/* * Copyright (C) 2014 The Android Open Source Project * Copyright (c) 1994, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.lang; import dalvik.annotation.optimization.FastNative; import dalvik.annotation.optimization.NeverInline; import java.io.ObjectStreamField; import java.io.UnsupportedEncodingException; import java.lang.annotation.Native; import java.lang.invoke.MethodHandles; import java.lang.constant.Constable; import java.lang.constant.ConstantDesc; import java.nio.charset.Charset; import java.nio.ByteBuffer; import java.util.Comparator; import java.util.Formatter; import java.util.List; import java.util.Locale; import java.util.Objects; import java.util.Optional; import java.util.Spliterator; import java.util.StringJoiner; import java.util.function.Function; import java.util.regex.Pattern; import java.util.regex.PatternSyntaxException; import java.util.stream.Collectors; import java.util.stream.IntStream; import java.util.stream.Stream; import java.util.stream.StreamSupport; import jdk.internal.vm.annotation.IntrinsicCandidate; import libcore.util.CharsetUtils; /** * The {@code String} class represents character strings. All * string literals in Java programs, such as {@code "abc"}, are * implemented as instances of this class. *
* Strings are constant; their values cannot be changed after they * are created. String buffers support mutable strings. * Because String objects are immutable they can be shared. For example: *
* String str = "abc"; *
* is equivalent to: *
* char data[] = {'a', 'b', 'c'}; * String str = new String(data); *
* Here are some more examples of how strings can be used: *
** System.out.println("abc"); * String cde = "cde"; * System.out.println("abc" + cde); * String c = "abc".substring(2,3); * String d = cde.substring(1, 2); *
* The class {@code String} includes methods for examining * individual characters of the sequence, for comparing strings, for * searching strings, for extracting substrings, and for creating a * copy of a string with all characters translated to uppercase or to * lowercase. Case mapping is based on the Unicode Standard version * specified by the {@link java.lang.Character Character} class. *
* The Java language provides special support for the string * concatenation operator ( + ), and for conversion of * other objects to strings. For additional information on string * concatenation and conversion, see The Java™ Language Specification. * *
Unless otherwise noted, passing a {@code null} argument to a constructor * or method in this class will cause a {@link NullPointerException} to be * thrown. * *
A {@code String} represents a string in the UTF-16 format * in which supplementary characters are represented by surrogate * pairs (see the section Unicode * Character Representations in the {@code Character} class for * more information). * Index values refer to {@code char} code units, so a supplementary * character uses two positions in a {@code String}. *
The {@code String} class provides methods for dealing with * Unicode code points (i.e., characters), in addition to those for * dealing with Unicode code units (i.e., {@code char} values). * *
Unless otherwise noted, methods for comparing Strings do not take locale
* into account. The {@link java.text.Collator} class provides methods for
* finer-grain, locale-sensitive String comparison.
*
* @implNote The implementation of the string concatenation operator is left to
* the discretion of a Java compiler, as long as the compiler ultimately conforms
* to The Java™ Language Specification. For example, the {@code javac} compiler
* may implement the operator with {@code StringBuffer}, {@code StringBuilder},
* or {@code java.lang.invoke.StringConcatFactory} depending on the JDK version. The
* implementation of string conversion is typically through the method {@code toString},
* defined by {@code Object} and inherited by all classes in Java.
*
* @author Lee Boynton
* @author Arthur van Hoff
* @author Martin Buchholz
* @author Ulf Zibis
* @see java.lang.Object#toString()
* @see java.lang.StringBuffer
* @see java.lang.StringBuilder
* @see java.nio.charset.Charset
* @since 1.0
* @jls 15.18.1 String Concatenation Operator +
*/
public final class String
implements java.io.Serializable, Comparable The {@code offset} argument is the index of the first byte of the
* subarray, and the {@code count} argument specifies the length of the
* subarray.
*
* Each {@code byte} in the subarray is converted to a {@code char} as
* specified in the {@link #String(byte[],int) String(byte[],int)} constructor.
*
* @deprecated This method does not properly convert bytes into characters.
* As of JDK 1.1, the preferred way to do this is via the
* {@code String} constructors that take a {@link
* java.nio.charset.Charset}, charset name, or that use the platform's
* default charset.
*
* @param ascii
* The bytes to be converted to characters
*
* @param hibyte
* The top 8 bits of each 16-bit Unicode code unit
*
* @param offset
* The initial offset
* @param count
* The length
*
* @throws IndexOutOfBoundsException
* If {@code offset} is negative, {@code count} is negative, or
* {@code offset} is greater than {@code ascii.length - count}
*
* @see #String(byte[], int)
* @see #String(byte[], int, int, java.lang.String)
* @see #String(byte[], int, int, java.nio.charset.Charset)
* @see #String(byte[], int, int)
* @see #String(byte[], java.lang.String)
* @see #String(byte[], java.nio.charset.Charset)
* @see #String(byte[])
*/
@Deprecated(since="1.1")
public String(byte ascii[], int hibyte, int offset, int count) {
// BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
/*
checkBoundsOffCount(offset, count, ascii.length);
if (count == 0) {
this.value = "".value;
this.coder = "".coder;
return;
}
if (COMPACT_STRINGS && (byte)hibyte == 0) {
this.value = Arrays.copyOfRange(ascii, offset, offset + count);
this.coder = LATIN1;
} else {
hibyte <<= 8;
byte[] val = StringUTF16.newBytesFor(count);
for (int i = 0; i < count; i++) {
StringUTF16.putChar(val, i, hibyte | (ascii[offset++] & 0xff));
}
this.value = val;
this.coder = UTF16;
}
*/
throw new UnsupportedOperationException("Use StringFactory instead.");
// END Android-changed: Implemented as compiler and runtime intrinsics.
}
/**
* Allocates a new {@code String} containing characters constructed from
* an array of 8-bit integer values. Each character c in the
* resulting string is constructed from the corresponding component
* b in the byte array such that:
*
* The behavior of this constructor when the given bytes are not valid
* in the given charset is unspecified. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param offset
* The index of the first byte to decode
*
* @param length
* The number of bytes to decode
* @param charsetName
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*
* @throws IndexOutOfBoundsException
* If {@code offset} is negative, {@code length} is negative, or
* {@code offset} is greater than {@code bytes.length - length}
*
* @since 1.1
*/
public String(byte bytes[], int offset, int length, String charsetName)
throws UnsupportedEncodingException {
// BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
/*
if (charsetName == null)
throw new NullPointerException("charsetName");
checkBoundsOffCount(offset, length, bytes.length);
StringCoding.Result ret =
StringCoding.decode(charsetName, bytes, offset, length);
this.value = ret.value;
this.coder = ret.coder;
*/
throw new UnsupportedOperationException("Use StringFactory instead.");
// END Android-changed: Implemented as compiler and runtime intrinsics.
}
/**
* Constructs a new {@code String} by decoding the specified subarray of
* bytes using the specified {@linkplain java.nio.charset.Charset charset}.
* The length of the new {@code String} is a function of the charset, and
* hence may not be equal to the length of the subarray.
*
* This method always replaces malformed-input and unmappable-character
* sequences with this charset's default replacement string. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param offset
* The index of the first byte to decode
*
* @param length
* The number of bytes to decode
*
* @param charset
* The {@linkplain java.nio.charset.Charset charset} to be used to
* decode the {@code bytes}
*
* @throws IndexOutOfBoundsException
* If {@code offset} is negative, {@code length} is negative, or
* {@code offset} is greater than {@code bytes.length - length}
*
* @since 1.6
*/
public String(byte bytes[], int offset, int length, Charset charset) {
// BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
/*
if (charset == null)
throw new NullPointerException("charset");
checkBoundsOffCount(offset, length, bytes.length);
StringCoding.Result ret =
StringCoding.decode(charset, bytes, offset, length);
this.value = ret.value;
this.coder = ret.coder;
*/
throw new UnsupportedOperationException("Use StringFactory instead.");
// END Android-changed: Implemented as compiler and runtime intrinsics.
}
/**
* Constructs a new {@code String} by decoding the specified array of bytes
* using the specified {@linkplain java.nio.charset.Charset charset}. The
* length of the new {@code String} is a function of the charset, and hence
* may not be equal to the length of the byte array.
*
* The behavior of this constructor when the given bytes are not valid
* in the given charset is unspecified. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param charsetName
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*
* @since 1.1
*/
public String(byte bytes[], String charsetName)
throws UnsupportedEncodingException {
// BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
/*
this(bytes, 0, bytes.length, charsetName);
*/
throw new UnsupportedOperationException("Use StringFactory instead.");
// END Android-changed: Implemented as compiler and runtime intrinsics.
}
/**
* Constructs a new {@code String} by decoding the specified array of
* bytes using the specified {@linkplain java.nio.charset.Charset charset}.
* The length of the new {@code String} is a function of the charset, and
* hence may not be equal to the length of the byte array.
*
* This method always replaces malformed-input and unmappable-character
* sequences with this charset's default replacement string. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param charset
* The {@linkplain java.nio.charset.Charset charset} to be used to
* decode the {@code bytes}
*
* @since 1.6
*/
public String(byte bytes[], Charset charset) {
// BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
/*
this(bytes, 0, bytes.length, charset);
*/
throw new UnsupportedOperationException("Use StringFactory instead.");
// END Android-changed: Implemented as compiler and runtime intrinsics.
}
/**
* Constructs a new {@code String} by decoding the specified subarray of
* bytes using the platform's default charset. The length of the new
* {@code String} is a function of the charset, and hence may not be equal
* to the length of the subarray.
*
* The behavior of this constructor when the given bytes are not valid
* in the default charset is unspecified. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param offset
* The index of the first byte to decode
*
* @param length
* The number of bytes to decode
*
* @throws IndexOutOfBoundsException
* If {@code offset} is negative, {@code length} is negative, or
* {@code offset} is greater than {@code bytes.length - length}
*
* @since 1.1
*/
public String(byte bytes[], int offset, int length) {
// BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
/*
checkBoundsOffCount(offset, length, bytes.length);
StringCoding.Result ret = StringCoding.decode(bytes, offset, length);
this.value = ret.value;
this.coder = ret.coder;
*/
throw new UnsupportedOperationException("Use StringFactory instead.");
// END Android-changed: Implemented as compiler and runtime intrinsics.
}
/**
* Constructs a new {@code String} by decoding the specified array of bytes
* using the platform's default charset. The length of the new {@code
* String} is a function of the charset, and hence may not be equal to the
* length of the byte array.
*
* The behavior of this constructor when the given bytes are not valid
* in the default charset is unspecified. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @since 1.1
*/
public String(byte[] bytes) {
// BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
/*
this(bytes, 0, bytes.length);
*/
throw new UnsupportedOperationException("Use StringFactory instead.");
// END Android-changed: Implemented as compiler and runtime intrinsics.
}
/**
* Allocates a new string that contains the sequence of characters
* currently contained in the string buffer argument. The contents of the
* string buffer are copied; subsequent modification of the string buffer
* does not affect the newly created string.
*
* @param buffer
* A {@code StringBuffer}
*/
public String(StringBuffer buffer) {
// BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
/*
this(buffer.toString());
*/
throw new UnsupportedOperationException("Use StringFactory instead.");
// END Android-changed: Implemented as compiler and runtime intrinsics.
}
/**
* Allocates a new string that contains the sequence of characters
* currently contained in the string builder argument. The contents of the
* string builder are copied; subsequent modification of the string builder
* does not affect the newly created string.
*
* This constructor is provided to ease migration to {@code
* StringBuilder}. Obtaining a string from a string builder via the {@code
* toString} method is likely to run faster and is generally preferred.
*
* @param builder
* A {@code StringBuilder}
*
* @since 1.5
*/
public String(StringBuilder builder) {
// BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
/*
this(builder, null);
*/
throw new UnsupportedOperationException("Use StringFactory instead.");
// END Android-changed: Implemented as compiler and runtime intrinsics.
}
// BEGIN Android-removed: Unused package-private constructor String(char[] value, boolean share).
/*
/*
* Package private constructor which shares value array for speed.
* this constructor is always expected to be called with share==true.
* a separate constructor is needed because we already have a public
* String(char[]) constructor that makes a copy of the given char[].
*
String(char[] value, boolean share) {
// assert share : "unshared not supported";
this.value = value;
}
*/
// END Android-removed: Unused package-private constructor String(char[] value, boolean share).
// BEGIN Android-added: Constructor for internal use.
// Not implemented in java as all calls are intercepted by the runtime.
/**
* Package private constructor
*
* @deprecated Use {@link #String(char[],int,int)} instead.
*/
@Deprecated
String(int offset, int count, char[] value) {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
// END Android-added: Constructor for internal use.
/**
* Returns the length of this string.
* The length is equal to the number of Unicode
* code units in the string.
*
* @return the length of the sequence of characters represented by this
* object.
*/
public int length() {
// BEGIN Android-changed: Get length from count field rather than value array (see above).
/*
return value.length >> coder();
*/
final boolean STRING_COMPRESSION_ENABLED = true;
if (STRING_COMPRESSION_ENABLED) {
// For the compression purposes (save the characters as 8-bit if all characters
// are ASCII), the least significant bit of "count" is used as the compression flag.
return (count >>> 1);
} else {
return count;
}
// END Android-changed: Get length from count field rather than value array (see above).
}
/**
* Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
*
* @return {@code true} if {@link #length()} is {@code 0}, otherwise
* {@code false}
*
* @since 1.6
*/
@Override
public boolean isEmpty() {
// BEGIN Android-changed: Get length from count field rather than value array (see above).
// Empty string has {@code count == 0} with or without string compression enabled.
/*
return value.length == 0;
*/
return count == 0;
// END Android-changed: Get length from count field rather than value array (see above).
