ch
     * 
* is true. In either case, if no such character occurs in this * string, then {@code -1} is returned. * * @param ch a character (Unicode code point). * @return the index of the first occurrence of the character in the * character sequence represented by this object, or * {@code -1} if the character does not occur. */ public int indexOf(int ch) { return indexOf(ch, 0); } /** * Returns the index within this string of the first occurrence of the * specified character, starting the search at the specified index. *

* If a character with value {@code ch} occurs in the * character sequence represented by this {@code String} * object at an index no smaller than {@code fromIndex}, then * the index of the first such occurrence is returned. For values * of {@code ch} in the range from 0 to 0xFFFF (inclusive), * this is the smallest value k such that: *

     * (this.charAt(k) == ch) {@code &&} (k >= fromIndex)
     * 
* is true. For other values of {@code ch}, it is the * smallest value k such that: *
     * (this.codePointAt(k) == ch) {@code &&} (k >= fromIndex)
     * 
* is true. In either case, if no such character occurs in this * string at or after position {@code fromIndex}, then * {@code -1} is returned. * *

* There is no restriction on the value of {@code fromIndex}. If it * is negative, it has the same effect as if it were zero: this entire * string may be searched. If it is greater than the length of this * string, it has the same effect as if it were equal to the length of * this string: {@code -1} is returned. * *

All indices are specified in {@code char} values * (Unicode code units). * * @param ch a character (Unicode code point). * @param fromIndex the index to start the search from. * @return the index of the first occurrence of the character in the * character sequence represented by this object that is greater * than or equal to {@code fromIndex}, or {@code -1} * if the character does not occur. */ public int indexOf(int ch, int fromIndex) { // BEGIN Android-changed: Implement in terms of charAt(). /* return isLatin1() ? StringLatin1.indexOf(value, ch, fromIndex) : StringUTF16.indexOf(value, ch, fromIndex); */ final int max = length(); if (fromIndex < 0) { fromIndex = 0; } else if (fromIndex >= max) { // Note: fromIndex might be near -1>>>1. return -1; } if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) { // handle most cases here (ch is a BMP code point or a // negative value (invalid code point)) for (int i = fromIndex; i < max; i++) { if (charAt(i) == ch) { return i; } } return -1; } else { return indexOfSupplementary(ch, fromIndex); } } /** * Handles (rare) calls of indexOf with a supplementary character. */ private int indexOfSupplementary(int ch, int fromIndex) { if (Character.isValidCodePoint(ch)) { final char hi = Character.highSurrogate(ch); final char lo = Character.lowSurrogate(ch); final int max = length() - 1; for (int i = fromIndex; i < max; i++) { if (charAt(i) == hi && charAt(i + 1) == lo) { return i; } } } return -1; // END Android-changed: Implement in terms of charAt(). } /** * Returns the index within this string of the last occurrence of * the specified character. For values of {@code ch} in the * range from 0 to 0xFFFF (inclusive), the index (in Unicode code * units) returned is the largest value k such that: *

     * this.charAt(k) == ch
     * 
* is true. For other values of {@code ch}, it is the * largest value k such that: *
     * this.codePointAt(k) == ch
     * 
* is true. In either case, if no such character occurs in this * string, then {@code -1} is returned. The * {@code String} is searched backwards starting at the last * character. * * @param ch a character (Unicode code point). * @return the index of the last occurrence of the character in the * character sequence represented by this object, or * {@code -1} if the character does not occur. */ public int lastIndexOf(int ch) { return lastIndexOf(ch, length() - 1); } /** * Returns the index within this string of the last occurrence of * the specified character, searching backward starting at the * specified index. For values of {@code ch} in the range * from 0 to 0xFFFF (inclusive), the index returned is the largest * value k such that: *
     * (this.charAt(k) == ch) {@code &&} (k <= fromIndex)
     * 
* is true. For other values of {@code ch}, it is the * largest value k such that: *
     * (this.codePointAt(k) == ch) {@code &&} (k <= fromIndex)
     * 
* is true. In either case, if no such character occurs in this * string at or before position {@code fromIndex}, then * {@code -1} is returned. * *

All indices are specified in {@code char} values * (Unicode code units). * * @param ch a character (Unicode code point). * @param fromIndex the index to start the search from. There is no * restriction on the value of {@code fromIndex}. If it is * greater than or equal to the length of this string, it has * the same effect as if it were equal to one less than the * length of this string: this entire string may be searched. * If it is negative, it has the same effect as if it were -1: * -1 is returned. * @return the index of the last occurrence of the character in the * character sequence represented by this object that is less * than or equal to {@code fromIndex}, or {@code -1} * if the character does not occur before that point. */ public int lastIndexOf(int ch, int fromIndex) { // BEGIN Android-changed: Implement in terms of charAt(). /* return isLatin1() ? StringLatin1.lastIndexOf(value, ch, fromIndex) : StringUTF16.lastIndexOf(value, ch, fromIndex); */ if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) { // handle most cases here (ch is a BMP code point or a // negative value (invalid code point)) int i = Math.min(fromIndex, length() - 1); for (; i >= 0; i--) { if (charAt(i) == ch) { return i; } } return -1; } else { return lastIndexOfSupplementary(ch, fromIndex); } } /** * Handles (rare) calls of lastIndexOf with a supplementary character. */ private int lastIndexOfSupplementary(int ch, int fromIndex) { if (Character.isValidCodePoint(ch)) { char hi = Character.highSurrogate(ch); char lo = Character.lowSurrogate(ch); int i = Math.min(fromIndex, length() - 2); for (; i >= 0; i--) { if (charAt(i) == hi && charAt(i + 1) == lo) { return i; } } } return -1; // END Android-changed: Implement in terms of charAt(). } /** * Returns the index within this string of the first occurrence of the * specified substring. * *

The returned index is the smallest value {@code k} for which: *

{@code
     * this.startsWith(str, k)
     * }
* If no such value of {@code k} exists, then {@code -1} is returned. * * @param str the substring to search for. * @return the index of the first occurrence of the specified substring, * or {@code -1} if there is no such occurrence. */ @NeverInline public int indexOf(String str) { // BEGIN Android-changed: Implement with indexOf() method that takes String parameters. /* if (coder() == str.coder()) { return isLatin1() ? StringLatin1.indexOf(value, str.value) : StringUTF16.indexOf(value, str.value); } if (coder() == LATIN1) { // str.coder == UTF16 return -1; } return StringUTF16.indexOfLatin1(value, str.value); */ return indexOf(str, 0); // END Android-changed: Implement with indexOf() method that takes String parameters. } /** * Returns the index within this string of the first occurrence of the * specified substring, starting at the specified index. * *