}
/**
* Returns the {@code char} value at the
* specified index. An index ranges from {@code 0} to
* {@code length() - 1}. The first {@code char} value of the sequence
* is at index {@code 0}, the next at index {@code 1},
* and so on, as for array indexing.
*
* If the {@code char} value specified by the index is a
* surrogate, the surrogate
* value is returned.
*
* @param index the index of the {@code char} value.
* @return the {@code char} value at the specified index of this string.
* The first {@code char} value is at index {@code 0}.
* @exception IndexOutOfBoundsException if the {@code index}
* argument is negative or not less than the length of this
* string.
*/
// BEGIN Android-changed: Replace with implementation in runtime to access chars (see above).
/*
public char charAt(int index) {
if (isLatin1()) {
return StringLatin1.charAt(value, index);
} else {
return StringUTF16.charAt(value, index);
}
}
*/
@FastNative
public native char charAt(int index);
// END Android-changed: Replace with implementation in runtime to access chars (see above).
/**
* Returns the character (Unicode code point) at the specified
* index. The index refers to {@code char} values
* (Unicode code units) and ranges from {@code 0} to
* {@link #length()}{@code - 1}.
*
* If the {@code char} value specified at the given index
* is in the high-surrogate range, the following index is less
* than the length of this {@code String}, and the
* {@code char} value at the following index is in the
* low-surrogate range, then the supplementary code point
* corresponding to this surrogate pair is returned. Otherwise,
* the {@code char} value at the given index is returned.
*
* @param index the index to the {@code char} values
* @return the code point value of the character at the
* {@code index}
* @exception IndexOutOfBoundsException if the {@code index}
* argument is negative or not less than the length of this
* string.
* @since 1.5
*/
public int codePointAt(int index) {
// BEGIN Android-changed: delegate codePointAt() to Character class.
/*
if (isLatin1()) {
checkIndex(index, value.length);
return value[index] & 0xff;
}
int length = value.length >> 1;
checkIndex(index, length);
return StringUTF16.codePointAt(value, index, length);
*/
checkIndex(index, length());
return Character.codePointAt(this, index);
}
/**
* Returns the character (Unicode code point) before the specified
* index. The index refers to {@code char} values
* (Unicode code units) and ranges from {@code 1} to {@link
* CharSequence#length() length}.
*
* If the {@code char} value at {@code (index - 1)}
* is in the low-surrogate range, {@code (index - 2)} is not
* negative, and the {@code char} value at {@code (index -
* 2)} is in the high-surrogate range, then the
* supplementary code point value of the surrogate pair is
* returned. If the {@code char} value at {@code index -
* 1} is an unpaired low-surrogate or a high-surrogate, the
* surrogate value is returned.
*
* @param index the index following the code point that should be returned
* @return the Unicode code point value before the given index.
* @exception IndexOutOfBoundsException if the {@code index}
* argument is less than 1 or greater than the length
* of this string.
* @since 1.5
*/
public int codePointBefore(int index) {
int i = index - 1;
if (i < 0 || i >= length()) {
throw new StringIndexOutOfBoundsException(index);
}
// BEGIN Android-changed: delegate codePointBefore to Character class.
/*
if (isLatin1()) {
return (value[i] & 0xff);
}
return StringUTF16.codePointBefore(value, index);
*/
return Character.codePointBefore(this, index);
}
/**
* Returns the number of Unicode code points in the specified text
* range of this {@code String}. The text range begins at the
* specified {@code beginIndex} and extends to the
* {@code char} at index {@code endIndex - 1}. Thus the
* length (in {@code char}s) of the text range is
* {@code endIndex-beginIndex}. Unpaired surrogates within
* the text range count as one code point each.
*
* @param beginIndex the index to the first {@code char} of
* the text range.
* @param endIndex the index after the last {@code char} of
* the text range.
* @return the number of Unicode code points in the specified text
* range
* @exception IndexOutOfBoundsException if the
* {@code beginIndex} is negative, or {@code endIndex}
* is larger than the length of this {@code String}, or
* {@code beginIndex} is larger than {@code endIndex}.
* @since 1.5
*/
public int codePointCount(int beginIndex, int endIndex) {
if (beginIndex < 0 || beginIndex > endIndex ||
endIndex > length()) {
throw new IndexOutOfBoundsException();
}
// BEGIN Android-changed: delegate codePointCount to Character class.
/*
if (isLatin1()) {
return endIndex - beginIndex;
}
return StringUTF16.codePointCount(value, beginIndex, endIndex);
*/
return Character.codePointCount(this, beginIndex, endIndex);
// END Android-changed: delegate codePointCount to Character class.
}
/**
* Returns the index within this {@code String} that is
* offset from the given {@code index} by
* {@code codePointOffset} code points. Unpaired surrogates
* within the text range given by {@code index} and
* {@code codePointOffset} count as one code point each.
*
* @param index the index to be offset
* @param codePointOffset the offset in code points
* @return the index within this {@code String}
* @exception IndexOutOfBoundsException if {@code index}
* is negative or larger then the length of this
* {@code String}, or if {@code codePointOffset} is positive
* and the substring starting with {@code index} has fewer
* than {@code codePointOffset} code points,
* or if {@code codePointOffset} is negative and the substring
* before {@code index} has fewer than the absolute value
* of {@code codePointOffset} code points.
* @since 1.5
*/
public int offsetByCodePoints(int index, int codePointOffset) {
if (index < 0 || index > length()) {
throw new IndexOutOfBoundsException();
}
return Character.offsetByCodePoints(this, index, codePointOffset);
}
/**
* Copy characters from this string into dst starting at dstBegin.
* This method doesn't perform any range checking.
*/
void getChars(char dst[], int dstBegin) {
// Android-changed: Replace arraycopy with native call since chars are managed by runtime.
// System.arraycopy(value, 0, dst, dstBegin, value.length);
getCharsNoCheck(0, length(), dst, dstBegin);
}
/**
* Copies characters from this string into the destination character
* array.
*
* The first character to be copied is at index {@code srcBegin};
* the last character to be copied is at index {@code srcEnd-1}
* (thus the total number of characters to be copied is
* {@code srcEnd-srcBegin}). The characters are copied into the
* subarray of {@code dst} starting at index {@code dstBegin}
* and ending at index:
* The first character to be copied is at index {@code srcBegin}; the
* last character to be copied is at index {@code srcEnd-1}. The total
* number of characters to be copied is {@code srcEnd-srcBegin}. The
* characters, converted to bytes, are copied into the subarray of {@code
* dst} starting at index {@code dstBegin} and ending at index:
*
* The behavior of this method when this string cannot be encoded in
* the given charset is unspecified. The {@link
* java.nio.charset.CharsetEncoder} class should be used when more control
* over the encoding process is required.
*
* @param charsetName
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @return The resultant byte array
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*
* @since 1.1
*/
public byte[] getBytes(String charsetName)
throws UnsupportedEncodingException {
if (charsetName == null) throw new NullPointerException();
// BEGIN Android-changed: Skip StringCoding optimization that needs access to java chars.
/*
return StringCoding.encode(charsetName, coder(), value);
*/
return getBytes(Charset.forNameUEE(charsetName));
// END Android-changed: Skip StringCoding optimization that needs access to java chars.
}
/**
* Encodes this {@code String} into a sequence of bytes using the given
* {@linkplain java.nio.charset.Charset charset}, storing the result into a
* new byte array.
*
* This method always replaces malformed-input and unmappable-character
* sequences with this charset's default replacement byte array. The
* {@link java.nio.charset.CharsetEncoder} class should be used when more
* control over the encoding process is required.
*
* @param charset
* The {@linkplain java.nio.charset.Charset} to be used to encode
* the {@code String}
*
* @return The resultant byte array
*
* @since 1.6
*/
public byte[] getBytes(Charset charset) {
if (charset == null) throw new NullPointerException();
// BEGIN Android-changed: Skip StringCoding optimization that needs access to java chars.
/*
return StringCoding.encode(charset, coder(), value);
*/
final int len = length();
final String name = charset.name();
if ("UTF-8".equals(name)) {
return CharsetUtils.toUtf8Bytes(this, 0, len);
} else if ("ISO-8859-1".equals(name)) {
return CharsetUtils.toIsoLatin1Bytes(this, 0, len);
} else if ("US-ASCII".equals(name)) {
return CharsetUtils.toAsciiBytes(this, 0, len);
} else if ("UTF-16BE".equals(name)) {
return CharsetUtils.toBigEndianUtf16Bytes(this, 0, len);
}
ByteBuffer buffer = charset.encode(this);
byte[] bytes = new byte[buffer.limit()];
buffer.get(bytes);
return bytes;
// END Android-changed: Skip StringCoding optimization that needs access to java chars.
}
/**
* Encodes this {@code String} into a sequence of bytes using the
* platform's default charset, storing the result into a new byte array.
*
* The behavior of this method when this string cannot be encoded in
* the default charset is unspecified. The {@link
* java.nio.charset.CharsetEncoder} class should be used when more control
* over the encoding process is required.
*
* @return The resultant byte array
*
* @since 1.1
*/
public byte[] getBytes() {
// BEGIN Android-changed: Skip StringCoding optimization that needs access to java chars.
/*
return StringCoding.encode(coder(), value);
*/
return getBytes(Charset.defaultCharset());
// END Android-changed: Skip StringCoding optimization that needs access to java chars.
}
/**
* Compares this string to the specified object. The result is {@code
* true} if and only if the argument is not {@code null} and is a {@code
* String} object that represents the same sequence of characters as this
* object.
*
* For finer-grained String comparison, refer to
* {@link java.text.Collator}.
*
* @param anObject
* The object to compare this {@code String} against
*
* @return {@code true} if the given object represents a {@code String}
* equivalent to this string, {@code false} otherwise
*
* @see #compareTo(String)
* @see #equalsIgnoreCase(String)
*/
public boolean equals(Object anObject) {
if (this == anObject) {
return true;
}
if (anObject instanceof String) {
// BEGIN Android-changed: Implement in terms of charAt().
/*
String aString = (String)anObject;
if (coder() == aString.coder()) {
return isLatin1() ? StringLatin1.equals(value, aString.value)
: StringUTF16.equals(value, aString.value);
}
*/
String anotherString = (String)anObject;
int n = length();
if (n == anotherString.length()) {
int i = 0;
while (n-- != 0) {
if (charAt(i) != anotherString.charAt(i))
return false;
i++;
}
return true;
}
// END Android-changed: Implement in terms of charAt().
}
return false;
}
/**
* Compares this string to the specified {@code StringBuffer}. The result
* is {@code true} if and only if this {@code String} represents the same
* sequence of characters as the specified {@code StringBuffer}. This method
* synchronizes on the {@code StringBuffer}.
*
* For finer-grained String comparison, refer to
* {@link java.text.Collator}.
*
* @param sb
* The {@code StringBuffer} to compare this {@code String} against
*
* @return {@code true} if this {@code String} represents the same
* sequence of characters as the specified {@code StringBuffer},
* {@code false} otherwise
*
* @since 1.4
*/
public boolean contentEquals(StringBuffer sb) {
return contentEquals((CharSequence)sb);
}
private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
int len = length();
if (len != sb.length()) {
return false;
}
// BEGIN Android-changed: Implement in terms of charAt().
/*
byte v1[] = value;
byte v2[] = sb.getValue();
if (coder() == sb.getCoder()) {
int n = v1.length;
for (int i = 0; i < n; i++) {
if (v1[i] != v2[i]) {
return false;
}
}
} else {
if (!isLatin1()) { // utf16 str and latin1 abs can never be "equal"
return false;
}
return StringUTF16.contentEquals(v1, v2, len);
}
*/
for (int i = 0; i < len; i++) {
if (charAt(i) != sb.charAt(i)) {
return false;
}
}
// END Android-changed: Implement in terms of charAt().
return true;
}
/**
* Compares this string to the specified {@code CharSequence}. The
* result is {@code true} if and only if this {@code String} represents the
* same sequence of char values as the specified sequence. Note that if the
* {@code CharSequence} is a {@code StringBuffer} then the method
* synchronizes on it.
*
* For finer-grained String comparison, refer to
* {@link java.text.Collator}.
*
* @param cs
* The sequence to compare this {@code String} against
*
* @return {@code true} if this {@code String} represents the same
* sequence of char values as the specified sequence, {@code
* false} otherwise
*
* @since 1.5
*/
public boolean contentEquals(CharSequence cs) {
// Argument is a StringBuffer, StringBuilder
if (cs instanceof AbstractStringBuilder) {
if (cs instanceof StringBuffer) {
synchronized(cs) {
return nonSyncContentEquals((AbstractStringBuilder)cs);
}
} else {
return nonSyncContentEquals((AbstractStringBuilder)cs);
}
}
// Argument is a String
if (cs instanceof String) {
return equals(cs);
}
// Argument is a generic CharSequence
int n = cs.length();
if (n != length()) {
return false;
}
// BEGIN Android-changed: Implement in terms of charAt().
/*
byte[] val = this.value;
if (isLatin1()) {
for (int i = 0; i < n; i++) {
if ((val[i] & 0xff) != cs.charAt(i)) {
return false;
}
}
} else {
if (!StringUTF16.contentEquals(val, cs, n)) {
*/
for (int i = 0; i < n; i++) {
if (charAt(i) != cs.charAt(i)) {
// END Android-changed: Implement in terms of charAt().
return false;
}
}
return true;
}
/**
* Compares this {@code String} to another {@code String}, ignoring case
* considerations. Two strings are considered equal ignoring case if they
* are of the same length and corresponding characters in the two strings
* are equal ignoring case.
*
* Two characters {@code c1} and {@code c2} are considered the same
* ignoring case if at least one of the following is true:
* Note that this method does not take locale into account, and
* will result in unsatisfactory results for certain locales. The
* {@link java.text.Collator} class provides locale-sensitive comparison.
*
* @param anotherString
* The {@code String} to compare this {@code String} against
*
* @return {@code true} if the argument is not {@code null} and it
* represents an equivalent {@code String} ignoring case; {@code
* false} otherwise
*
* @see #equals(Object)
*/
public boolean equalsIgnoreCase(String anotherString) {
// Android-added: Cache length() result so it's called once.
final int len = length();
return (this == anotherString) ? true
: (anotherString != null)
&& (anotherString.length() == len)
&& regionMatches(true, 0, anotherString, 0, len);
}
/**
* Compares two strings lexicographically.
* The comparison is based on the Unicode value of each character in
* the strings. The character sequence represented by this
* {@code String} object is compared lexicographically to the
* character sequence represented by the argument string. The result is
* a negative integer if this {@code String} object
* lexicographically precedes the argument string. The result is a
* positive integer if this {@code String} object lexicographically
* follows the argument string. The result is zero if the strings
* are equal; {@code compareTo} returns {@code 0} exactly when
* the {@link #equals(Object)} method would return {@code true}.
*
* This is the definition of lexicographic ordering. If two strings are
* different, then either they have different characters at some index
* that is a valid index for both strings, or their lengths are different,
* or both. If they have different characters at one or more index
* positions, let k be the smallest such index; then the string
* whose character at position k has the smaller value, as
* determined by using the {@code <} operator, lexicographically precedes the
* other string. In this case, {@code compareTo} returns the
* difference of the two character values at position {@code k} in
* the two string -- that is, the value:
* For finer-grained String comparison, refer to
* {@link java.text.Collator}.
*
* @param anotherString the {@code String} to be compared.
* @return the value {@code 0} if the argument string is equal to
* this string; a value less than {@code 0} if this string
* is lexicographically less than the string argument; and a
* value greater than {@code 0} if this string is
* lexicographically greater than the string argument.
*/
// BEGIN Android-changed: Replace with implementation in runtime to access chars (see above).
/*
public int compareTo(String anotherString) {
byte v1[] = value;
byte v2[] = anotherString.value;
if (coder() == anotherString.coder()) {
return isLatin1() ? StringLatin1.compareTo(v1, v2)
: StringUTF16.compareTo(v1, v2);
}
return isLatin1() ? StringLatin1.compareToUTF16(v1, v2)
: StringUTF16.compareToLatin1(v1, v2);
}
*/
@FastNative
public native int compareTo(String anotherString);
// END Android-changed: Replace with implementation in runtime to access chars (see above).
/**
* A Comparator that orders {@code String} objects as by
* {@code compareToIgnoreCase}. This comparator is serializable.
*
* Note that this Comparator does not take locale into account,
* and will result in an unsatisfactory ordering for certain locales.
* The {@link java.text.Collator} class provides locale-sensitive comparison.
*
* @see java.text.Collator
* @since 1.2
*/
public static final Comparator
* Note that this method does not take locale into account,
* and will result in an unsatisfactory ordering for certain locales.
* The {@link java.text.Collator} class provides locale-sensitive comparison.
*
* @param str the {@code String} to be compared.
* @return a negative integer, zero, or a positive integer as the
* specified String is greater than, equal to, or less
* than this String, ignoring case considerations.
* @see java.text.Collator
* @since 1.2
*/
public int compareToIgnoreCase(String str) {
return CASE_INSENSITIVE_ORDER.compare(this, str);
}
/**
* Tests if two string regions are equal.
*
* A substring of this {@code String} object is compared to a substring
* of the argument other. The result is true if these substrings
* represent identical character sequences. The substring of this
* {@code String} object to be compared begins at index {@code toffset}
* and has length {@code len}. The substring of other to be compared
* begins at index {@code ooffset} and has length {@code len}. The
* result is {@code false} if and only if at least one of the following
* is true:
* Note that this method does not take locale into account. The
* {@link java.text.Collator} class provides locale-sensitive comparison.
*
* @param toffset the starting offset of the subregion in this string.
* @param other the string argument.
* @param ooffset the starting offset of the subregion in the string
* argument.
* @param len the number of characters to compare.
* @return {@code true} if the specified subregion of this string
* exactly matches the specified subregion of the string argument;
* {@code false} otherwise.
*/
public boolean regionMatches(int toffset, String other, int ooffset, int len) {
// BEGIN Android-removed: Implement in terms of charAt().
/*
byte tv[] = value;
byte ov[] = other.value;
*/
// Note: toffset, ooffset, or len might be near -1>>>1.
if ((ooffset < 0) || (toffset < 0) ||
(toffset > (long)length() - len) ||
(ooffset > (long)other.length() - len)) {
return false;
}
// BEGIN Android-removed: Implement in terms of charAt().
/*
if (coder() == other.coder()) {
if (!isLatin1() && (len > 0)) {
toffset = toffset << 1;
ooffset = ooffset << 1;
len = len << 1;
}
while (len-- > 0) {
if (tv[toffset++] != ov[ooffset++]) {
return false;
}
}
} else {
if (coder() == LATIN1) {
while (len-- > 0) {
if (StringLatin1.getChar(tv, toffset++) !=
StringUTF16.getChar(ov, ooffset++)) {
return false;
}
}
} else {
while (len-- > 0) {
if (StringUTF16.getChar(tv, toffset++) !=
StringLatin1.getChar(ov, ooffset++)) {
return false;
}
}
*/
while (len-- > 0) {
if (charAt(toffset++) != other.charAt(ooffset++)) {
return false;
// END Android-removed: Implement in terms of charAt().
}
}
return true;
}
/**
* Tests if two string regions are equal.
*
* A substring of this {@code String} object is compared to a substring
* of the argument {@code other}. The result is {@code true} if these
* substrings represent character sequences that are the same, ignoring
* case if and only if {@code ignoreCase} is true. The substring of
* this {@code String} object to be compared begins at index
* {@code toffset} and has length {@code len}. The substring of
* {@code other} to be compared begins at index {@code ooffset} and
* has length {@code len}. The result is {@code false} if and only if
* at least one of the following is true:
* Note that this method does not take locale into account,
* and will result in unsatisfactory results for certain locales when
* {@code ignoreCase} is {@code true}. The {@link java.text.Collator} class
* provides locale-sensitive comparison.
*
* @param ignoreCase if {@code true}, ignore case when comparing
* characters.
* @param toffset the starting offset of the subregion in this
* string.
* @param other the string argument.
* @param ooffset the starting offset of the subregion in the string
* argument.
* @param len the number of characters to compare.
* @return {@code true} if the specified subregion of this string
* matches the specified subregion of the string argument;
* {@code false} otherwise. Whether the matching is exact
* or case insensitive depends on the {@code ignoreCase}
* argument.
*/
public boolean regionMatches(boolean ignoreCase, int toffset,
String other, int ooffset, int len) {
if (!ignoreCase) {
return regionMatches(toffset, other, ooffset, len);
}
// Note: toffset, ooffset, or len might be near -1>>>1.
if ((ooffset < 0) || (toffset < 0)
|| (toffset > (long)length() - len)
|| (ooffset > (long)other.length() - len)) {
return false;
}
// BEGIN Android-changed: Implement in terms of charAt().
/*
byte tv[] = value;
byte ov[] = other.value;
if (coder() == other.coder()) {
return isLatin1()
? StringLatin1.regionMatchesCI(tv, toffset, ov, ooffset, len)
: StringUTF16.regionMatchesCI(tv, toffset, ov, ooffset, len);
}
return isLatin1()
? StringLatin1.regionMatchesCI_UTF16(tv, toffset, ov, ooffset, len)
: StringUTF16.regionMatchesCI_Latin1(tv, toffset, ov, ooffset, len);
*/
while (len-- > 0) {
char c1 = charAt(toffset++);
char c2 = other.charAt(ooffset++);
if (c1 == c2) {
continue;
}
if (ignoreCase) {
// If characters don't match but case may be ignored,
// try converting both characters to uppercase.
// If the results match, then the comparison scan should
// continue.
char u1 = Character.toUpperCase(c1);
char u2 = Character.toUpperCase(c2);
if (u1 == u2) {
continue;
}
// Unfortunately, conversion to uppercase does not work properly
// for the Georgian alphabet, which has strange rules about case
// conversion. So we need to make one last check before
// exiting.
if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
continue;
}
}
return false;
}
return true;
// END Android-changed: Implement in terms of charAt().
}
/**
* Tests if the substring of this string beginning at the
* specified index starts with the specified prefix.
*
* @param prefix the prefix.
* @param toffset where to begin looking in this string.
* @return {@code true} if the character sequence represented by the
* argument is a prefix of the substring of this object starting
* at index {@code toffset}; {@code false} otherwise.
* The result is {@code false} if {@code toffset} is
* negative or greater than the length of this
* {@code String} object; otherwise the result is the same
* as the result of the expression
*
* If a character with value {@code ch} occurs in the
* character sequence represented by this {@code String}
* object at an index no smaller than {@code fromIndex}, then
* the index of the first such occurrence is returned. For values
* of {@code ch} in the range from 0 to 0xFFFF (inclusive),
* this is the smallest value k such that:
*
* There is no restriction on the value of {@code fromIndex}. If it
* is negative, it has the same effect as if it were zero: this entire
* string may be searched. If it is greater than the length of this
* string, it has the same effect as if it were equal to the length of
* this string: {@code -1} is returned.
*
* All indices are specified in {@code char} values
* (Unicode code units).
*
* @param ch a character (Unicode code point).
* @param fromIndex the index to start the search from.
* @return the index of the first occurrence of the character in the
* character sequence represented by this object that is greater
* than or equal to {@code fromIndex}, or {@code -1}
* if the character does not occur.
*/
public int indexOf(int ch, int fromIndex) {
// BEGIN Android-changed: Implement in terms of charAt().
/*
return isLatin1() ? StringLatin1.indexOf(value, ch, fromIndex)
: StringUTF16.indexOf(value, ch, fromIndex);
*/
final int max = length();
if (fromIndex < 0) {
fromIndex = 0;
} else if (fromIndex >= max) {
// Note: fromIndex might be near -1>>>1.
return -1;
}
if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
// handle most cases here (ch is a BMP code point or a
// negative value (invalid code point))
for (int i = fromIndex; i < max; i++) {
if (charAt(i) == ch) {
return i;
}
}
return -1;
} else {
return indexOfSupplementary(ch, fromIndex);
}
}
/**
* Handles (rare) calls of indexOf with a supplementary character.
*/
private int indexOfSupplementary(int ch, int fromIndex) {
if (Character.isValidCodePoint(ch)) {
final char hi = Character.highSurrogate(ch);
final char lo = Character.lowSurrogate(ch);
final int max = length() - 1;
for (int i = fromIndex; i < max; i++) {
if (charAt(i) == hi && charAt(i + 1) == lo) {
return i;
}
}
}
return -1;
// END Android-changed: Implement in terms of charAt().
}
/**
* Returns the index within this string of the last occurrence of
* the specified character. For values of {@code ch} in the
* range from 0 to 0xFFFF (inclusive), the index (in Unicode code
* units) returned is the largest value k such that:
* All indices are specified in {@code char} values
* (Unicode code units).
*
* @param ch a character (Unicode code point).
* @param fromIndex the index to start the search from. There is no
* restriction on the value of {@code fromIndex}. If it is
* greater than or equal to the length of this string, it has
* the same effect as if it were equal to one less than the
* length of this string: this entire string may be searched.
* If it is negative, it has the same effect as if it were -1:
* -1 is returned.
* @return the index of the last occurrence of the character in the
* character sequence represented by this object that is less
* than or equal to {@code fromIndex}, or {@code -1}
* if the character does not occur before that point.
*/
public int lastIndexOf(int ch, int fromIndex) {
// BEGIN Android-changed: Implement in terms of charAt().
/*
return isLatin1() ? StringLatin1.lastIndexOf(value, ch, fromIndex)
: StringUTF16.lastIndexOf(value, ch, fromIndex);
*/
if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
// handle most cases here (ch is a BMP code point or a
// negative value (invalid code point))
int i = Math.min(fromIndex, length() - 1);
for (; i >= 0; i--) {
if (charAt(i) == ch) {
return i;
}
}
return -1;
} else {
return lastIndexOfSupplementary(ch, fromIndex);
}
}
/**
* Handles (rare) calls of lastIndexOf with a supplementary character.
*/
private int lastIndexOfSupplementary(int ch, int fromIndex) {
if (Character.isValidCodePoint(ch)) {
char hi = Character.highSurrogate(ch);
char lo = Character.lowSurrogate(ch);
int i = Math.min(fromIndex, length() - 2);
for (; i >= 0; i--) {
if (charAt(i) == hi && charAt(i + 1) == lo) {
return i;
}
}
}
return -1;
// END Android-changed: Implement in terms of charAt().
}
/**
* Returns the index within this string of the first occurrence of the
* specified substring.
*
* The returned index is the smallest value {@code k} for which:
* The returned index is the smallest value {@code k} for which:
* The returned index is the largest value {@code k} for which:
* The returned index is the largest value {@code k} for which:
*
* Examples:
*
* Examples:
* An invocation of this method of the form
*
*
* If the length of the argument string is {@code 0}, then this
* {@code String} object is returned. Otherwise, a
* {@code String} object is returned that represents a character
* sequence that is the concatenation of the character sequence
* represented by this {@code String} object and the character
* sequence represented by the argument string.
* Examples:
*
* If the character {@code oldChar} does not occur in the
* character sequence represented by this {@code String} object,
* then a reference to this {@code String} object is returned.
* Otherwise, a {@code String} object is returned that
* represents a character sequence identical to the character sequence
* represented by this {@code String} object, except that every
* occurrence of {@code oldChar} is replaced by an occurrence
* of {@code newChar}.