The returned index is the smallest value {@code k} for which: *

{@code
     *     k >= Math.min(fromIndex, this.length()) &&
     *                   this.startsWith(str, k)
     * }
* If no such value of {@code k} exists, then {@code -1} is returned. * * @param str the substring to search for. * @param fromIndex the index from which to start the search. * @return the index of the first occurrence of the specified substring, * starting at the specified index, * or {@code -1} if there is no such occurrence. */ @NeverInline public int indexOf(String str, int fromIndex) { // BEGIN Android-changed: Implement with indexOf() method that takes String parameters. /* return indexOf(value, coder(), length(), str, fromIndex); */ return indexOf(this, str, fromIndex); // END Android-changed: Implement with indexOf() method that takes String parameters. } // BEGIN Android-added: Private static indexOf method that takes String parameters. // The use of length(), charAt(), etc. makes it more efficient for compressed strings. /** * The source is the string being searched, and the target is the string being searched for. * * @param source the characters being searched. * @param target the characters being searched for. * @param fromIndex the index to begin searching from. */ private static int indexOf(String source, String target, int fromIndex) { final int sourceLength = source.length(); final int targetLength = target.length(); if (fromIndex >= sourceLength) { return (targetLength == 0 ? sourceLength : -1); } if (fromIndex < 0) { fromIndex = 0; } if (targetLength == 0) { return fromIndex; } char first = target.charAt(0); int max = (sourceLength - targetLength); for (int i = fromIndex; i <= max; i++) { /* Look for first character. */ if (source.charAt(i)!= first) { while (++i <= max && source.charAt(i) != first); } /* Found first character, now look at the rest of v2 */ if (i <= max) { int j = i + 1; int end = j + targetLength - 1; for (int k = 1; j < end && source.charAt(j) == target.charAt(k); j++, k++); if (j == end) { /* Found whole string. */ return i; } } } return -1; } // END Android-added: Private static indexOf method that takes String parameters. /** * Code shared by String and AbstractStringBuilder to do searches. The * source is the character array being searched, and the target * is the string being searched for. * * @param src the characters being searched. * @param srcCoder the coder of the source string. * @param srcCount length of the source string. * @param tgtStr the characters being searched for. * @param fromIndex the index to begin searching from. */ static int indexOf(byte[] src, byte srcCoder, int srcCount, String tgtStr, int fromIndex) { // byte[] tgt = tgtStr.value; byte tgtCoder = tgtStr.coder(); int tgtCount = tgtStr.length(); if (fromIndex >= srcCount) { return (tgtCount == 0 ? srcCount : -1); } if (fromIndex < 0) { fromIndex = 0; } if (tgtCount == 0) { return fromIndex; } if (tgtCount > srcCount) { return -1; } if (srcCoder == tgtCoder) { return srcCoder == LATIN1 // Android-changed: libcore doesn't store String as Latin1 or UTF16 byte[] field. // ? StringLatin1.indexOf(src, srcCount, tgt, tgtCount, fromIndex) // : StringUTF16.indexOf(src, srcCount, tgt, tgtCount, fromIndex); ? StringLatin1.indexOf(src, srcCount, tgtStr, tgtCount, fromIndex) : StringUTF16.indexOf(src, srcCount, tgtStr, tgtCount, fromIndex); } if (srcCoder == LATIN1) { // && tgtCoder == UTF16 return -1; } // srcCoder == UTF16 && tgtCoder == LATIN1) { // return StringUTF16.indexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex); return StringUTF16.indexOfLatin1(src, srcCount, tgtStr, tgtCount, fromIndex); } /** * Returns the index within this string of the last occurrence of the * specified substring. The last occurrence of the empty string "" * is considered to occur at the index value {@code this.length()}. * *

The returned index is the largest value {@code k} for which: *

{@code
     * this.startsWith(str, k)
     * }
* If no such value of {@code k} exists, then {@code -1} is returned. * * @param str the substring to search for. * @return the index of the last occurrence of the specified substring, * or {@code -1} if there is no such occurrence. */ public int lastIndexOf(String str) { return lastIndexOf(str, length()); } /** * Returns the index within this string of the last occurrence of the * specified substring, searching backward starting at the specified index. * *

The returned index is the largest value {@code k} for which: *

{@code
     *     k <= Math.min(fromIndex, this.length()) &&
     *                   this.startsWith(str, k)
     * }
* If no such value of {@code k} exists, then {@code -1} is returned. * * @param str the substring to search for. * @param fromIndex the index to start the search from. * @return the index of the last occurrence of the specified substring, * searching backward from the specified index, * or {@code -1} if there is no such occurrence. */ public int lastIndexOf(String str, int fromIndex) { // BEGIN Android-changed: Implement with static lastIndexOf() that takes String parameters. /* return lastIndexOf(value, coder(), length(), str, fromIndex); */ return lastIndexOf(this, str, fromIndex); // END Android-changed: Implement with static lastIndexOf() that takes String parameters. } // BEGIN Android-added: Private static lastIndexOf method that takes String parameters. // The use of length(), charAt(), etc. makes it more efficient for compressed strings. /** * The source is the string being searched, and the target is the string being searched for. * * @param source the characters being searched. * @param target the characters being searched for. * @param fromIndex the index to begin searching from. */ private static int lastIndexOf(String source, String target, int fromIndex) { /* * Check arguments; return immediately where possible. For * consistency, don't check for null str. */ final int sourceLength = source.length(); final int targetLength = target.length(); int rightIndex = sourceLength - targetLength; if (fromIndex < 0) { return -1; } if (fromIndex > rightIndex) { fromIndex = rightIndex; } /* Empty string always matches. */ if (targetLength == 0) { return fromIndex; } int strLastIndex = targetLength - 1; char strLastChar = target.charAt(strLastIndex); int min = targetLength - 1; int i = min + fromIndex; startSearchForLastChar: while (true) { while (i >= min && source.charAt(i) != strLastChar) { i--; } if (i < min) { return -1; } int j = i - 1; int start = j - (targetLength - 1); int k = strLastIndex - 1; while (j > start) { if (source.charAt(j--) != target.charAt(k--)) { i--; continue startSearchForLastChar; } } return start + 1; } } // END Android-added: Private static lastIndexOf method that takes String parameters. /** * Code shared by String and AbstractStringBuilder to do searches. The * source is the character array being searched, and the target * is the string being searched for. * * @param src the characters being searched. * @param srcCoder coder handles the mapping between bytes/chars * @param srcCount count of the source string. * @param tgtStr the characters being searched for. * @param fromIndex the index to begin searching from. */ static int lastIndexOf(byte[] src, byte srcCoder, int srcCount, String tgtStr, int fromIndex) { // byte[] tgt = tgtStr.value; byte tgtCoder = tgtStr.coder(); int tgtCount = tgtStr.length(); /* * Check arguments; return immediately where possible. For * consistency, don't check for null str. */ int rightIndex = srcCount - tgtCount; if (fromIndex > rightIndex) { fromIndex = rightIndex; } if (fromIndex < 0) { return -1; } /* Empty string always matches. */ if (tgtCount == 0) { return fromIndex; } if (srcCoder == tgtCoder) { return srcCoder == LATIN1 // Android-changed: libcore doesn't store String as Latin1 or UTF16 byte[] field. // ? StringLatin1.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex) // : StringUTF16.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex); ? StringLatin1.lastIndexOf(src, srcCount, tgtStr, tgtCount, fromIndex) : StringUTF16.lastIndexOf(src, srcCount, tgtStr, tgtCount, fromIndex); } if (srcCoder == LATIN1) { // && tgtCoder == UTF16 return -1; } // srcCoder == UTF16 && tgtCoder == LATIN1 // return StringUTF16.lastIndexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex); return StringUTF16.lastIndexOfLatin1(src, srcCount, tgtStr, tgtCount, fromIndex); } /** * Code shared by String and StringBuffer to do searches. The * source is the character array being searched, and the target * is the string being searched for. * * @param source the characters being searched. * @param sourceOffset offset of the source string. * @param sourceCount count of the source string. * @param target the characters being searched for. * @param targetOffset offset of the target string. * @param targetCount count of the target string. * @param fromIndex the index to begin searching from. */ static int lastIndexOf(char[] source, int sourceOffset, int sourceCount, char[] target, int targetOffset, int targetCount, int fromIndex) { /* * Check arguments; return immediately where possible. For * consistency, don't check for null str. */ int rightIndex = sourceCount - targetCount; if (fromIndex < 0) { return -1; } if (fromIndex > rightIndex) { fromIndex = rightIndex; } /* Empty string always matches. */ if (targetCount == 0) { return fromIndex; } int strLastIndex = targetOffset + targetCount - 1; char strLastChar = target[strLastIndex]; int min = sourceOffset + targetCount - 1; int i = min + fromIndex; startSearchForLastChar: while (true) { while (i >= min && source[i] != strLastChar) { i--; } if (i < min) { return -1; } int j = i - 1; int start = j - (targetCount - 1); int k = strLastIndex - 1; while (j > start) { if (source[j--] != target[k--]) { i--; continue startSearchForLastChar; } } return start - sourceOffset + 1; } } /** * Returns a string that is a substring of this string. The * substring begins with the character at the specified index and * extends to the end of this string.