*
* Examples:
* An invocation of this method of the form
* str{@code .matches(}regex{@code )} yields exactly the
* same result as the expression
*
* An invocation of this method of the form
* str{@code .replaceFirst(}regex{@code ,} repl{@code )}
* yields exactly the same result as the expression
*
*
* Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
* replacement string may cause the results to be different than if it were
* being treated as a literal replacement string; see
* {@link java.util.regex.Matcher#replaceFirst}.
* Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
* meaning of these characters, if desired.
*
* @param regex
* the regular expression to which this string is to be matched
* @param replacement
* the string to be substituted for the first match
*
* @return The resulting {@code String}
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public String replaceFirst(String regex, String replacement) {
return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
}
/**
* Replaces each substring of this string that matches the given regular expression with the
* given replacement.
*
* An invocation of this method of the form
* str{@code .replaceAll(}regex{@code ,} repl{@code )}
* yields exactly the same result as the expression
*
*
* Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
* replacement string may cause the results to be different than if it were
* being treated as a literal replacement string; see
* {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
* Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
* meaning of these characters, if desired.
*
* @param regex
* the regular expression to which this string is to be matched
* @param replacement
* the string to be substituted for each match
*
* @return The resulting {@code String}
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public String replaceAll(String regex, String replacement) {
return Pattern.compile(regex).matcher(this).replaceAll(replacement);
}
/**
* Replaces each substring of this string that matches the literal target
* sequence with the specified literal replacement sequence. The
* replacement proceeds from the beginning of the string to the end, for
* example, replacing "aa" with "b" in the string "aaa" will result in
* "ba" rather than "ab".
*
* @param target The sequence of char values to be replaced
* @param replacement The replacement sequence of char values
* @return The resulting string
* @since 1.5
*/
public String replace(CharSequence target, CharSequence replacement) {
// BEGIN Android-added: Additional null check for parameters.
Objects.requireNonNull(target);
Objects.requireNonNull(replacement);
// END Android-added: Additional null check for parameters.
String tgtStr = target.toString();
String replStr = replacement.toString();
int j = indexOf(tgtStr);
if (j < 0) {
return this;
}
int tgtLen = tgtStr.length();
int tgtLen1 = Math.max(tgtLen, 1);
int thisLen = length();
int newLenHint = thisLen - tgtLen + replStr.length();
if (newLenHint < 0) {
throw new OutOfMemoryError();
}
StringBuilder sb = new StringBuilder(newLenHint);
int i = 0;
do {
sb.append(this, i, j).append(replStr);
i = j + tgtLen;
} while (j < thisLen && (j = indexOf(tgtStr, j + tgtLen1)) > 0);
return sb.append(this, i, thisLen).toString();
}
/**
* Splits this string around matches of the given
* regular expression.
*
* The array returned by this method contains each substring of this
* string that is terminated by another substring that matches the given
* expression or is terminated by the end of the string. The substrings in
* the array are in the order in which they occur in this string. If the
* expression does not match any part of the input then the resulting array
* has just one element, namely this string.
*
* When there is a positive-width match at the beginning of this
* string then an empty leading substring is included at the beginning
* of the resulting array. A zero-width match at the beginning however
* never produces such empty leading substring.
*
* The {@code limit} parameter controls the number of times the
* pattern is applied and therefore affects the length of the resulting
* array.
*
* If the limit is positive then the pattern will be applied
* at most limit - 1 times, the array's length will be
* no greater than limit, and the array's last entry will contain
* all input beyond the last matched delimiter.
* If the limit is zero then the pattern will be applied as
* many times as possible, the array can have any length, and trailing
* empty strings will be discarded.
* If the limit is negative then the pattern will be applied
* as many times as possible and the array can have any length. The string {@code "boo:and:foo"}, for example, yields the
* following results with these parameters:
*
* An invocation of this method of the form
* str.{@code split(}regex{@code ,} n{@code )}
* yields the same result as the expression
*
* This method works as if by invoking the two-argument {@link
* #split(String, int) split} method with the given expression and a limit
* argument of zero. Trailing empty strings are therefore not included in
* the resulting array.
*
* The string {@code "boo:and:foo"}, for example, yields the following
* results with these expressions:
*
*
* Examples of lowercase mappings are in the following table:
*
* Note: This method is locale sensitive, and may produce unexpected
* results if used for strings that are intended to be interpreted locale
* independently.
* Examples are programming language identifiers, protocol keys, and HTML
* tags.
* For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
* returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
* LATIN SMALL LETTER DOTLESS I character.
* To obtain correct results for locale insensitive strings, use
* {@code toLowerCase(Locale.ROOT)}.
*
* @return the {@code String}, converted to lowercase.
* @see java.lang.String#toLowerCase(Locale)
*/
public String toLowerCase() {
return toLowerCase(Locale.getDefault());
}
/**
* Converts all of the characters in this {@code String} to upper
* case using the rules of the given {@code Locale}. Case mapping is based
* on the Unicode Standard version specified by the {@link java.lang.Character Character}
* class. Since case mappings are not always 1:1 char mappings, the resulting
* {@code String} may be a different length than the original {@code String}.
*
* Examples of locale-sensitive and 1:M case mappings are in the following table.
*
*
* Note: This method is locale sensitive, and may produce unexpected
* results if used for strings that are intended to be interpreted locale
* independently.
* Examples are programming language identifiers, protocol keys, and HTML
* tags.
* For instance, {@code "title".toUpperCase()} in a Turkish locale
* returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
* LATIN CAPITAL LETTER I WITH DOT ABOVE character.
* To obtain correct results for locale insensitive strings, use
* {@code toUpperCase(Locale.ROOT)}.
*
* @return the {@code String}, converted to uppercase.
* @see java.lang.String#toUpperCase(Locale)
*/
public String toUpperCase() {
return toUpperCase(Locale.getDefault());
}
/**
* Returns a string whose value is this string, with all leading
* and trailing space removed, where space is defined
* as any character whose codepoint is less than or equal to
* {@code 'U+0020'} (the space character).
*
* If this {@code String} object represents an empty character
* sequence, or the first and last characters of character sequence
* represented by this {@code String} object both have codes
* that are not space (as defined above), then a
* reference to this {@code String} object is returned.
*
* Otherwise, if all characters in this string are space (as
* defined above), then a {@code String} object representing an
* empty string is returned.
*
* Otherwise, let k be the index of the first character in the
* string whose code is not a space (as defined above) and let
* m be the index of the last character in the string whose code
* is not a space (as defined above). A {@code String}
* object is returned, representing the substring of this string that
* begins with the character at index k and ends with the
* character at index m-that is, the result of
* {@code this.substring(k, m + 1)}.
*
* This method may be used to trim space (as defined above) from
* the beginning and end of a string.
*
* @return a string whose value is this string, with all leading
* and trailing space removed, or this string if it
* has no leading or trailing space.
*/
public String trim() {
// BEGIN Android-changed: Implement in terms of charAt().
/*
String ret = isLatin1() ? StringLatin1.trim(value)
: StringUTF16.trim(value);
return ret == null ? this : ret;
*/
int len = length();
int st = 0;
while ((st < len) && (charAt(st) <= ' ')) {
st++;
}
while ((st < len) && (charAt(len - 1) <= ' ')) {
len--;
}
return ((st > 0) || (len < length())) ? substring(st, len) : this;
// END Android-changed: Implement in terms of charAt().
}
/**
* Returns a string whose value is this string, with all leading
* and trailing {@link Character#isWhitespace(int) white space}
* removed.
*
* If this {@code String} object represents an empty string,
* or if all code points in this string are
* {@link Character#isWhitespace(int) white space}, then an empty string
* is returned.
*
* Otherwise, returns a substring of this string beginning with the first
* code point that is not a {@link Character#isWhitespace(int) white space}
* up to and including the last code point that is not a
* {@link Character#isWhitespace(int) white space}.
*
* This method may be used to strip
* {@link Character#isWhitespace(int) white space} from
* the beginning and end of a string.
*
* @return a string whose value is this string, with all leading
* and trailing white space removed
*
* @see Character#isWhitespace(int)
*
* @since 11
*/
public String strip() {
// BEGIN Android-changed: Delegate to StringUTF16.
/*
String ret = isLatin1() ? StringLatin1.strip(value)
: StringUTF16.strip(value);
*/
String ret = StringUTF16.strip(this);
// END Android-changed: Delegate to StringUTF16.
return ret == null ? this : ret;
}
/**
* Returns a string whose value is this string, with all leading
* {@link Character#isWhitespace(int) white space} removed.
*
* If this {@code String} object represents an empty string,
* or if all code points in this string are
* {@link Character#isWhitespace(int) white space}, then an empty string
* is returned.
*
* Otherwise, returns a substring of this string beginning with the first
* code point that is not a {@link Character#isWhitespace(int) white space}
* up to to and including the last code point of this string.
*
* This method may be used to trim
* {@link Character#isWhitespace(int) white space} from
* the beginning of a string.
*
* @return a string whose value is this string, with all leading white
* space removed
*
* @see Character#isWhitespace(int)
*
* @since 11
*/
public String stripLeading() {
// BEGIN Android-changed: Delegate to StringUTF16.
/*
String ret = isLatin1() ? StringLatin1.stripLeading(value)
: StringUTF16.stripLeading(value);
*/
String ret = StringUTF16.stripLeading(this);
// END Android-changed: Delegate to StringUTF16.
return ret == null ? this : ret;
}
/**
* Returns a string whose value is this string, with all trailing
* {@link Character#isWhitespace(int) white space} removed.
*
* If this {@code String} object represents an empty string,
* or if all characters in this string are
* {@link Character#isWhitespace(int) white space}, then an empty string
* is returned.
*
* Otherwise, returns a substring of this string beginning with the first
* code point of this string up to and including the last code point
* that is not a {@link Character#isWhitespace(int) white space}.
*
* This method may be used to trim
* {@link Character#isWhitespace(int) white space} from
* the end of a string.
*
* @return a string whose value is this string, with all trailing white
* space removed
*
* @see Character#isWhitespace(int)
*
* @since 11
*/
public String stripTrailing() {
// BEGIN Android-changed: Delegate to StringUTF16.
/*
String ret = isLatin1() ? StringLatin1.stripTrailing(value)
: StringUTF16.stripTrailing(value);
*/
String ret = StringUTF16.stripTrailing(this);
// END Android-changed: Delegate to StringUTF16.
return ret == null ? this : ret;
}
/**
* Returns {@code true} if the string is empty or contains only
* {@link Character#isWhitespace(int) white space} codepoints,
* otherwise {@code false}.
*
* @return {@code true} if the string is empty or contains only
* {@link Character#isWhitespace(int) white space} codepoints,
* otherwise {@code false}
*
* @see Character#isWhitespace(int)
*
* @since 11
*/
public boolean isBlank() {
return indexOfNonWhitespace() == length();
}
/**
* Returns a stream of lines extracted from this string,
* separated by line terminators.
*
* A line terminator is one of the following:
* a line feed character {@code "\n"} (U+000A),
* a carriage return character {@code "\r"} (U+000D),
* or a carriage return followed immediately by a line feed
* {@code "\r\n"} (U+000D U+000A).
*
* A line is either a sequence of zero or more characters
* followed by a line terminator, or it is a sequence of one or
* more characters followed by the end of the string. A
* line does not include the line terminator.
*
* The stream returned by this method contains the lines from
* this string in the order in which they occur.
*
* @apiNote This definition of line implies that an empty
* string has zero lines and that there is no empty line
* following a line terminator at the end of a string.
*
* @implNote This method provides better performance than
* split("\R") by supplying elements lazily and
* by faster search of new line terminators.
*
* @return the stream of lines extracted from this string
*
* @since 11
*/
public Stream
* This string is conceptually separated into lines using
* {@link String#lines()}. Each line is then adjusted as described below
* and then suffixed with a line feed {@code "\n"} (U+000A). The resulting
* lines are then concatenated and returned.
*
* If {@code n > 0} then {@code n} spaces (U+0020) are inserted at the
* beginning of each line.
*
* If {@code n < 0} then up to {@code n}
* {@linkplain Character#isWhitespace(int) white space characters} are removed
* from the beginning of each line. If a given line does not contain
* sufficient white space then all leading
* {@linkplain Character#isWhitespace(int) white space characters} are removed.
* Each white space character is treated as a single character. In
* particular, the tab character {@code "\t"} (U+0009) is considered a
* single character; it is not expanded.
*
* If {@code n == 0} then the line remains unchanged. However, line
* terminators are still normalized.
*
* @param n number of leading
* {@linkplain Character#isWhitespace(int) white space characters}
* to add or remove
*
* @return string with indentation adjusted and line endings normalized
*
* @see String#lines()
* @see String#isBlank()
* @see Character#isWhitespace(int)
*
* @since 12
*/
public String indent(int n) {
if (isEmpty()) {
return "";
}
Stream
* Incidental {@linkplain Character#isWhitespace(int) white space}
* is often present in a text block to align the content with the opening
* delimiter. For example, in the following code, dots represent incidental
* {@linkplain Character#isWhitespace(int) white space}:
*
* Then, the minimum indentation (min) is determined as follows:
* For each non-blank line (as defined by {@link String#isBlank()}),
* the leading {@linkplain Character#isWhitespace(int) white space}
* characters are counted. The leading {@linkplain Character#isWhitespace(int) white space}
* characters on the last line are also counted even if
* {@linkplain String#isBlank() blank}. The min value is the smallest of these counts.
*
* For each {@linkplain String#isBlank() non-blank} line, min leading
* {@linkplain Character#isWhitespace(int) white space} characters are
* removed, and any trailing {@linkplain Character#isWhitespace(int) white
* space} characters are removed. {@linkplain String#isBlank() Blank} lines
* are replaced with the empty string.
*
*
* Finally, the lines are joined into a new string, using the LF character
* {@code "\n"} (U+000A) to separate lines.
*
* @apiNote
* This method's primary purpose is to shift a block of lines as far as
* possible to the left, while preserving relative indentation. Lines
* that were indented the least will thus have no leading
* {@linkplain Character#isWhitespace(int) white space}.
* The result will have the same number of line terminators as this string.
* If this string ends with a line terminator then the result will end
* with a line terminator.
*
* @implSpec
* This method treats all {@linkplain Character#isWhitespace(int) white space}
* characters as having equal width. As long as the indentation on every
* line is consistently composed of the same character sequences, then the
* result will be as described above.
*
* @return string with incidental indentation removed and line
* terminators normalized
*
* @see String#lines()
* @see String#isBlank()
* @see String#indent(int)
* @see Character#isWhitespace(int)
*
* @since 15
*
*/
public String stripIndent() {
int length = length();
if (length == 0) {
return "";
}
char lastChar = charAt(length - 1);
boolean optOut = lastChar == '\n' || lastChar == '\r';
List
* Escape sequences are translated as follows;
*
* Any exception thrown by {@code f.apply()} will be propagated to the
* caller.
*
* @param f a function to apply
*
* @param The locale always used is the one returned by {@link
* java.util.Locale#getDefault(java.util.Locale.Category)
* Locale.getDefault(Locale.Category)} with
* {@link java.util.Locale.Category#FORMAT FORMAT} category specified.
*
* @param format
* A format string
*
* @param args
* Arguments referenced by the format specifiers in the format
* string. If there are more arguments than format specifiers, the
* extra arguments are ignored. The number of arguments is
* variable and may be zero. The maximum number of arguments is
* limited by the maximum dimension of a Java array as defined by
* The Java™ Virtual Machine Specification.
* The behaviour on a
* {@code null} argument depends on the conversion.
*
* @throws java.util.IllegalFormatException
* If a format string contains an illegal syntax, a format
* specifier that is incompatible with the given arguments,
* insufficient arguments given the format string, or other
* illegal conditions. For specification of all possible
* formatting errors, see the Details section of the
* formatter class specification.
*
* @return A formatted string
*
* @see java.util.Formatter
* @since 1.5
*/
public static String format(String format, Object... args) {
return new Formatter().format(format, args).toString();
}
/**
* Returns a formatted string using the specified locale, format string,
* and arguments.
*
* @param l
* The {@linkplain java.util.Locale locale} to apply during
* formatting. If {@code l} is {@code null} then no localization
* is applied.
*
* @param format
* A format string
*
* @param args
* Arguments referenced by the format specifiers in the format
* string. If there are more arguments than format specifiers, the
* extra arguments are ignored. The number of arguments is
* variable and may be zero. The maximum number of arguments is
* limited by the maximum dimension of a Java array as defined by
* The Java™ Virtual Machine Specification.
* The behaviour on a
* {@code null} argument depends on the
* conversion.
*
* @throws java.util.IllegalFormatException
* If a format string contains an illegal syntax, a format
* specifier that is incompatible with the given arguments,
* insufficient arguments given the format string, or other
* illegal conditions. For specification of all possible
* formatting errors, see the Details section of the
* formatter class specification
*
* @return A formatted string
*
* @see java.util.Formatter
* @since 1.5
*/
public static String format(Locale l, String format, Object... args) {
return new Formatter(l).format(format, args).toString();
}
/**
* Formats using this string as the format string, and the supplied
* arguments.
*
* @implSpec This method is equivalent to {@code String.format(this, args)}.
*
* @param args
* Arguments referenced by the format specifiers in this string.
*
* @return A formatted string
*
* @see java.lang.String#format(String,Object...)
* @see java.util.Formatter
*
* @since 15
*
*/
public String formatted(Object... args) {
return new Formatter().format(this, args).toString();
}
/**
* Returns the string representation of the {@code Object} argument.
*
* @param obj an {@code Object}.
* @return if the argument is {@code null}, then a string equal to
* {@code "null"}; otherwise, the value of
* {@code obj.toString()} is returned.
* @see java.lang.Object#toString()
*/
public static String valueOf(Object obj) {
return (obj == null) ? "null" : obj.toString();
}
/**
* Returns the string representation of the {@code char} array
* argument. The contents of the character array are copied; subsequent
* modification of the character array does not affect the returned
* string.
*
* @param data the character array.
* @return a {@code String} that contains the characters of the
* character array.
*/
public static String valueOf(char data[]) {
return new String(data);
}
/**
* Returns the string representation of a specific subarray of the
* {@code char} array argument.
*
* The {@code offset} argument is the index of the first
* character of the subarray. The {@code count} argument
* specifies the length of the subarray. The contents of the subarray
* are copied; subsequent modification of the character array does not
* affect the returned string.
*
* @param data the character array.
* @param offset initial offset of the subarray.
* @param count length of the subarray.
* @return a {@code String} that contains the characters of the
* specified subarray of the character array.
* @exception IndexOutOfBoundsException if {@code offset} is
* negative, or {@code count} is negative, or
* {@code offset+count} is larger than
* {@code data.length}.
*/
public static String valueOf(char data[], int offset, int count) {
return new String(data, offset, count);
}
/**
* Equivalent to {@link #valueOf(char[], int, int)}.
*
* @param data the character array.
* @param offset initial offset of the subarray.
* @param count length of the subarray.
* @return a {@code String} that contains the characters of the
* specified subarray of the character array.
* @exception IndexOutOfBoundsException if {@code offset} is
* negative, or {@code count} is negative, or
* {@code offset+count} is larger than
* {@code data.length}.
*/
public static String copyValueOf(char data[], int offset, int count) {
return new String(data, offset, count);
}
/**
* Equivalent to {@link #valueOf(char[])}.
*
* @param data the character array.
* @return a {@code String} that contains the characters of the
* character array.
*/
public static String copyValueOf(char data[]) {
return new String(data);
}
/**
* Returns the string representation of the {@code boolean} argument.
*
* @param b a {@code boolean}.
* @return if the argument is {@code true}, a string equal to
* {@code "true"} is returned; otherwise, a string equal to
* {@code "false"} is returned.
*/
public static String valueOf(boolean b) {
return b ? "true" : "false";
}
/**
* Returns the string representation of the {@code char}
* argument.
*
* @param c a {@code char}.
* @return a string of length {@code 1} containing
* as its single character the argument {@code c}.
*/
public static String valueOf(char c) {
// BEGIN Android-changed: Replace constructor call with call to StringFactory class.
// There is currently no String(char[], boolean) on Android to call. http://b/79902155
/*
if (COMPACT_STRINGS && StringLatin1.canEncode(c)) {
return new String(StringLatin1.toBytes(c), LATIN1);
}
return new String(StringUTF16.toBytes(c), UTF16);
*/
return StringFactory.newStringFromChars(0, 1, new char[] { c });
// END Android-changed: Replace constructor call with call to StringFactory class.
}
/**
* Returns the string representation of the {@code int} argument.
*
* The representation is exactly the one returned by the
* {@code Integer.toString} method of one argument.
*
* @param i an {@code int}.
* @return a string representation of the {@code int} argument.
* @see java.lang.Integer#toString(int, int)
*/
public static String valueOf(int i) {
return Integer.toString(i);
}
/**
* Returns the string representation of the {@code long} argument.
*
* The representation is exactly the one returned by the
* {@code Long.toString} method of one argument.
*
* @param l a {@code long}.
* @return a string representation of the {@code long} argument.
* @see java.lang.Long#toString(long)
*/
public static String valueOf(long l) {
return Long.toString(l);
}
/**
* Returns the string representation of the {@code float} argument.
*
* The representation is exactly the one returned by the
* {@code Float.toString} method of one argument.
*
* @param f a {@code float}.
* @return a string representation of the {@code float} argument.
* @see java.lang.Float#toString(float)
*/
public static String valueOf(float f) {
return Float.toString(f);
}
/**
* Returns the string representation of the {@code double} argument.
*
* The representation is exactly the one returned by the
* {@code Double.toString} method of one argument.
*
* @param d a {@code double}.
* @return a string representation of the {@code double} argument.
* @see java.lang.Double#toString(double)
*/
public static String valueOf(double d) {
return Double.toString(d);
}
/**
* Returns a canonical representation for the string object.
*
* A pool of strings, initially empty, is maintained privately by the
* class {@code String}.
*
* When the intern method is invoked, if the pool already contains a
* string equal to this {@code String} object as determined by
* the {@link #equals(Object)} method, then the string from the pool is
* returned. Otherwise, this {@code String} object is added to the
* pool and a reference to this {@code String} object is returned.
*
* It follows that for any two strings {@code s} and {@code t},
* {@code s.intern() == t.intern()} is {@code true}
* if and only if {@code s.equals(t)} is {@code true}.
*
* All literal strings and string-valued constant expressions are
* interned. String literals are defined in section 3.10.5 of the
* The Java™ Language Specification.
*
* @return a string that has the same contents as this string, but is
* guaranteed to be from a pool of unique strings.
* @jls 3.10.5 String Literals
*/
// Android-added: Annotate native method as @FastNative.
@FastNative
public native String intern();
/**
* Returns a string whose value is the concatenation of this
* string repeated {@code count} times.
*
* If this string is empty or count is zero then the empty
* string is returned.
*
* @param count number of times to repeat
*
* @return A string composed of this string repeated
* {@code count} times or the empty string if this
* string is empty or count is zero
*
* @throws IllegalArgumentException if the {@code count} is
* negative.
*
* @since 11
*/
public String repeat(int count) {
if (count < 0) {
throw new IllegalArgumentException("count is negative: " + count);
}
if (count == 1) {
return this;
}
// Android-changed: Replace with implementation in runtime.
// final int len = value.length;
final int len = length();
if (len == 0 || count == 0) {
return "";
}
// BEGIN Android-changed: Replace with implementation in runtime.
/*
if (len == 1) {
final byte[] single = new byte[count];
Arrays.fill(single, value[0]);
return new String(single, coder);
}
*/
// END Android-changed: Replace with implementation in runtime.
if (Integer.MAX_VALUE / count < len) {
throw new OutOfMemoryError("Repeating " + len + " bytes String " + count +
" times will produce a String exceeding maximum size.");
}
// BEGIN Android-changed: Replace with implementation in runtime.
/*
final int limit = len * count;
final byte[] multiple = new byte[limit];
System.arraycopy(value, 0, multiple, 0, len);
int copied = len;
for (; copied < limit - copied; copied <<= 1) {
System.arraycopy(multiple, 0, multiple, copied, copied);
}
System.arraycopy(multiple, 0, multiple, copied, limit - copied);
return new String(multiple, coder);
*/
// END Android-changed: Replace with implementation in runtime.
return doRepeat(count);
}
@FastNative
private native String doRepeat(int count);
////////////////////////////////////////////////////////////////
/**
* Copy character bytes from this string into dst starting at dstBegin.
* This method doesn't perform any range checking.
*
* Invoker guarantees: dst is in UTF16 (inflate itself for asb), if two
* coders are different, and dst is big enough (range check)
*
* @param dstBegin the char index, not offset of byte[]
* @param coder the coder of dst[]
*/
void getBytes(byte dst[], int dstBegin, byte coder) {
// Android-changed: libcore doesn't store String as Latin1 or UTF16 byte[] field.
/*
if (coder() == coder) {
System.arraycopy(value, 0, dst, dstBegin << coder, value.length);
} else { // this.coder == LATIN && coder == UTF16
StringLatin1.inflate(value, 0, dst, dstBegin, value.length);
}
*/
// We do bound check here before the native calls, because the upstream implementation does
// the bound check in System.arraycopy and StringLatin1.inflate or throws an exception.
if (coder == UTF16) {
int fromIndex = dstBegin << 1;
checkBoundsOffCount(fromIndex, length() << 1, dst.length);
fillBytesUTF16(dst, fromIndex);
} else {
if (coder() != LATIN1) {
// Do not concat String in the error message.
throw new StringIndexOutOfBoundsException("Expect Latin-1 coder.");
}
checkBoundsOffCount(dstBegin, length(), dst.length);
fillBytesLatin1(dst, dstBegin);
}
}
// BEGIN Android-added: Implement fillBytes*() method natively.
/**
* Fill the underlying characters into the byte buffer. No range check.
* The caller should guarantee that dst is big enough for this operation.
*/
@FastNative
private native void fillBytesLatin1(byte[] dst, int byteIndex);
/**
* Fill the underlying characters into the byte buffer. No range check.
* The caller should guarantee that dst is big enough for this operation.
*/
@FastNative
private native void fillBytesUTF16(byte[] dst, int byteIndex);
// END Android-added: Implement fillBytes*() method natively.
/*
* Package private constructor which shares value array for speed.
*/
String(byte[] value, byte coder) {
// BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
// this.value = value;
// this.coder = coder;
throw new UnsupportedOperationException("Use StringFactory instead.");
// END Android-changed: Implemented as compiler and runtime intrinsics.
}
/**
* Android note: It returns UTF16 if the string has any 0x00 char.
* See the difference between {@link StringLatin1#canEncode(int)} and
* art::mirror::String::IsASCII(uint16_t) in string.h.
*/
byte coder() {
// Android-changed: ART stores the flag in the count field.
// return COMPACT_STRINGS ? coder : UTF16;
// We assume that STRING_COMPRESSION_ENABLED is enabled here.
// The flag has been true for 6+ years.
return COMPACT_STRINGS ? ((byte) (count & 1)) : UTF16;
}
/*
* StringIndexOutOfBoundsException if {@code index} is
* negative or greater than or equal to {@code length}.
*/
static void checkIndex(int index, int length) {
if (index < 0 || index >= length) {
throw new StringIndexOutOfBoundsException("index " + index +
",length " + length);
}
}
/*
* StringIndexOutOfBoundsException if {@code offset}
* is negative or greater than {@code length}.