* Examples: *

     * "unhappy".substring(2) returns "happy"
     * "Harbison".substring(3) returns "bison"
     * "emptiness".substring(9) returns "" (an empty string)
     * 
* * @param beginIndex the beginning index, inclusive. * @return the specified substring. * @exception IndexOutOfBoundsException if * {@code beginIndex} is negative or larger than the * length of this {@code String} object. */ public String substring(int beginIndex) { if (beginIndex < 0) { throw new StringIndexOutOfBoundsException(this, beginIndex); } int subLen = length() - beginIndex; if (subLen < 0) { throw new StringIndexOutOfBoundsException(this, beginIndex); } if (beginIndex == 0) { return this; } // BEGIN Android-changed: Use native fastSubstring instead of String constructor. /* return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen) : StringUTF16.newString(value, beginIndex, subLen); */ return fastSubstring(beginIndex, subLen); // END Android-changed: Use native fastSubstring instead of String constructor. } /** * Returns a string that is a substring of this string. The * substring begins at the specified {@code beginIndex} and * extends to the character at index {@code endIndex - 1}. * Thus the length of the substring is {@code endIndex-beginIndex}. *

* Examples: *

     * "hamburger".substring(4, 8) returns "urge"
     * "smiles".substring(1, 5) returns "mile"
     * 
* * @param beginIndex the beginning index, inclusive. * @param endIndex the ending index, exclusive. * @return the specified substring. * @exception IndexOutOfBoundsException if the * {@code beginIndex} is negative, or * {@code endIndex} is larger than the length of * this {@code String} object, or * {@code beginIndex} is larger than * {@code endIndex}. */ public String substring(int beginIndex, int endIndex) { int length = length(); checkBoundsBeginEnd(beginIndex, endIndex, length); int subLen = endIndex - beginIndex; if (beginIndex == 0 && endIndex == length) { return this; } // BEGIN Android-changed: Use native fastSubstring instead of String constructor. /* return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen) : StringUTF16.newString(value, beginIndex, subLen); */ return fastSubstring(beginIndex, subLen); // END Android-changed: Use native fastSubstring instead of String constructor. } // BEGIN Android-added: Native method to access char storage managed by runtime. @FastNative private native String fastSubstring(int start, int length); // END Android-added: Native method to access char storage managed by runtime. /** * Returns a character sequence that is a subsequence of this sequence. * *

An invocation of this method of the form * *

     * str.subSequence(begin, end)
* * behaves in exactly the same way as the invocation * *
     * str.substring(begin, end)
* * @apiNote * This method is defined so that the {@code String} class can implement * the {@link CharSequence} interface. * * @param beginIndex the begin index, inclusive. * @param endIndex the end index, exclusive. * @return the specified subsequence. * * @throws IndexOutOfBoundsException * if {@code beginIndex} or {@code endIndex} is negative, * if {@code endIndex} is greater than {@code length()}, * or if {@code beginIndex} is greater than {@code endIndex} * * @since 1.4 * @spec JSR-51 */ public CharSequence subSequence(int beginIndex, int endIndex) { return this.substring(beginIndex, endIndex); } /** * Concatenates the specified string to the end of this string. *

* If the length of the argument string is {@code 0}, then this * {@code String} object is returned. Otherwise, a * {@code String} object is returned that represents a character * sequence that is the concatenation of the character sequence * represented by this {@code String} object and the character * sequence represented by the argument string.

* Examples: *

     * "cares".concat("s") returns "caress"
     * "to".concat("get").concat("her") returns "together"
     * 
* * @param str the {@code String} that is concatenated to the end * of this {@code String}. * @return a string that represents the concatenation of this object's * characters followed by the string argument's characters. */ // BEGIN Android-changed: Replace with implementation in runtime to access chars (see above). /* public String concat(String str) { if (str.isEmpty()) { return this; } if (coder() == str.coder()) { byte[] val = this.value; byte[] oval = str.value; int len = val.length + oval.length; byte[] buf = Arrays.copyOf(val, len); System.arraycopy(oval, 0, buf, val.length, oval.length); return new String(buf, coder); } int len = length(); int olen = str.length(); byte[] buf = StringUTF16.newBytesFor(len + olen); getBytes(buf, 0, UTF16); str.getBytes(buf, len, UTF16); return new String(buf, UTF16); } */ @FastNative public native String concat(String str); // END Android-changed: Replace with implementation in runtime to access chars (see above). /** * Returns a string resulting from replacing all occurrences of * {@code oldChar} in this string with {@code newChar}. *

* If the character {@code oldChar} does not occur in the * character sequence represented by this {@code String} object, * then a reference to this {@code String} object is returned. * Otherwise, a {@code String} object is returned that * represents a character sequence identical to the character sequence * represented by this {@code String} object, except that every * occurrence of {@code oldChar} is replaced by an occurrence * of {@code newChar}. *

* Examples: *

     * "mesquite in your cellar".replace('e', 'o')
     *         returns "mosquito in your collar"
     * "the war of baronets".replace('r', 'y')
     *         returns "the way of bayonets"
     * "sparring with a purple porpoise".replace('p', 't')
     *         returns "starring with a turtle tortoise"
     * "JonL".replace('q', 'x') returns "JonL" (no change)
     * 
* * @param oldChar the old character. * @param newChar the new character. * @return a string derived from this string by replacing every * occurrence of {@code oldChar} with {@code newChar}. */ public String replace(char oldChar, char newChar) { // BEGIN Android-changed: Replace with implementation using native doReplace method. if (oldChar != newChar) { /* String ret = isLatin1() ? StringLatin1.replace(value, oldChar, newChar) : StringUTF16.replace(value, oldChar, newChar); if (ret != null) { return ret; } */ final int len = length(); for (int i = 0; i < len; ++i) { if (charAt(i) == oldChar) { return doReplace(oldChar, newChar); } } } // END Android-changed: Replace with implementation using native doReplace method. return this; } // BEGIN Android-added: Native method to access char storage managed by runtime. // Implementation of replace(char oldChar, char newChar) called when we found a match. @FastNative private native String doReplace(char oldChar, char newChar); // END Android-added: Native method to access char storage managed by runtime. /** * Tells whether or not this string matches the given regular expression. * *

An invocation of this method of the form * str{@code .matches(}regex{@code )} yields exactly the * same result as the expression * *

* {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence) * matches(regex, str)} *
* * @param regex * the regular expression to which this string is to be matched * * @return {@code true} if, and only if, this string matches the * given regular expression * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 * @spec JSR-51 */ public boolean matches(String regex) { return Pattern.matches(regex, this); } /** * Returns true if and only if this string contains the specified * sequence of char values. * * @param s the sequence to search for * @return true if this string contains {@code s}, false otherwise * @since 1.5 */ public boolean contains(CharSequence s) { return indexOf(s.toString()) >= 0; } /** * Replaces the first substring of this string that matches the given regular expression with the * given replacement. * *

An invocation of this method of the form * str{@code .replaceFirst(}regex{@code ,} repl{@code )} * yields exactly the same result as the expression * *

* * {@link java.util.regex.Pattern}.{@link * java.util.regex.Pattern#compile compile}(regex).{@link * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(str).{@link * java.util.regex.Matcher#replaceFirst replaceFirst}(repl) * *
* *

* Note that backslashes ({@code \}) and dollar signs ({@code $}) in the * replacement string may cause the results to be different than if it were * being treated as a literal replacement string; see * {@link java.util.regex.Matcher#replaceFirst}. * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special * meaning of these characters, if desired. * * @param regex * the regular expression to which this string is to be matched * @param replacement * the string to be substituted for the first match * * @return The resulting {@code String} * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 * @spec JSR-51 */ public String replaceFirst(String regex, String replacement) { return Pattern.compile(regex).matcher(this).replaceFirst(replacement); } /** * Replaces each substring of this string that matches the given regular expression with the * given replacement. * *

An invocation of this method of the form * str{@code .replaceAll(}regex{@code ,} repl{@code )} * yields exactly the same result as the expression * *

* * {@link java.util.regex.Pattern}.{@link * java.util.regex.Pattern#compile compile}(regex).{@link * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(str).{@link * java.util.regex.Matcher#replaceAll replaceAll}(repl) * *
* *

* Note that backslashes ({@code \}) and dollar signs ({@code $}) in the * replacement string may cause the results to be different than if it were * being treated as a literal replacement string; see * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}. * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special * meaning of these characters, if desired. * * @param regex * the regular expression to which this string is to be matched * @param replacement * the string to be substituted for each match * * @return The resulting {@code String} * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 * @spec JSR-51 */ public String replaceAll(String regex, String replacement) { return Pattern.compile(regex).matcher(this).replaceAll(replacement); } /** * Replaces each substring of this string that matches the literal target * sequence with the specified literal replacement sequence. The * replacement proceeds from the beginning of the string to the end, for * example, replacing "aa" with "b" in the string "aaa" will result in * "ba" rather than "ab". * * @param target The sequence of char values to be replaced * @param replacement The replacement sequence of char values * @return The resulting string * @since 1.5 */ public String replace(CharSequence target, CharSequence replacement) { // BEGIN Android-added: Additional null check for parameters. Objects.requireNonNull(target); Objects.requireNonNull(replacement); // END Android-added: Additional null check for parameters. String tgtStr = target.toString(); String replStr = replacement.toString(); int j = indexOf(tgtStr); if (j < 0) { return this; } int tgtLen = tgtStr.length(); int tgtLen1 = Math.max(tgtLen, 1); int thisLen = length(); int newLenHint = thisLen - tgtLen + replStr.length(); if (newLenHint < 0) { throw new OutOfMemoryError(); } StringBuilder sb = new StringBuilder(newLenHint); int i = 0; do { sb.append(this, i, j).append(replStr); i = j + tgtLen; } while (j < thisLen && (j = indexOf(tgtStr, j + tgtLen1)) > 0); return sb.append(this, i, thisLen).toString(); } /** * Splits this string around matches of the given * regular expression. * *

The array returned by this method contains each substring of this * string that is terminated by another substring that matches the given * expression or is terminated by the end of the string. The substrings in * the array are in the order in which they occur in this string. If the * expression does not match any part of the input then the resulting array * has just one element, namely this string. * *

When there is a positive-width match at the beginning of this * string then an empty leading substring is included at the beginning * of the resulting array. A zero-width match at the beginning however * never produces such empty leading substring. * *

The {@code limit} parameter controls the number of times the * pattern is applied and therefore affects the length of the resulting * array. *

* *

The string {@code "boo:and:foo"}, for example, yields the * following results with these parameters: * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Split example showing regex, limit, and result
RegexLimitResult
:2{@code { "boo", "and:foo" }}
5{@code { "boo", "and", "foo" }}
-2{@code { "boo", "and", "foo" }}
o5{@code { "b", "", ":and:f", "", "" }}
-2{@code { "b", "", ":and:f", "", "" }}
0{@code { "b", "", ":and:f" }}
* *

An invocation of this method of the form * str.{@code split(}regex{@code ,} n{@code )} * yields the same result as the expression * *

* * {@link java.util.regex.Pattern}.{@link * java.util.regex.Pattern#compile compile}(regex).{@link * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(strn) * *
* * * @param regex * the delimiting regular expression * * @param limit * the result threshold, as described above * * @return the array of strings computed by splitting this string * around matches of the given regular expression * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 * @spec JSR-51 */ public String[] split(String regex, int limit) { // BEGIN Android-changed: Replace custom fast-path with use of new Pattern.fastSplit method. // Try fast splitting without allocating Pattern object /* /* fastpath if the regex is a (1)one-char String and this character is not one of the RegEx's meta characters ".$|()[{^?*+\\", or (2)two-char String and the first char is the backslash and the second is not the ascii digit or ascii letter. * char ch = 0; if (((regex.length() == 1 && ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) || (regex.length() == 2 && regex.charAt(0) == '\\' && (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 && ((ch-'a')|('z'-ch)) < 0 && ((ch-'A')|('Z'-ch)) < 0)) && (ch < Character.MIN_HIGH_SURROGATE || ch > Character.MAX_LOW_SURROGATE)) { int off = 0; int next = 0; boolean limited = limit > 0; ArrayList list = new ArrayList<>(); while ((next = indexOf(ch, off)) != -1) { if (!limited || list.size() < limit - 1) { list.add(substring(off, next)); off = next + 1; } else { // last one //assert (list.size() == limit - 1); int last = length(); list.add(substring(off, last)); off = last; break; } } // If no match was found, return this if (off == 0) return new String[]{this}; // Add remaining segment if (!limited || list.size() < limit) list.add(substring(off, length())); // Construct result int resultSize = list.size(); if (limit == 0) { while (resultSize > 0 && list.get(resultSize - 1).isEmpty()) { resultSize--; } } String[] result = new String[resultSize]; return list.subList(0, resultSize).toArray(result); } */ String[] fast = Pattern.fastSplit(regex, this, limit); if (fast != null) { return fast; } // END Android-changed: Replace custom fast-path with use of new Pattern.fastSplit method. return Pattern.compile(regex).split(this, limit); } /** * Splits this string around matches of the given regular expression. * *

This method works as if by invoking the two-argument {@link * #split(String, int) split} method with the given expression and a limit * argument of zero. Trailing empty strings are therefore not included in * the resulting array. * *

The string {@code "boo:and:foo"}, for example, yields the following * results with these expressions: * *

* * * * * * * * * * * * * *
Split examples showing regex and result
RegexResult
:{@code { "boo", "and", "foo" }}
o{@code { "b", "", ":and:f" }}
* * * @param regex * the delimiting regular expression * * @return the array of strings computed by splitting this string * around matches of the given regular expression * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 * @spec JSR-51 */ public String[] split(String regex) { return split(regex, 0); } /** * Returns a new String composed of copies of the * {@code CharSequence elements} joined together with a copy of * the specified {@code delimiter}. * *
For example, *
{@code
     *     String message = String.join("-", "Java", "is", "cool");
     *     // message returned is: "Java-is-cool"
     * }
* * Note that if an element is null, then {@code "null"} is added. * * @param delimiter the delimiter that separates each element * @param elements the elements to join together. * * @return a new {@code String} that is composed of the {@code elements} * separated by the {@code delimiter} * * @throws NullPointerException If {@code delimiter} or {@code elements} * is {@code null} * * @see java.util.StringJoiner * @since 1.8 */ public static String join(CharSequence delimiter, CharSequence... elements) { Objects.requireNonNull(delimiter); Objects.requireNonNull(elements); // Number of elements not likely worth Arrays.stream overhead. StringJoiner joiner = new StringJoiner(delimiter); for (CharSequence cs: elements) { joiner.add(cs); } return joiner.toString(); } /** * Returns a new {@code String} composed of copies of the * {@code CharSequence elements} joined together with a copy of the * specified {@code delimiter}. * *
For example, *
{@code
     *     List strings = List.of("Java", "is", "cool");
     *     String message = String.join(" ", strings);
     *     //message returned is: "Java is cool"
     *
     *     Set strings =
     *         new LinkedHashSet<>(List.of("Java", "is", "very", "cool"));
     *     String message = String.join("-", strings);
     *     //message returned is: "Java-is-very-cool"
     * }
* * Note that if an individual element is {@code null}, then {@code "null"} is added. * * @param delimiter a sequence of characters that is used to separate each * of the {@code elements} in the resulting {@code String} * @param elements an {@code Iterable} that will have its {@code elements} * joined together. * * @return a new {@code String} that is composed from the {@code elements} * argument * * @throws NullPointerException If {@code delimiter} or {@code elements} * is {@code null} * * @see #join(CharSequence,CharSequence...) * @see java.util.StringJoiner * @since 1.8 */ public static String join(CharSequence delimiter, Iterable elements) { Objects.requireNonNull(delimiter); Objects.requireNonNull(elements); StringJoiner joiner = new StringJoiner(delimiter); for (CharSequence cs: elements) { joiner.add(cs); } return joiner.toString(); } /** * Converts all of the characters in this {@code String} to lower * case using the rules of the given {@code Locale}. Case mapping is based * on the Unicode Standard version specified by the {@link java.lang.Character Character} * class. Since case mappings are not always 1:1 char mappings, the resulting * {@code String} may be a different length than the original {@code String}. *

* Examples of lowercase mappings are in the following table: * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Lowercase mapping examples showing language code of locale, upper case, lower case, and description
Language Code of LocaleUpper CaseLower CaseDescription
tr (Turkish)\u0130\u0069capital letter I with dot above -> small letter i
tr (Turkish)\u0049\u0131capital letter I -> small letter dotless i
(all)French Friesfrench frieslowercased all chars in String
(all) * ΙΧΘΥΣιχθυσlowercased all chars in String
* * @param locale use the case transformation rules for this locale * @return the {@code String}, converted to lowercase. * @see java.lang.String#toLowerCase() * @see java.lang.String#toUpperCase() * @see java.lang.String#toUpperCase(Locale) * @since 1.1 */ public String toLowerCase(Locale locale) { // BEGIN Android-changed: Replace custom code with call to new CaseMapper class. /* return isLatin1() ? StringLatin1.toLowerCase(this, value, locale) : StringUTF16.toLowerCase(this, value, locale); */ return CaseMapper.toLowerCase(locale, this); // END Android-changed: Replace custom code with call to new CaseMapper class. } /** * Converts all of the characters in this {@code String} to lower * case using the rules of the default locale. This is equivalent to calling * {@code toLowerCase(Locale.getDefault())}. *