*/
static void checkOffset(int offset, int length) {
if (offset < 0 || offset > length) {
throw new StringIndexOutOfBoundsException("offset " + offset +
",length " + length);
}
}
/*
* Check {@code offset}, {@code count} against {@code 0} and {@code length}
* bounds.
*
* @throws StringIndexOutOfBoundsException
* If {@code offset} is negative, {@code count} is negative,
* or {@code offset} is greater than {@code length - count}
*/
static void checkBoundsOffCount(int offset, int count, int length) {
if (offset < 0 || count < 0 || offset > length - count) {
throw new StringIndexOutOfBoundsException(
"offset " + offset + ", count " + count + ", length " + length);
}
}
/**
* Returns the string representation of the {@code codePoint}
* argument.
*
* @param codePoint a {@code codePoint}.
* @return a string of length {@code 1} or {@code 2} containing
* as its single character the argument {@code codePoint}.
* @throws IllegalArgumentException if the specified
* {@code codePoint} is not a {@linkplain Character#isValidCodePoint
* valid Unicode code point}.
*/
static String valueOfCodePoint(int codePoint) {
if (COMPACT_STRINGS && StringLatin1.canEncode(codePoint)) {
return new String(StringLatin1.toBytes((char)codePoint), LATIN1);
} else if (Character.isBmpCodePoint(codePoint)) {
return new String(StringUTF16.toBytes((char)codePoint), UTF16);
} else if (Character.isSupplementaryCodePoint(codePoint)) {
return new String(StringUTF16.toBytesSupplementary(codePoint), UTF16);
}
throw new IllegalArgumentException(
format("Not a valid Unicode code point: 0x%X", codePoint));
}
/*
* Check {@code begin}, {@code end} against {@code 0} and {@code length}
* bounds.
*
* @throws StringIndexOutOfBoundsException
* If {@code begin} is negative, {@code begin} is greater than
* {@code end}, or {@code end} is greater than {@code length}.
*/
static void checkBoundsBeginEnd(int begin, int end, int length) {
if (begin < 0 || begin > end || end > length) {
throw new StringIndexOutOfBoundsException(
"begin " + begin + ", end " + end + ", length " + length);
}
}
/**
* Returns an {@link Optional} containing the nominal descriptor for this
* instance, which is the instance itself.
*
* @return an {@link Optional} describing the {@linkplain String} instance
* @since 12
* @hide
*/
@Override
public Optional
*
* @deprecated This method does not properly convert bytes into
* characters. As of JDK 1.1, the preferred way to do this is via the
* {@code String} constructors that take a {@link
* java.nio.charset.Charset}, charset name, or that use the platform's
* default charset.
*
* @param ascii
* The bytes to be converted to characters
*
* @param hibyte
* The top 8 bits of each 16-bit Unicode code unit
*
* @see #String(byte[], int, int, java.lang.String)
* @see #String(byte[], int, int, java.nio.charset.Charset)
* @see #String(byte[], int, int)
* @see #String(byte[], java.lang.String)
* @see #String(byte[], java.nio.charset.Charset)
* @see #String(byte[])
*/
@Deprecated(since="1.1")
public String(byte ascii[], int hibyte) {
// BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
/*
this(ascii, hibyte, 0, ascii.length);
*/
throw new UnsupportedOperationException("Use StringFactory instead.");
// END Android-changed: Implemented as compiler and runtime intrinsics.
}
// BEGIN Android-removed: checkBounds(byte[] bytes, int offset, int length) utility method.
/* Common private utility method used to bounds check the byte array
* and requested offset & length values used by the String(byte[],..)
* constructors.
*
private static void checkBounds(byte[] bytes, int offset, int length) {
if (length < 0)
throw new StringIndexOutOfBoundsException(length);
if (offset < 0)
throw new StringIndexOutOfBoundsException(offset);
if (offset > bytes.length - length)
throw new StringIndexOutOfBoundsException(offset + length);
}
// END Android-removed: checkBounds(byte[] bytes, int offset, int length) utility method.
/**
* Constructs a new {@code String} by decoding the specified subarray of
* bytes using the specified charset. The length of the new {@code String}
* is a function of the charset, and hence may not be equal to the length
* of the subarray.
*
*
* c == (char)(((hibyte & 0xff) << 8)
* | (b & 0xff))
*
*
* @param srcBegin index of the first character in the string
* to copy.
* @param srcEnd index after the last character in the string
* to copy.
* @param dst the destination array.
* @param dstBegin the start offset in the destination array.
* @exception IndexOutOfBoundsException If any of the following
* is true:
*
* dstBegin + (srcEnd-srcBegin) - 1
*
*/
public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
// BEGIN Android-added: Null pointer check.
if (dst == null) {
throw new NullPointerException("dst == null");
}
// END Android-added: Null pointer check.
checkBoundsBeginEnd(srcBegin, srcEnd, length());
// BEGIN Android-changed: Implement in terms of length() and native getCharsNoCheck method.
/*
checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
if (isLatin1()) {
StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
} else {
StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
}
*/
if (dstBegin < 0) {
throw new ArrayIndexOutOfBoundsException("dstBegin < 0. dstBegin=" + dstBegin);
}
// dstBegin can be equal to dst.length, but only in the case where zero chars are to be
// copied.
if (dstBegin > dst.length) {
throw new ArrayIndexOutOfBoundsException(
"dstBegin > dst.length. dstBegin=" + dstBegin + ", dst.length=" + dst.length);
}
int n = srcEnd - srcBegin;
if (n > dst.length - dstBegin) {
throw new ArrayIndexOutOfBoundsException(
"n > dst.length - dstBegin. n=" + n + ", dst.length=" + dst.length
+ "dstBegin=" + dstBegin);
}
getCharsNoCheck(srcBegin, srcEnd, dst, dstBegin);
// END Android-changed: Implement in terms of length() and native getCharsNoCheck method.
}
// BEGIN Android-added: Native method to access char storage managed by runtime.
/**
* getChars without bounds checks, for use by other classes
* within the java.lang package only. The caller is responsible for
* ensuring that start >= 0 && start <= end && end <= count.
*/
@FastNative
native void getCharsNoCheck(int start, int end, char[] buffer, int index);
// END Android-added: Native method to access char storage managed by runtime.
/**
* Copies characters from this string into the destination byte array. Each
* byte receives the 8 low-order bits of the corresponding character. The
* eight high-order bits of each character are not copied and do not
* participate in the transfer in any way.
*
*
*
* @deprecated This method does not properly convert characters into
* bytes. As of JDK 1.1, the preferred way to do this is via the
* {@link #getBytes()} method, which uses the platform's default charset.
*
* @param srcBegin
* Index of the first character in the string to copy
*
* @param srcEnd
* Index after the last character in the string to copy
*
* @param dst
* The destination array
*
* @param dstBegin
* The start offset in the destination array
*
* @throws IndexOutOfBoundsException
* If any of the following is true:
*
* dstBegin + (srcEnd-srcBegin) - 1
*
*
*/
@Deprecated(since="1.1")
public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
checkBoundsBeginEnd(srcBegin, srcEnd, length());
Objects.requireNonNull(dst);
checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
// BEGIN Android-changed: Implement in terms of charAt().
/*
if (isLatin1()) {
StringLatin1.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
} else {
StringUTF16.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
}
*/
int j = dstBegin;
int n = srcEnd;
int i = srcBegin;
while (i < n) {
dst[j++] = (byte)charAt(i++);
}
// END Android-changed: Implement in terms of charAt().
}
/**
* Encodes this {@code String} into a sequence of bytes using the named
* charset, storing the result into a new byte array.
*
*
*
*
*
* If there is no index position at which they differ, then the shorter
* string lexicographically precedes the longer string. In this case,
* {@code compareTo} returns the difference of the lengths of the
* strings -- that is, the value:
*
* this.charAt(k)-anotherString.charAt(k)
*
*
*
* this.length()-anotherString.length()
*
*
*
*
*
*
* this.charAt(toffset+k) != other.charAt(ooffset+k)
*
*
* Character.toLowerCase(Character.toUpperCase(this.charAt(toffset+k))) !=
Character.toLowerCase(Character.toUpperCase(other.charAt(ooffset+k)))
*
* this.substring(toffset).startsWith(prefix)
*
*/
public boolean startsWith(String prefix, int toffset) {
// Android-added: Cache length() result so it's called once.
int pc = prefix.length();
// Note: toffset might be near -1>>>1.
if (toffset < 0 || toffset > length() - pc) {
return false;
}
// BEGIN Android-changed: Implement in terms of charAt().
/*
byte ta[] = value;
byte pa[] = prefix.value;
int po = 0;
int pc = pa.length;
if (coder() == prefix.coder()) {
int to = isLatin1() ? toffset : toffset << 1;
while (po < pc) {
if (ta[to++] != pa[po++]) {
return false;
}
}
} else {
if (isLatin1()) { // && pcoder == UTF16
return false;
}
// coder == UTF16 && pcoder == LATIN1)
while (po < pc) {
if (StringUTF16.getChar(ta, toffset++) != (pa[po++] & 0xff)) {
return false;
}
}
*/
int po = 0;
while (--pc >= 0) {
if (charAt(toffset++) != prefix.charAt(po++)) {
return false;
}
// END Android-changed: Implement in terms of charAt().
}
return true;
}
/**
* Tests if this string starts with the specified prefix.
*
* @param prefix the prefix.
* @return {@code true} if the character sequence represented by the
* argument is a prefix of the character sequence represented by
* this string; {@code false} otherwise.
* Note also that {@code true} will be returned if the
* argument is an empty string or is equal to this
* {@code String} object as determined by the
* {@link #equals(Object)} method.
* @since 1.0
*/
public boolean startsWith(String prefix) {
return startsWith(prefix, 0);
}
/**
* Tests if this string ends with the specified suffix.
*
* @param suffix the suffix.
* @return {@code true} if the character sequence represented by the
* argument is a suffix of the character sequence represented by
* this object; {@code false} otherwise. Note that the
* result will be {@code true} if the argument is the
* empty string or is equal to this {@code String} object
* as determined by the {@link #equals(Object)} method.
*/
public boolean endsWith(String suffix) {
return startsWith(suffix, length() - suffix.length());
}
/**
* Returns a hash code for this string. The hash code for a
* {@code String} object is computed as
*
* using {@code int} arithmetic, where {@code s[i]} is the
* ith character of the string, {@code n} is the length of
* the string, and {@code ^} indicates exponentiation.
* (The hash value of the empty string is zero.)
*
* @return a hash code value for this object.
*/
public int hashCode() {
int h = hash;
// BEGIN Android-changed: Implement in terms of charAt().
/*
if (h == 0 && value.length > 0) {
hash = h = isLatin1() ? StringLatin1.hashCode(value)
: StringUTF16.hashCode(value);
*/
final int len = length();
if (h == 0 && len > 0) {
for (int i = 0; i < len; i++) {
h = 31 * h + charAt(i);
}
hash = h;
// END Android-changed: Implement in terms of charAt().
}
return h;
}
/**
* Returns the index within this string of the first occurrence of
* the specified character. If a character with value
* {@code ch} occurs in the character sequence represented by
* this {@code String} object, then the index (in Unicode
* code units) of the first such occurrence is returned. For
* values of {@code ch} in the range from 0 to 0xFFFF
* (inclusive), this is the smallest value k such that:
*
* s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
*
* is true. For other values of {@code ch}, it is the
* smallest value k such that:
*
* this.charAt(k) == ch
*
* is true. In either case, if no such character occurs in this
* string, then {@code -1} is returned.
*
* @param ch a character (Unicode code point).
* @return the index of the first occurrence of the character in the
* character sequence represented by this object, or
* {@code -1} if the character does not occur.
*/
public int indexOf(int ch) {
return indexOf(ch, 0);
}
/**
* Returns the index within this string of the first occurrence of the
* specified character, starting the search at the specified index.
*
* this.codePointAt(k) == ch
*
* is true. For other values of {@code ch}, it is the
* smallest value k such that:
*
* (this.charAt(k) == ch) {@code &&} (k >= fromIndex)
*
* is true. In either case, if no such character occurs in this
* string at or after position {@code fromIndex}, then
* {@code -1} is returned.
*
*
* (this.codePointAt(k) == ch) {@code &&} (k >= fromIndex)
*
* is true. For other values of {@code ch}, it is the
* largest value k such that:
*
* this.charAt(k) == ch
*
* is true. In either case, if no such character occurs in this
* string, then {@code -1} is returned. The
* {@code String} is searched backwards starting at the last
* character.
*
* @param ch a character (Unicode code point).
* @return the index of the last occurrence of the character in the
* character sequence represented by this object, or
* {@code -1} if the character does not occur.
*/
public int lastIndexOf(int ch) {
return lastIndexOf(ch, length() - 1);
}
/**
* Returns the index within this string of the last occurrence of
* the specified character, searching backward starting at the
* specified index. For values of {@code ch} in the range
* from 0 to 0xFFFF (inclusive), the index returned is the largest
* value k such that:
*
* this.codePointAt(k) == ch
*
* is true. For other values of {@code ch}, it is the
* largest value k such that:
*
* (this.charAt(k) == ch) {@code &&} (k <= fromIndex)
*
* is true. In either case, if no such character occurs in this
* string at or before position {@code fromIndex}, then
* {@code -1} is returned.
*
*
* (this.codePointAt(k) == ch) {@code &&} (k <= fromIndex)
*
{@code
* this.startsWith(str, k)
* }
* If no such value of {@code k} exists, then {@code -1} is returned.
*
* @param str the substring to search for.
* @return the index of the first occurrence of the specified substring,
* or {@code -1} if there is no such occurrence.