* Note: This method is locale sensitive, and may produce unexpected * results if used for strings that are intended to be interpreted locale * independently. * Examples are programming language identifiers, protocol keys, and HTML * tags. * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the * LATIN SMALL LETTER DOTLESS I character. * To obtain correct results for locale insensitive strings, use * {@code toLowerCase(Locale.ROOT)}. * * @return the {@code String}, converted to lowercase. * @see java.lang.String#toLowerCase(Locale) */ public String toLowerCase() { return toLowerCase(Locale.getDefault()); } /** * Converts all of the characters in this {@code String} to upper * case using the rules of the given {@code Locale}. Case mapping is based * on the Unicode Standard version specified by the {@link java.lang.Character Character} * class. Since case mappings are not always 1:1 char mappings, the resulting * {@code String} may be a different length than the original {@code String}. *

* Examples of locale-sensitive and 1:M case mappings are in the following table. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.
Language Code of LocaleLower CaseUpper CaseDescription
tr (Turkish)\u0069\u0130small letter i -> capital letter I with dot above
tr (Turkish)\u0131\u0049small letter dotless i -> capital letter I
(all)\u00df\u0053 \u0053small letter sharp s -> two letters: SS
(all)FahrvergnügenFAHRVERGNÜGEN
* @param locale use the case transformation rules for this locale * @return the {@code String}, converted to uppercase. * @see java.lang.String#toUpperCase() * @see java.lang.String#toLowerCase() * @see java.lang.String#toLowerCase(Locale) * @since 1.1 */ public String toUpperCase(Locale locale) { // BEGIN Android-changed: Replace custom code with call to new CaseMapper class. /* return isLatin1() ? StringLatin1.toUpperCase(this, value, locale) : StringUTF16.toUpperCase(this, value, locale); */ return CaseMapper.toUpperCase(locale, this, length()); // END Android-changed: Replace custom code with call to new CaseMapper class. } /** * Converts all of the characters in this {@code String} to upper * case using the rules of the default locale. This method is equivalent to * {@code toUpperCase(Locale.getDefault())}. *

* Note: This method is locale sensitive, and may produce unexpected * results if used for strings that are intended to be interpreted locale * independently. * Examples are programming language identifiers, protocol keys, and HTML * tags. * For instance, {@code "title".toUpperCase()} in a Turkish locale * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the * LATIN CAPITAL LETTER I WITH DOT ABOVE character. * To obtain correct results for locale insensitive strings, use * {@code toUpperCase(Locale.ROOT)}. * * @return the {@code String}, converted to uppercase. * @see java.lang.String#toUpperCase(Locale) */ public String toUpperCase() { return toUpperCase(Locale.getDefault()); } /** * Returns a string whose value is this string, with all leading * and trailing space removed, where space is defined * as any character whose codepoint is less than or equal to * {@code 'U+0020'} (the space character). *

* If this {@code String} object represents an empty character * sequence, or the first and last characters of character sequence * represented by this {@code String} object both have codes * that are not space (as defined above), then a * reference to this {@code String} object is returned. *

* Otherwise, if all characters in this string are space (as * defined above), then a {@code String} object representing an * empty string is returned. *

* Otherwise, let k be the index of the first character in the * string whose code is not a space (as defined above) and let * m be the index of the last character in the string whose code * is not a space (as defined above). A {@code String} * object is returned, representing the substring of this string that * begins with the character at index k and ends with the * character at index m-that is, the result of * {@code this.substring(k, m + 1)}. *

* This method may be used to trim space (as defined above) from * the beginning and end of a string. * * @return a string whose value is this string, with all leading * and trailing space removed, or this string if it * has no leading or trailing space. */ public String trim() { // BEGIN Android-changed: Implement in terms of charAt(). /* String ret = isLatin1() ? StringLatin1.trim(value) : StringUTF16.trim(value); return ret == null ? this : ret; */ int len = length(); int st = 0; while ((st < len) && (charAt(st) <= ' ')) { st++; } while ((st < len) && (charAt(len - 1) <= ' ')) { len--; } return ((st > 0) || (len < length())) ? substring(st, len) : this; // END Android-changed: Implement in terms of charAt(). } /** * Returns a string whose value is this string, with all leading * and trailing {@link Character#isWhitespace(int) white space} * removed. *

* If this {@code String} object represents an empty string, * or if all code points in this string are * {@link Character#isWhitespace(int) white space}, then an empty string * is returned. *

* Otherwise, returns a substring of this string beginning with the first * code point that is not a {@link Character#isWhitespace(int) white space} * up to and including the last code point that is not a * {@link Character#isWhitespace(int) white space}. *

* This method may be used to strip * {@link Character#isWhitespace(int) white space} from * the beginning and end of a string. * * @return a string whose value is this string, with all leading * and trailing white space removed * * @see Character#isWhitespace(int) * * @since 11 */ public String strip() { // BEGIN Android-changed: Delegate to StringUTF16. /* String ret = isLatin1() ? StringLatin1.strip(value) : StringUTF16.strip(value); */ String ret = StringUTF16.strip(this); // END Android-changed: Delegate to StringUTF16. return ret == null ? this : ret; } /** * Returns a string whose value is this string, with all leading * {@link Character#isWhitespace(int) white space} removed. *

* If this {@code String} object represents an empty string, * or if all code points in this string are * {@link Character#isWhitespace(int) white space}, then an empty string * is returned. *

* Otherwise, returns a substring of this string beginning with the first * code point that is not a {@link Character#isWhitespace(int) white space} * up to to and including the last code point of this string. *

* This method may be used to trim * {@link Character#isWhitespace(int) white space} from * the beginning of a string. * * @return a string whose value is this string, with all leading white * space removed * * @see Character#isWhitespace(int) * * @since 11 */ public String stripLeading() { // BEGIN Android-changed: Delegate to StringUTF16. /* String ret = isLatin1() ? StringLatin1.stripLeading(value) : StringUTF16.stripLeading(value); */ String ret = StringUTF16.stripLeading(this); // END Android-changed: Delegate to StringUTF16. return ret == null ? this : ret; } /** * Returns a string whose value is this string, with all trailing * {@link Character#isWhitespace(int) white space} removed. *

* If this {@code String} object represents an empty string, * or if all characters in this string are * {@link Character#isWhitespace(int) white space}, then an empty string * is returned. *

* Otherwise, returns a substring of this string beginning with the first * code point of this string up to and including the last code point * that is not a {@link Character#isWhitespace(int) white space}. *

* This method may be used to trim * {@link Character#isWhitespace(int) white space} from * the end of a string. * * @return a string whose value is this string, with all trailing white * space removed * * @see Character#isWhitespace(int) * * @since 11 */ public String stripTrailing() { // BEGIN Android-changed: Delegate to StringUTF16. /* String ret = isLatin1() ? StringLatin1.stripTrailing(value) : StringUTF16.stripTrailing(value); */ String ret = StringUTF16.stripTrailing(this); // END Android-changed: Delegate to StringUTF16. return ret == null ? this : ret; } /** * Returns {@code true} if the string is empty or contains only * {@link Character#isWhitespace(int) white space} codepoints, * otherwise {@code false}. * * @return {@code true} if the string is empty or contains only * {@link Character#isWhitespace(int) white space} codepoints, * otherwise {@code false} * * @see Character#isWhitespace(int) * * @since 11 */ public boolean isBlank() { return indexOfNonWhitespace() == length(); } /** * Returns a stream of lines extracted from this string, * separated by line terminators. *

* A line terminator is one of the following: * a line feed character {@code "\n"} (U+000A), * a carriage return character {@code "\r"} (U+000D), * or a carriage return followed immediately by a line feed * {@code "\r\n"} (U+000D U+000A). *

* A line is either a sequence of zero or more characters * followed by a line terminator, or it is a sequence of one or * more characters followed by the end of the string. A * line does not include the line terminator. *

* The stream returned by this method contains the lines from * this string in the order in which they occur. * * @apiNote This definition of line implies that an empty * string has zero lines and that there is no empty line * following a line terminator at the end of a string. * * @implNote This method provides better performance than * split("\R") by supplying elements lazily and * by faster search of new line terminators. * * @return the stream of lines extracted from this string * * @since 11 */ public Stream lines() { // BEGIN Android-removed: Delegate to StringUTF16. /* return isLatin1() ? StringLatin1.lines(value) : StringUTF16.lines(value); */ return StringUTF16.lines(this); // END Android-removed: Delegate to StringUTF16. } /** * Adjusts the indentation of each line of this string based on the value of * {@code n}, and normalizes line termination characters. *

* This string is conceptually separated into lines using * {@link String#lines()}. Each line is then adjusted as described below * and then suffixed with a line feed {@code "\n"} (U+000A). The resulting * lines are then concatenated and returned. *

* If {@code n > 0} then {@code n} spaces (U+0020) are inserted at the * beginning of each line. *

* If {@code n < 0} then up to {@code n} * {@linkplain Character#isWhitespace(int) white space characters} are removed * from the beginning of each line. If a given line does not contain * sufficient white space then all leading * {@linkplain Character#isWhitespace(int) white space characters} are removed. * Each white space character is treated as a single character. In * particular, the tab character {@code "\t"} (U+0009) is considered a * single character; it is not expanded. *

* If {@code n == 0} then the line remains unchanged. However, line * terminators are still normalized. * * @param n number of leading * {@linkplain Character#isWhitespace(int) white space characters} * to add or remove * * @return string with indentation adjusted and line endings normalized * * @see String#lines() * @see String#isBlank() * @see Character#isWhitespace(int) * * @since 12 */ public String indent(int n) { if (isEmpty()) { return ""; } Stream stream = lines(); if (n > 0) { final String spaces = " ".repeat(n); stream = stream.map(s -> spaces + s); } else if (n == Integer.MIN_VALUE) { stream = stream.map(s -> s.stripLeading()); } else if (n < 0) { stream = stream.map(s -> s.substring(Math.min(-n, s.indexOfNonWhitespace()))); } return stream.collect(Collectors.joining("\n", "", "\n")); } private int indexOfNonWhitespace() { // BEGIN Android-removed: Delegate to StringUTF16. /* return isLatin1() ? StringLatin1.indexOfNonWhitespace(value) : StringUTF16.indexOfNonWhitespace(value); */ return StringUTF16.indexOfNonWhitespace(this); // END Android-removed: Delegate to StringUTF16. } private int lastIndexOfNonWhitespace() { // BEGIN Android-changed: Delegate to StringUTF16. /* return isLatin1() ? StringLatin1.lastIndexOfNonWhitespace(value) : StringUTF16.lastIndexOfNonWhitespace(value); */ return StringUTF16.lastIndexOfNonWhitespace(this); // END Android-changed: Delegate to StringUTF16. } /** * Returns a string whose value is this string, with incidental * {@linkplain Character#isWhitespace(int) white space} removed from * the beginning and end of every line. *

* Incidental {@linkplain Character#isWhitespace(int) white space} * is often present in a text block to align the content with the opening * delimiter. For example, in the following code, dots represent incidental * {@linkplain Character#isWhitespace(int) white space}: *

     * String html = """
     * ..............<html>
     * ..............    <body>
     * ..............        <p>Hello, world</p>
     * ..............    </body>
     * ..............</html>
     * ..............""";
     * 
* This method treats the incidental * {@linkplain Character#isWhitespace(int) white space} as indentation to be * stripped, producing a string that preserves the relative indentation of * the content. Using | to visualize the start of each line of the string: *
     * |<html>
     * |    <body>
     * |        <p>Hello, world</p>
     * |    </body>
     * |</html>
     * 
* First, the individual lines of this string are extracted. A line * is a sequence of zero or more characters followed by either a line * terminator or the end of the string. * If the string has at least one line terminator, the last line consists * of the characters between the last terminator and the end of the string. * Otherwise, if the string has no terminators, the last line is the start * of the string to the end of the string, in other words, the entire * string. * A line does not include the line terminator. *

* Then, the minimum indentation (min) is determined as follows: *

*

The min value is the smallest of these counts. *

* For each {@linkplain String#isBlank() non-blank} line, min leading * {@linkplain Character#isWhitespace(int) white space} characters are * removed, and any trailing {@linkplain Character#isWhitespace(int) white * space} characters are removed. {@linkplain String#isBlank() Blank} lines * are replaced with the empty string. * *

* Finally, the lines are joined into a new string, using the LF character * {@code "\n"} (U+000A) to separate lines. * * @apiNote * This method's primary purpose is to shift a block of lines as far as * possible to the left, while preserving relative indentation. Lines * that were indented the least will thus have no leading * {@linkplain Character#isWhitespace(int) white space}. * The result will have the same number of line terminators as this string. * If this string ends with a line terminator then the result will end * with a line terminator. * * @implSpec * This method treats all {@linkplain Character#isWhitespace(int) white space} * characters as having equal width. As long as the indentation on every * line is consistently composed of the same character sequences, then the * result will be as described above. * * @return string with incidental indentation removed and line * terminators normalized * * @see String#lines() * @see String#isBlank() * @see String#indent(int) * @see Character#isWhitespace(int) * * @since 15 * */ public String stripIndent() { int length = length(); if (length == 0) { return ""; } char lastChar = charAt(length - 1); boolean optOut = lastChar == '\n' || lastChar == '\r'; List lines = lines().toList(); final int outdent = optOut ? 0 : outdent(lines); return lines.stream() .map(line -> { int firstNonWhitespace = line.indexOfNonWhitespace(); int lastNonWhitespace = line.lastIndexOfNonWhitespace(); int incidentalWhitespace = Math.min(outdent, firstNonWhitespace); return firstNonWhitespace > lastNonWhitespace ? "" : line.substring(incidentalWhitespace, lastNonWhitespace); }) .collect(Collectors.joining("\n", "", optOut ? "\n" : "")); } private static int outdent(List lines) { // Note: outdent is guaranteed to be zero or positive number. // If there isn't a non-blank line then the last must be blank int outdent = Integer.MAX_VALUE; for (String line : lines) { int leadingWhitespace = line.indexOfNonWhitespace(); if (leadingWhitespace != line.length()) { outdent = Integer.min(outdent, leadingWhitespace); } } String lastLine = lines.get(lines.size() - 1); if (lastLine.isBlank()) { outdent = Integer.min(outdent, lastLine.length()); } return outdent; } /** * Returns a string whose value is this string, with escape sequences * translated as if in a string literal. *

* Escape sequences are translated as follows; * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Translation
EscapeNameTranslation
{@code \u005Cb}backspace{@code U+0008}
{@code \u005Ct}horizontal tab{@code U+0009}
{@code \u005Cn}line feed{@code U+000A}
{@code \u005Cf}form feed{@code U+000C}
{@code \u005Cr}carriage return{@code U+000D}
{@code \u005Cs}space{@code U+0020}
{@code \u005C"}double quote{@code U+0022}
{@code \u005C'}single quote{@code U+0027}
{@code \u005C\u005C}backslash{@code U+005C}
{@code \u005C0 - \u005C377}octal escapecode point equivalents
{@code \u005C}continuationdiscard
* * @implNote * This method does not translate Unicode escapes such as "{@code \u005cu2022}". * Unicode escapes are translated by the Java compiler when reading input characters and * are not part of the string literal specification. * * @throws IllegalArgumentException when an escape sequence is malformed. * * @return String with escape sequences translated. * * @jls 3.10.7 Escape Sequences * * @since 15 */ public String translateEscapes() { if (isEmpty()) { return ""; } char[] chars = toCharArray(); int length = chars.length; int from = 0; int to = 0; while (from < length) { char ch = chars[from++]; if (ch == '\\') { ch = from < length ? chars[from++] : '\0'; switch (ch) { case 'b': ch = '\b'; break; case 'f': ch = '\f'; break; case 'n': ch = '\n'; break; case 'r': ch = '\r'; break; case 's': ch = ' '; break; case 't': ch = '\t'; break; case '\'': case '\"': case '\\': // as is break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': int limit = Integer.min(from + (ch <= '3' ? 2 : 1), length); int code = ch - '0'; while (from < limit) { ch = chars[from]; if (ch < '0' || '7' < ch) { break; } from++; code = (code << 3) | (ch - '0'); } ch = (char)code; break; case '\n': continue; case '\r': if (from < length && chars[from] == '\n') { from++; } continue; default: { String msg = String.format( "Invalid escape sequence: \\%c \\\\u%04X", ch, (int)ch); throw new IllegalArgumentException(msg); } } } chars[to++] = ch; } return new String(chars, 0, to); } /** * This method allows the application of a function to {@code this} * string. The function should expect a single String argument * and produce an {@code R} result. *