*/
@NeverInline
public int indexOf(String str) {
// BEGIN Android-changed: Implement with indexOf() method that takes String parameters.
/*
if (coder() == str.coder()) {
return isLatin1() ? StringLatin1.indexOf(value, str.value)
: StringUTF16.indexOf(value, str.value);
}
if (coder() == LATIN1) { // str.coder == UTF16
return -1;
}
return StringUTF16.indexOfLatin1(value, str.value);
*/
return indexOf(str, 0);
// END Android-changed: Implement with indexOf() method that takes String parameters.
}
/**
* Returns the index within this string of the first occurrence of the
* specified substring, starting at the specified index.
*
* {@code
* k >= Math.min(fromIndex, this.length()) &&
* this.startsWith(str, k)
* }
* If no such value of {@code k} exists, then {@code -1} is returned.
*
* @param str the substring to search for.
* @param fromIndex the index from which to start the search.
* @return the index of the first occurrence of the specified substring,
* starting at the specified index,
* or {@code -1} if there is no such occurrence.
*/
@NeverInline
public int indexOf(String str, int fromIndex) {
// BEGIN Android-changed: Implement with indexOf() method that takes String parameters.
/*
return indexOf(value, coder(), length(), str, fromIndex);
*/
return indexOf(this, str, fromIndex);
// END Android-changed: Implement with indexOf() method that takes String parameters.
}
// BEGIN Android-added: Private static indexOf method that takes String parameters.
// The use of length(), charAt(), etc. makes it more efficient for compressed strings.
/**
* The source is the string being searched, and the target is the string being searched for.
*
* @param source the characters being searched.
* @param target the characters being searched for.
* @param fromIndex the index to begin searching from.
*/
private static int indexOf(String source, String target, int fromIndex) {
final int sourceLength = source.length();
final int targetLength = target.length();
if (fromIndex >= sourceLength) {
return (targetLength == 0 ? sourceLength : -1);
}
if (fromIndex < 0) {
fromIndex = 0;
}
if (targetLength == 0) {
return fromIndex;
}
char first = target.charAt(0);
int max = (sourceLength - targetLength);
for (int i = fromIndex; i <= max; i++) {
/* Look for first character. */
if (source.charAt(i)!= first) {
while (++i <= max && source.charAt(i) != first);
}
/* Found first character, now look at the rest of v2 */
if (i <= max) {
int j = i + 1;
int end = j + targetLength - 1;
for (int k = 1; j < end && source.charAt(j)
== target.charAt(k); j++, k++);
if (j == end) {
/* Found whole string. */
return i;
}
}
}
return -1;
}
// END Android-added: Private static indexOf method that takes String parameters.
/**
* Code shared by String and AbstractStringBuilder to do searches. The
* source is the character array being searched, and the target
* is the string being searched for.
*
* @param src the characters being searched.
* @param srcCoder the coder of the source string.
* @param srcCount length of the source string.
* @param tgtStr the characters being searched for.
* @param fromIndex the index to begin searching from.
*/
static int indexOf(byte[] src, byte srcCoder, int srcCount,
String tgtStr, int fromIndex) {
// byte[] tgt = tgtStr.value;
byte tgtCoder = tgtStr.coder();
int tgtCount = tgtStr.length();
if (fromIndex >= srcCount) {
return (tgtCount == 0 ? srcCount : -1);
}
if (fromIndex < 0) {
fromIndex = 0;
}
if (tgtCount == 0) {
return fromIndex;
}
if (tgtCount > srcCount) {
return -1;
}
if (srcCoder == tgtCoder) {
return srcCoder == LATIN1
// Android-changed: libcore doesn't store String as Latin1 or UTF16 byte[] field.
// ? StringLatin1.indexOf(src, srcCount, tgt, tgtCount, fromIndex)
// : StringUTF16.indexOf(src, srcCount, tgt, tgtCount, fromIndex);
? StringLatin1.indexOf(src, srcCount, tgtStr, tgtCount, fromIndex)
: StringUTF16.indexOf(src, srcCount, tgtStr, tgtCount, fromIndex);
}
if (srcCoder == LATIN1) { // && tgtCoder == UTF16
return -1;
}
// srcCoder == UTF16 && tgtCoder == LATIN1) {
// return StringUTF16.indexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
return StringUTF16.indexOfLatin1(src, srcCount, tgtStr, tgtCount, fromIndex);
}
/**
* Returns the index within this string of the last occurrence of the
* specified substring. The last occurrence of the empty string ""
* is considered to occur at the index value {@code this.length()}.
*
* {@code
* this.startsWith(str, k)
* }
* If no such value of {@code k} exists, then {@code -1} is returned.
*
* @param str the substring to search for.
* @return the index of the last occurrence of the specified substring,
* or {@code -1} if there is no such occurrence.
*/
public int lastIndexOf(String str) {
return lastIndexOf(str, length());
}
/**
* Returns the index within this string of the last occurrence of the
* specified substring, searching backward starting at the specified index.
*
* {@code
* k <= Math.min(fromIndex, this.length()) &&
* this.startsWith(str, k)
* }
* If no such value of {@code k} exists, then {@code -1} is returned.
*
* @param str the substring to search for.
* @param fromIndex the index to start the search from.
* @return the index of the last occurrence of the specified substring,
* searching backward from the specified index,
* or {@code -1} if there is no such occurrence.
*/
public int lastIndexOf(String str, int fromIndex) {
// BEGIN Android-changed: Implement with static lastIndexOf() that takes String parameters.
/*
return lastIndexOf(value, coder(), length(), str, fromIndex);
*/
return lastIndexOf(this, str, fromIndex);
// END Android-changed: Implement with static lastIndexOf() that takes String parameters.
}
// BEGIN Android-added: Private static lastIndexOf method that takes String parameters.
// The use of length(), charAt(), etc. makes it more efficient for compressed strings.
/**
* The source is the string being searched, and the target is the string being searched for.
*
* @param source the characters being searched.
* @param target the characters being searched for.
* @param fromIndex the index to begin searching from.
*/
private static int lastIndexOf(String source, String target, int fromIndex) {
/*
* Check arguments; return immediately where possible. For
* consistency, don't check for null str.
*/
final int sourceLength = source.length();
final int targetLength = target.length();
int rightIndex = sourceLength - targetLength;
if (fromIndex < 0) {
return -1;
}
if (fromIndex > rightIndex) {
fromIndex = rightIndex;
}
/* Empty string always matches. */
if (targetLength == 0) {
return fromIndex;
}
int strLastIndex = targetLength - 1;
char strLastChar = target.charAt(strLastIndex);
int min = targetLength - 1;
int i = min + fromIndex;
startSearchForLastChar:
while (true) {
while (i >= min && source.charAt(i) != strLastChar) {
i--;
}
if (i < min) {
return -1;
}
int j = i - 1;
int start = j - (targetLength - 1);
int k = strLastIndex - 1;
while (j > start) {
if (source.charAt(j--) != target.charAt(k--)) {
i--;
continue startSearchForLastChar;
}
}
return start + 1;
}
}
// END Android-added: Private static lastIndexOf method that takes String parameters.
/**
* Code shared by String and AbstractStringBuilder to do searches. The
* source is the character array being searched, and the target
* is the string being searched for.
*
* @param src the characters being searched.
* @param srcCoder coder handles the mapping between bytes/chars
* @param srcCount count of the source string.
* @param tgtStr the characters being searched for.
* @param fromIndex the index to begin searching from.
*/
static int lastIndexOf(byte[] src, byte srcCoder, int srcCount,
String tgtStr, int fromIndex) {
// byte[] tgt = tgtStr.value;
byte tgtCoder = tgtStr.coder();
int tgtCount = tgtStr.length();
/*
* Check arguments; return immediately where possible. For
* consistency, don't check for null str.
*/
int rightIndex = srcCount - tgtCount;
if (fromIndex > rightIndex) {
fromIndex = rightIndex;
}
if (fromIndex < 0) {
return -1;
}
/* Empty string always matches. */
if (tgtCount == 0) {
return fromIndex;
}
if (srcCoder == tgtCoder) {
return srcCoder == LATIN1
// Android-changed: libcore doesn't store String as Latin1 or UTF16 byte[] field.
// ? StringLatin1.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex)
// : StringUTF16.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex);
? StringLatin1.lastIndexOf(src, srcCount, tgtStr, tgtCount, fromIndex)
: StringUTF16.lastIndexOf(src, srcCount, tgtStr, tgtCount, fromIndex);
}
if (srcCoder == LATIN1) { // && tgtCoder == UTF16
return -1;
}
// srcCoder == UTF16 && tgtCoder == LATIN1
// return StringUTF16.lastIndexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
return StringUTF16.lastIndexOfLatin1(src, srcCount, tgtStr, tgtCount, fromIndex);
}
/**
* Code shared by String and StringBuffer to do searches. The
* source is the character array being searched, and the target
* is the string being searched for.
*
* @param source the characters being searched.
* @param sourceOffset offset of the source string.
* @param sourceCount count of the source string.
* @param target the characters being searched for.
* @param targetOffset offset of the target string.
* @param targetCount count of the target string.
* @param fromIndex the index to begin searching from.
*/
static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
char[] target, int targetOffset, int targetCount,
int fromIndex) {
/*
* Check arguments; return immediately where possible. For
* consistency, don't check for null str.
*/
int rightIndex = sourceCount - targetCount;
if (fromIndex < 0) {
return -1;
}
if (fromIndex > rightIndex) {
fromIndex = rightIndex;
}
/* Empty string always matches. */
if (targetCount == 0) {
return fromIndex;
}
int strLastIndex = targetOffset + targetCount - 1;
char strLastChar = target[strLastIndex];
int min = sourceOffset + targetCount - 1;
int i = min + fromIndex;
startSearchForLastChar:
while (true) {
while (i >= min && source[i] != strLastChar) {
i--;
}
if (i < min) {
return -1;
}
int j = i - 1;
int start = j - (targetCount - 1);
int k = strLastIndex - 1;
while (j > start) {
if (source[j--] != target[k--]) {
i--;
continue startSearchForLastChar;
}
}
return start - sourceOffset + 1;
}
}
/**
* Returns a string that is a substring of this string. The
* substring begins with the character at the specified index and
* extends to the end of this string.
*
* @param beginIndex the beginning index, inclusive.
* @return the specified substring.
* @exception IndexOutOfBoundsException if
* {@code beginIndex} is negative or larger than the
* length of this {@code String} object.
*/
public String substring(int beginIndex) {
if (beginIndex < 0) {
throw new StringIndexOutOfBoundsException(this, beginIndex);
}
int subLen = length() - beginIndex;
if (subLen < 0) {
throw new StringIndexOutOfBoundsException(this, beginIndex);
}
if (beginIndex == 0) {
return this;
}
// BEGIN Android-changed: Use native fastSubstring instead of String constructor.
/*
return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
: StringUTF16.newString(value, beginIndex, subLen);
*/
return fastSubstring(beginIndex, subLen);
// END Android-changed: Use native fastSubstring instead of String constructor.
}
/**
* Returns a string that is a substring of this string. The
* substring begins at the specified {@code beginIndex} and
* extends to the character at index {@code endIndex - 1}.
* Thus the length of the substring is {@code endIndex-beginIndex}.
*
* "unhappy".substring(2) returns "happy"
* "Harbison".substring(3) returns "bison"
* "emptiness".substring(9) returns "" (an empty string)
*
*
* @param beginIndex the beginning index, inclusive.
* @param endIndex the ending index, exclusive.
* @return the specified substring.
* @exception IndexOutOfBoundsException if the
* {@code beginIndex} is negative, or
* {@code endIndex} is larger than the length of
* this {@code String} object, or
* {@code beginIndex} is larger than
* {@code endIndex}.
*/
public String substring(int beginIndex, int endIndex) {
int length = length();
checkBoundsBeginEnd(beginIndex, endIndex, length);
int subLen = endIndex - beginIndex;
if (beginIndex == 0 && endIndex == length) {
return this;
}
// BEGIN Android-changed: Use native fastSubstring instead of String constructor.
/*
return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
: StringUTF16.newString(value, beginIndex, subLen);
*/
return fastSubstring(beginIndex, subLen);
// END Android-changed: Use native fastSubstring instead of String constructor.
}
// BEGIN Android-added: Native method to access char storage managed by runtime.
@FastNative
private native String fastSubstring(int start, int length);
// END Android-added: Native method to access char storage managed by runtime.
/**
* Returns a character sequence that is a subsequence of this sequence.
*
*
* "hamburger".substring(4, 8) returns "urge"
* "smiles".substring(1, 5) returns "mile"
*
*
* behaves in exactly the same way as the invocation
*
*
* str.subSequence(begin, end)
*
* @apiNote
* This method is defined so that the {@code String} class can implement
* the {@link CharSequence} interface.
*
* @param beginIndex the begin index, inclusive.
* @param endIndex the end index, exclusive.
* @return the specified subsequence.
*
* @throws IndexOutOfBoundsException
* if {@code beginIndex} or {@code endIndex} is negative,
* if {@code endIndex} is greater than {@code length()},
* or if {@code beginIndex} is greater than {@code endIndex}
*
* @since 1.4
* @spec JSR-51
*/
public CharSequence subSequence(int beginIndex, int endIndex) {
return this.substring(beginIndex, endIndex);
}
/**
* Concatenates the specified string to the end of this string.
*
* str.substring(begin, end)
*
* @param str the {@code String} that is concatenated to the end
* of this {@code String}.
* @return a string that represents the concatenation of this object's
* characters followed by the string argument's characters.
*/
// BEGIN Android-changed: Replace with implementation in runtime to access chars (see above).