* Any exception thrown by {@code f.apply()} will be propagated to the * caller. * * @param f a function to apply * * @param the type of the result * * @return the result of applying the function to this string * * @see java.util.function.Function * * @since 12 */ public R transform(Function f) { return f.apply(this); } /** * This object (which is already a string!) is itself returned. * * @return the string itself. */ public String toString() { return this; } /** * Returns a stream of {@code int} zero-extending the {@code char} values * from this sequence. Any char which maps to a surrogate code * point is passed through uninterpreted. * * @return an IntStream of char values from this sequence * @since 9 */ @Override public IntStream chars() { return StreamSupport.intStream( // BEGIN Android-removed: Delegate to StringUTF16. /* isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE) : new StringUTF16.CharsSpliterator(value, Spliterator.IMMUTABLE), */ new StringUTF16.CharsSpliteratorForString(this, Spliterator.IMMUTABLE), // END Android-removed: Delegate to StringUTF16. false); } /** * Returns a stream of code point values from this sequence. Any surrogate * pairs encountered in the sequence are combined as if by {@linkplain * Character#toCodePoint Character.toCodePoint} and the result is passed * to the stream. Any other code units, including ordinary BMP characters, * unpaired surrogates, and undefined code units, are zero-extended to * {@code int} values which are then passed to the stream. * * @return an IntStream of Unicode code points from this sequence * @since 9 */ @Override public IntStream codePoints() { return StreamSupport.intStream( // BEGIN Android-removed: Delegate to StringUTF16. /* isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE) : new StringUTF16.CodePointsSpliterator(value, Spliterator.IMMUTABLE), */ new StringUTF16.CodePointsSpliteratorForString(this, Spliterator.IMMUTABLE), // END Android-removed: Delegate to StringUTF16. false); } /** * Converts this string to a new character array. * * @return a newly allocated character array whose length is the length * of this string and whose contents are initialized to contain * the character sequence represented by this string. */ // BEGIN Android-changed: Replace with implementation in runtime to access chars (see above). /* public char[] toCharArray() { return isLatin1() ? StringLatin1.toChars(value) : StringUTF16.toChars(value); } */ @FastNative public native char[] toCharArray(); // END Android-changed: Replace with implementation in runtime to access chars (see above). /** * Returns a formatted string using the specified format string and * arguments. * *

The locale always used is the one returned by {@link * java.util.Locale#getDefault(java.util.Locale.Category) * Locale.getDefault(Locale.Category)} with * {@link java.util.Locale.Category#FORMAT FORMAT} category specified. * * @param format * A format string * * @param args * Arguments referenced by the format specifiers in the format * string. If there are more arguments than format specifiers, the * extra arguments are ignored. The number of arguments is * variable and may be zero. The maximum number of arguments is * limited by the maximum dimension of a Java array as defined by * The Java™ Virtual Machine Specification. * The behaviour on a * {@code null} argument depends on the conversion. * * @throws java.util.IllegalFormatException * If a format string contains an illegal syntax, a format * specifier that is incompatible with the given arguments, * insufficient arguments given the format string, or other * illegal conditions. For specification of all possible * formatting errors, see the Details section of the * formatter class specification. * * @return A formatted string * * @see java.util.Formatter * @since 1.5 */ public static String format(String format, Object... args) { return new Formatter().format(format, args).toString(); } /** * Returns a formatted string using the specified locale, format string, * and arguments. * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. * * @param format * A format string * * @param args * Arguments referenced by the format specifiers in the format * string. If there are more arguments than format specifiers, the * extra arguments are ignored. The number of arguments is * variable and may be zero. The maximum number of arguments is * limited by the maximum dimension of a Java array as defined by * The Java™ Virtual Machine Specification. * The behaviour on a * {@code null} argument depends on the * conversion. * * @throws java.util.IllegalFormatException * If a format string contains an illegal syntax, a format * specifier that is incompatible with the given arguments, * insufficient arguments given the format string, or other * illegal conditions. For specification of all possible * formatting errors, see the Details section of the * formatter class specification * * @return A formatted string * * @see java.util.Formatter * @since 1.5 */ public static String format(Locale l, String format, Object... args) { return new Formatter(l).format(format, args).toString(); } /** * Formats using this string as the format string, and the supplied * arguments. * * @implSpec This method is equivalent to {@code String.format(this, args)}. * * @param args * Arguments referenced by the format specifiers in this string. * * @return A formatted string * * @see java.lang.String#format(String,Object...) * @see java.util.Formatter * * @since 15 * */ public String formatted(Object... args) { return new Formatter().format(this, args).toString(); } /** * Returns the string representation of the {@code Object} argument. * * @param obj an {@code Object}. * @return if the argument is {@code null}, then a string equal to * {@code "null"}; otherwise, the value of * {@code obj.toString()} is returned. * @see java.lang.Object#toString() */ public static String valueOf(Object obj) { return (obj == null) ? "null" : obj.toString(); } /** * Returns the string representation of the {@code char} array * argument. The contents of the character array are copied; subsequent * modification of the character array does not affect the returned * string. * * @param data the character array. * @return a {@code String} that contains the characters of the * character array. */ public static String valueOf(char data[]) { return new String(data); } /** * Returns the string representation of a specific subarray of the * {@code char} array argument. *

* The {@code offset} argument is the index of the first * character of the subarray. The {@code count} argument * specifies the length of the subarray. The contents of the subarray * are copied; subsequent modification of the character array does not * affect the returned string. * * @param data the character array. * @param offset initial offset of the subarray. * @param count length of the subarray. * @return a {@code String} that contains the characters of the * specified subarray of the character array. * @exception IndexOutOfBoundsException if {@code offset} is * negative, or {@code count} is negative, or * {@code offset+count} is larger than * {@code data.length}. */ public static String valueOf(char data[], int offset, int count) { return new String(data, offset, count); } /** * Equivalent to {@link #valueOf(char[], int, int)}. * * @param data the character array. * @param offset initial offset of the subarray. * @param count length of the subarray. * @return a {@code String} that contains the characters of the * specified subarray of the character array. * @exception IndexOutOfBoundsException if {@code offset} is * negative, or {@code count} is negative, or * {@code offset+count} is larger than * {@code data.length}. */ public static String copyValueOf(char data[], int offset, int count) { return new String(data, offset, count); } /** * Equivalent to {@link #valueOf(char[])}. * * @param data the character array. * @return a {@code String} that contains the characters of the * character array. */ public static String copyValueOf(char data[]) { return new String(data); } /** * Returns the string representation of the {@code boolean} argument. * * @param b a {@code boolean}. * @return if the argument is {@code true}, a string equal to * {@code "true"} is returned; otherwise, a string equal to * {@code "false"} is returned. */ public static String valueOf(boolean b) { return b ? "true" : "false"; } /** * Returns the string representation of the {@code char} * argument. * * @param c a {@code char}. * @return a string of length {@code 1} containing * as its single character the argument {@code c}. */ public static String valueOf(char c) { // BEGIN Android-changed: Replace constructor call with call to StringFactory class. // There is currently no String(char[], boolean) on Android to call. http://b/79902155 /* if (COMPACT_STRINGS && StringLatin1.canEncode(c)) { return new String(StringLatin1.toBytes(c), LATIN1); } return new String(StringUTF16.toBytes(c), UTF16); */ return StringFactory.newStringFromChars(0, 1, new char[] { c }); // END Android-changed: Replace constructor call with call to StringFactory class. } /** * Returns the string representation of the {@code int} argument. *

* The representation is exactly the one returned by the * {@code Integer.toString} method of one argument. * * @param i an {@code int}. * @return a string representation of the {@code int} argument. * @see java.lang.Integer#toString(int, int) */ public static String valueOf(int i) { return Integer.toString(i); } /** * Returns the string representation of the {@code long} argument. *

* The representation is exactly the one returned by the * {@code Long.toString} method of one argument. * * @param l a {@code long}. * @return a string representation of the {@code long} argument. * @see java.lang.Long#toString(long) */ public static String valueOf(long l) { return Long.toString(l); } /** * Returns the string representation of the {@code float} argument. *

* The representation is exactly the one returned by the * {@code Float.toString} method of one argument. * * @param f a {@code float}. * @return a string representation of the {@code float} argument. * @see java.lang.Float#toString(float) */ public static String valueOf(float f) { return Float.toString(f); } /** * Returns the string representation of the {@code double} argument. *

* The representation is exactly the one returned by the * {@code Double.toString} method of one argument. * * @param d a {@code double}. * @return a string representation of the {@code double} argument. * @see java.lang.Double#toString(double) */ public static String valueOf(double d) { return Double.toString(d); } /** * Returns a canonical representation for the string object. *

* A pool of strings, initially empty, is maintained privately by the * class {@code String}. *

* When the intern method is invoked, if the pool already contains a * string equal to this {@code String} object as determined by * the {@link #equals(Object)} method, then the string from the pool is * returned. Otherwise, this {@code String} object is added to the * pool and a reference to this {@code String} object is returned. *

* It follows that for any two strings {@code s} and {@code t}, * {@code s.intern() == t.intern()} is {@code true} * if and only if {@code s.equals(t)} is {@code true}. *

* All literal strings and string-valued constant expressions are * interned. String literals are defined in section 3.10.5 of the * The Java™ Language Specification. * * @return a string that has the same contents as this string, but is * guaranteed to be from a pool of unique strings. * @jls 3.10.5 String Literals */ // Android-added: Annotate native method as @FastNative. @FastNative public native String intern(); /** * Returns a string whose value is the concatenation of this * string repeated {@code count} times. *

* If this string is empty or count is zero then the empty * string is returned. * * @param count number of times to repeat * * @return A string composed of this string repeated * {@code count} times or the empty string if this * string is empty or count is zero * * @throws IllegalArgumentException if the {@code count} is * negative. * * @since 11 */ public String repeat(int count) { if (count < 0) { throw new IllegalArgumentException("count is negative: " + count); } if (count == 1) { return this; } // Android-changed: Replace with implementation in runtime. // final int len = value.length; final int len = length(); if (len == 0 || count == 0) { return ""; } // BEGIN Android-changed: Replace with implementation in runtime. /* if (len == 1) { final byte[] single = new byte[count]; Arrays.fill(single, value[0]); return new String(single, coder); } */ // END Android-changed: Replace with implementation in runtime. if (Integer.MAX_VALUE / count < len) { throw new OutOfMemoryError("Repeating " + len + " bytes String " + count + " times will produce a String exceeding maximum size."); } // BEGIN Android-changed: Replace with implementation in runtime. /* final int limit = len * count; final byte[] multiple = new byte[limit]; System.arraycopy(value, 0, multiple, 0, len); int copied = len; for (; copied < limit - copied; copied <<= 1) { System.arraycopy(multiple, 0, multiple, copied, copied); } System.arraycopy(multiple, 0, multiple, copied, limit - copied); return new String(multiple, coder); */ // END Android-changed: Replace with implementation in runtime. return doRepeat(count); } @FastNative private native String doRepeat(int count); //////////////////////////////////////////////////////////////// /** * Copy character bytes from this string into dst starting at dstBegin. * This method doesn't perform any range checking. * * Invoker guarantees: dst is in UTF16 (inflate itself for asb), if two * coders are different, and dst is big enough (range check) * * @param dstBegin the char index, not offset of byte[] * @param coder the coder of dst[] */ void getBytes(byte dst[], int dstBegin, byte coder) { // Android-changed: libcore doesn't store String as Latin1 or UTF16 byte[] field. /* if (coder() == coder) { System.arraycopy(value, 0, dst, dstBegin << coder, value.length); } else { // this.coder == LATIN && coder == UTF16 StringLatin1.inflate(value, 0, dst, dstBegin, value.length); } */ // We do bound check here before the native calls, because the upstream implementation does // the bound check in System.arraycopy and StringLatin1.inflate or throws an exception. if (coder == UTF16) { int fromIndex = dstBegin << 1; checkBoundsOffCount(fromIndex, length() << 1, dst.length); fillBytesUTF16(dst, fromIndex); } else { if (coder() != LATIN1) { // Do not concat String in the error message. throw new StringIndexOutOfBoundsException("Expect Latin-1 coder."); } checkBoundsOffCount(dstBegin, length(), dst.length); fillBytesLatin1(dst, dstBegin); } } // BEGIN Android-added: Implement fillBytes*() method natively. /** * Fill the underlying characters into the byte buffer. No range check. * The caller should guarantee that dst is big enough for this operation. */ @FastNative private native void fillBytesLatin1(byte[] dst, int byteIndex); /** * Fill the underlying characters into the byte buffer. No range check. * The caller should guarantee that dst is big enough for this operation. */ @FastNative private native void fillBytesUTF16(byte[] dst, int byteIndex); // END Android-added: Implement fillBytes*() method natively. /* * Package private constructor which shares value array for speed. */ String(byte[] value, byte coder) { // BEGIN Android-changed: Implemented as compiler and runtime intrinsics. // this.value = value; // this.coder = coder; throw new UnsupportedOperationException("Use StringFactory instead."); // END Android-changed: Implemented as compiler and runtime intrinsics. } /** * Android note: It returns UTF16 if the string has any 0x00 char. * See the difference between {@link StringLatin1#canEncode(int)} and * art::mirror::String::IsASCII(uint16_t) in string.h. */ byte coder() { // Android-changed: ART stores the flag in the count field. // return COMPACT_STRINGS ? coder : UTF16; // We assume that STRING_COMPRESSION_ENABLED is enabled here. // The flag has been true for 6+ years. return COMPACT_STRINGS ? ((byte) (count & 1)) : UTF16; } /* * StringIndexOutOfBoundsException if {@code index} is * negative or greater than or equal to {@code length}. */ static void checkIndex(int index, int length) { if (index < 0 || index >= length) { throw new StringIndexOutOfBoundsException("index " + index + ",length " + length); } } /* * StringIndexOutOfBoundsException if {@code offset} * is negative or greater than {@code length}. */ static void checkOffset(int offset, int length) { if (offset < 0 || offset > length) { throw new StringIndexOutOfBoundsException("offset " + offset + ",length " + length); } } /* * Check {@code offset}, {@code count} against {@code 0} and {@code length} * bounds. * * @throws StringIndexOutOfBoundsException * If {@code offset} is negative, {@code count} is negative, * or {@code offset} is greater than {@code length - count} */ static void checkBoundsOffCount(int offset, int count, int length) { if (offset < 0 || count < 0 || offset > length - count) { throw new StringIndexOutOfBoundsException( "offset " + offset + ", count " + count + ", length " + length); } } /** * Returns the string representation of the {@code codePoint} * argument. * * @param codePoint a {@code codePoint}. * @return a string of length {@code 1} or {@code 2} containing * as its single character the argument {@code codePoint}. * @throws IllegalArgumentException if the specified * {@code codePoint} is not a {@linkplain Character#isValidCodePoint * valid Unicode code point}. */ static String valueOfCodePoint(int codePoint) { if (COMPACT_STRINGS && StringLatin1.canEncode(codePoint)) { return new String(StringLatin1.toBytes((char)codePoint), LATIN1); } else if (Character.isBmpCodePoint(codePoint)) { return new String(StringUTF16.toBytes((char)codePoint), UTF16); } else if (Character.isSupplementaryCodePoint(codePoint)) { return new String(StringUTF16.toBytesSupplementary(codePoint), UTF16); } throw new IllegalArgumentException( format("Not a valid Unicode code point: 0x%X", codePoint)); } /* * Check {@code begin}, {@code end} against {@code 0} and {@code length} * bounds. * * @throws StringIndexOutOfBoundsException * If {@code begin} is negative, {@code begin} is greater than * {@code end}, or {@code end} is greater than {@code length}. */ static void checkBoundsBeginEnd(int begin, int end, int length) { if (begin < 0 || begin > end || end > length) { throw new StringIndexOutOfBoundsException( "begin " + begin + ", end " + end + ", length " + length); } } /** * Returns an {@link Optional} containing the nominal descriptor for this * instance, which is the instance itself. * * @return an {@link Optional} describing the {@linkplain String} instance * @since 12 * @hide */ @Override public Optional describeConstable() { return Optional.of(this); } /** * Resolves this instance as a {@link ConstantDesc}, the result of which is * the instance itself. * * @param lookup ignored * @return the {@linkplain String} instance * @since 12 * @hide */ @Override public String resolveConstantDesc(MethodHandles.Lookup lookup) { return this; } }