/*
public String concat(String str) {
if (str.isEmpty()) {
return this;
}
if (coder() == str.coder()) {
byte[] val = this.value;
byte[] oval = str.value;
int len = val.length + oval.length;
byte[] buf = Arrays.copyOf(val, len);
System.arraycopy(oval, 0, buf, val.length, oval.length);
return new String(buf, coder);
}
int len = length();
int olen = str.length();
byte[] buf = StringUTF16.newBytesFor(len + olen);
getBytes(buf, 0, UTF16);
str.getBytes(buf, len, UTF16);
return new String(buf, UTF16);
}
*/
@FastNative
public native String concat(String str);
// END Android-changed: Replace with implementation in runtime to access chars (see above).
/**
* Returns a string resulting from replacing all occurrences of
* {@code oldChar} in this string with {@code newChar}.
*
* "cares".concat("s") returns "caress"
* "to".concat("get").concat("her") returns "together"
*
*
* @param oldChar the old character.
* @param newChar the new character.
* @return a string derived from this string by replacing every
* occurrence of {@code oldChar} with {@code newChar}.
*/
public String replace(char oldChar, char newChar) {
// BEGIN Android-changed: Replace with implementation using native doReplace method.
if (oldChar != newChar) {
/*
String ret = isLatin1() ? StringLatin1.replace(value, oldChar, newChar)
: StringUTF16.replace(value, oldChar, newChar);
if (ret != null) {
return ret;
}
*/
final int len = length();
for (int i = 0; i < len; ++i) {
if (charAt(i) == oldChar) {
return doReplace(oldChar, newChar);
}
}
}
// END Android-changed: Replace with implementation using native doReplace method.
return this;
}
// BEGIN Android-added: Native method to access char storage managed by runtime.
// Implementation of replace(char oldChar, char newChar) called when we found a match.
@FastNative
private native String doReplace(char oldChar, char newChar);
// END Android-added: Native method to access char storage managed by runtime.
/**
* Tells whether or not this string matches the given regular expression.
*
*
* "mesquite in your cellar".replace('e', 'o')
* returns "mosquito in your collar"
* "the war of baronets".replace('r', 'y')
* returns "the way of bayonets"
* "sparring with a purple porpoise".replace('p', 't')
* returns "starring with a turtle tortoise"
* "JonL".replace('q', 'x') returns "JonL" (no change)
*
* {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
* matches(regex, str)}
*
*
* @param regex
* the regular expression to which this string is to be matched
*
* @return {@code true} if, and only if, this string matches the
* given regular expression
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public boolean matches(String regex) {
return Pattern.matches(regex, this);
}
/**
* Returns true if and only if this string contains the specified
* sequence of char values.
*
* @param s the sequence to search for
* @return true if this string contains {@code s}, false otherwise
* @since 1.5
*/
public boolean contains(CharSequence s) {
return indexOf(s.toString()) >= 0;
}
/**
* Replaces the first substring of this string that matches the given regular expression with the
* given replacement.
*
*
*
*
*
* {@link java.util.regex.Pattern}.{@link
* java.util.regex.Pattern#compile compile}(regex).{@link
* java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(str).{@link
* java.util.regex.Matcher#replaceFirst replaceFirst}(repl)
*
*
*
*
*
* {@link java.util.regex.Pattern}.{@link
* java.util.regex.Pattern#compile compile}(regex).{@link
* java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(str).{@link
* java.util.regex.Matcher#replaceAll replaceAll}(repl)
*
*
*
*
*
*
*
*
*
*
*
*
*
* Regex
* Limit
* Result
*
* :
* 2
* {@code { "boo", "and:foo" }}
*
* 5
* {@code { "boo", "and", "foo" }}
*
* -2
* {@code { "boo", "and", "foo" }}
* o
* 5
* {@code { "b", "", ":and:f", "", "" }}
*
* -2
* {@code { "b", "", ":and:f", "", "" }}
*
*
* 0
* {@code { "b", "", ":and:f" }}
*
*
*
* @param regex
* the delimiting regular expression
*
* @param limit
* the result threshold, as described above
*
* @return the array of strings computed by splitting this string
* around matches of the given regular expression
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public String[] split(String regex, int limit) {
// BEGIN Android-changed: Replace custom fast-path with use of new Pattern.fastSplit method.
// Try fast splitting without allocating Pattern object
/*
/* fastpath if the regex is a
(1)one-char String and this character is not one of the
RegEx's meta characters ".$|()[{^?*+\\", or
(2)two-char String and the first char is the backslash and
the second is not the ascii digit or ascii letter.
*
char ch = 0;
if (((regex.length() == 1 &&
".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
(regex.length() == 2 &&
regex.charAt(0) == '\\' &&
(((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
((ch-'a')|('z'-ch)) < 0 &&
((ch-'A')|('Z'-ch)) < 0)) &&
(ch < Character.MIN_HIGH_SURROGATE ||
ch > Character.MAX_LOW_SURROGATE))
{
int off = 0;
int next = 0;
boolean limited = limit > 0;
ArrayList
* {@link java.util.regex.Pattern}.{@link
* java.util.regex.Pattern#compile compile}(regex).{@link
* java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(str, n)
*
*
*
*
* @param regex
* the delimiting regular expression
*
* @return the array of strings computed by splitting this string
* around matches of the given regular expression
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public String[] split(String regex) {
return split(regex, 0);
}
/**
* Returns a new String composed of copies of the
* {@code CharSequence elements} joined together with a copy of
* the specified {@code delimiter}.
*
*
*
*
*
*
*
*
* Regex
* Result
*
* :
* {@code { "boo", "and", "foo" }}
*
* o
* {@code { "b", "", ":and:f" }} For example,
*
*
* Note that if an element is null, then {@code "null"} is added.
*
* @param delimiter the delimiter that separates each element
* @param elements the elements to join together.
*
* @return a new {@code String} that is composed of the {@code elements}
* separated by the {@code delimiter}
*
* @throws NullPointerException If {@code delimiter} or {@code elements}
* is {@code null}
*
* @see java.util.StringJoiner
* @since 1.8
*/
public static String join(CharSequence delimiter, CharSequence... elements) {
Objects.requireNonNull(delimiter);
Objects.requireNonNull(elements);
// Number of elements not likely worth Arrays.stream overhead.
StringJoiner joiner = new StringJoiner(delimiter);
for (CharSequence cs: elements) {
joiner.add(cs);
}
return joiner.toString();
}
/**
* Returns a new {@code String} composed of copies of the
* {@code CharSequence elements} joined together with a copy of the
* specified {@code delimiter}.
*
* {@code
* String message = String.join("-", "Java", "is", "cool");
* // message returned is: "Java-is-cool"
* }
For example,
*
*
* Note that if an individual element is {@code null}, then {@code "null"} is added.
*
* @param delimiter a sequence of characters that is used to separate each
* of the {@code elements} in the resulting {@code String}
* @param elements an {@code Iterable} that will have its {@code elements}
* joined together.
*
* @return a new {@code String} that is composed from the {@code elements}
* argument
*
* @throws NullPointerException If {@code delimiter} or {@code elements}
* is {@code null}
*
* @see #join(CharSequence,CharSequence...)
* @see java.util.StringJoiner
* @since 1.8
*/
public static String join(CharSequence delimiter,
Iterable extends CharSequence> elements) {
Objects.requireNonNull(delimiter);
Objects.requireNonNull(elements);
StringJoiner joiner = new StringJoiner(delimiter);
for (CharSequence cs: elements) {
joiner.add(cs);
}
return joiner.toString();
}
/**
* Converts all of the characters in this {@code String} to lower
* case using the rules of the given {@code Locale}. Case mapping is based
* on the Unicode Standard version specified by the {@link java.lang.Character Character}
* class. Since case mappings are not always 1:1 char mappings, the resulting
* {@code String} may be a different length than the original {@code String}.
* {@code
* List
*
*
* @param locale use the case transformation rules for this locale
* @return the {@code String}, converted to lowercase.
* @see java.lang.String#toLowerCase()
* @see java.lang.String#toUpperCase()
* @see java.lang.String#toUpperCase(Locale)
* @since 1.1
*/
public String toLowerCase(Locale locale) {
// BEGIN Android-changed: Replace custom code with call to new CaseMapper class.
/*
return isLatin1() ? StringLatin1.toLowerCase(this, value, locale)
: StringUTF16.toLowerCase(this, value, locale);
*/
return CaseMapper.toLowerCase(locale, this);
// END Android-changed: Replace custom code with call to new CaseMapper class.
}
/**
* Converts all of the characters in this {@code String} to lower
* case using the rules of the default locale. This is equivalent to calling
* {@code toLowerCase(Locale.getDefault())}.
*
*
*
*
*
*
* Language Code of Locale
* Upper Case
* Lower Case
* Description
*
*
* tr (Turkish)
* \u0130
* \u0069
* capital letter I with dot above -> small letter i
*
*
* tr (Turkish)
* \u0049
* \u0131
* capital letter I -> small letter dotless i
*
*
* (all)
* French Fries
* french fries
* lowercased all chars in String
*
*
*
* (all)
*
* ΙΧΘΥΣ
* ιχθυσ
* lowercased all chars in String
*
*
* @param locale use the case transformation rules for this locale
* @return the {@code String}, converted to uppercase.
* @see java.lang.String#toUpperCase()
* @see java.lang.String#toLowerCase()
* @see java.lang.String#toLowerCase(Locale)
* @since 1.1
*/
public String toUpperCase(Locale locale) {
// BEGIN Android-changed: Replace custom code with call to new CaseMapper class.
/*
return isLatin1() ? StringLatin1.toUpperCase(this, value, locale)
: StringUTF16.toUpperCase(this, value, locale);
*/
return CaseMapper.toUpperCase(locale, this, length());
// END Android-changed: Replace custom code with call to new CaseMapper class.
}
/**
* Converts all of the characters in this {@code String} to upper
* case using the rules of the default locale. This method is equivalent to
* {@code toUpperCase(Locale.getDefault())}.
*
*
*
*
*
*
* Language Code of Locale
* Lower Case
* Upper Case
* Description
*
*
* tr (Turkish)
* \u0069
* \u0130
* small letter i -> capital letter I with dot above
*
*
* tr (Turkish)
* \u0131
* \u0049
* small letter dotless i -> capital letter I
*
*
* (all)
* \u00df
* \u0053 \u0053
* small letter sharp s -> two letters: SS
*
*
*
* (all)
* Fahrvergnügen
* FAHRVERGNÜGEN
*
*
* This method treats the incidental
* {@linkplain Character#isWhitespace(int) white space} as indentation to be
* stripped, producing a string that preserves the relative indentation of
* the content. Using | to visualize the start of each line of the string:
*
* String html = """
* ..............<html>
* .............. <body>
* .............. <p>Hello, world</p>
* .............. </body>
* ..............</html>
* ..............""";
*
* First, the individual lines of this string are extracted. A line
* is a sequence of zero or more characters followed by either a line
* terminator or the end of the string.
* If the string has at least one line terminator, the last line consists
* of the characters between the last terminator and the end of the string.
* Otherwise, if the string has no terminators, the last line is the start
* of the string to the end of the string, in other words, the entire
* string.
* A line does not include the line terminator.
*
* |<html>
* | <body>
* | <p>Hello, world</p>
* | </body>
* |</html>
*
*
*
*
*
* @implNote
* This method does not translate Unicode escapes such as "{@code \u005cu2022}".
* Unicode escapes are translated by the Java compiler when reading input characters and
* are not part of the string literal specification.
*
* @throws IllegalArgumentException when an escape sequence is malformed.
*
* @return String with escape sequences translated.
*
* @jls 3.10.7 Escape Sequences
*
* @since 15
*/
public String translateEscapes() {
if (isEmpty()) {
return "";
}
char[] chars = toCharArray();
int length = chars.length;
int from = 0;
int to = 0;
while (from < length) {
char ch = chars[from++];
if (ch == '\\') {
ch = from < length ? chars[from++] : '\0';
switch (ch) {
case 'b':
ch = '\b';
break;
case 'f':
ch = '\f';
break;
case 'n':
ch = '\n';
break;
case 'r':
ch = '\r';
break;
case 's':
ch = ' ';
break;
case 't':
ch = '\t';
break;
case '\'':
case '\"':
case '\\':
// as is
break;
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
int limit = Integer.min(from + (ch <= '3' ? 2 : 1), length);
int code = ch - '0';
while (from < limit) {
ch = chars[from];
if (ch < '0' || '7' < ch) {
break;
}
from++;
code = (code << 3) | (ch - '0');
}
ch = (char)code;
break;
case '\n':
continue;
case '\r':
if (from < length && chars[from] == '\n') {
from++;
}
continue;
default: {
String msg = String.format(
"Invalid escape sequence: \\%c \\\\u%04X",
ch, (int)ch);
throw new IllegalArgumentException(msg);
}
}
}
chars[to++] = ch;
}
return new String(chars, 0, to);
}
/**
* This method allows the application of a function to {@code this}
* string. The function should expect a single String argument
* and produce an {@code R} result.
*
*
*
*
*
*
* Escape
* Name
* Translation
*
*
* {@code \u005Cb}
* backspace
* {@code U+0008}
*
*
* {@code \u005Ct}
* horizontal tab
* {@code U+0009}
*
*
* {@code \u005Cn}
* line feed
* {@code U+000A}
*
*
* {@code \u005Cf}
* form feed
* {@code U+000C}
*
*
* {@code \u005Cr}
* carriage return
* {@code U+000D}
*
*
* {@code \u005Cs}
* space
* {@code U+0020}
*
*
* {@code \u005C"}
* double quote
* {@code U+0022}
*
*
* {@code \u005C'}
* single quote
* {@code U+0027}
*
*
* {@code \u005C\u005C}
* backslash
* {@code U+005C}
*
*
* {@code \u005C0 - \u005C377}
* octal escape
* code point equivalents
*
*
*
* {@code \u005C
* continuation
* discard
*