/* * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package test.java.lang.StrictMath; /** * A transliteration of the "Freely Distributable Math Library" algorithms from C into Java. That * is, this port of the algorithms is as close to the C originals as possible while still being * readable legal Java. */ public class FdlibmTranslit { private FdlibmTranslit() { } /** * Return the low-order 32 bits of the double argument as an int. */ private static int __LO(double x) { long transducer = Double.doubleToRawLongBits(x); return (int) transducer; } /** * Return a double with its low-order bits of the second argument and the high-order bits of the * first argument.. */ private static double __LO(double x, int low) { long transX = Double.doubleToRawLongBits(x); return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) | (low & 0x0000_0000_FFFF_FFFFL)); } /** * Return the high-order 32 bits of the double argument as an int. */ private static int __HI(double x) { long transducer = Double.doubleToRawLongBits(x); return (int) (transducer >> 32); } /** * Return a double with its high-order bits of the second argument and the low-order bits of the * first argument.. */ private static double __HI(double x, int high) { long transX = Double.doubleToRawLongBits(x); return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) | (((long) high)) << 32); } public static double hypot(double x, double y) { return Hypot.compute(x, y); } /** * cbrt(x) Return cube root of x */ public static class Cbrt { // unsigned private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */ private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */ private static final double C = 5.42857142857142815906e-01; /* 19/35 = 0x3FE15F15, 0xF15F15F1 */ private static final double D = -7.05306122448979611050e-01; /* -864/1225 = 0xBFE691DE, 0x2532C834 */ private static final double E = 1.41428571428571436819e+00; /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */ private static final double F = 1.60714285714285720630e+00; /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */ private static final double G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */ public static strictfp double compute(double x) { int hx; double r, s, t = 0.0, w; int sign; // unsigned hx = __HI(x); // high word of x sign = hx & 0x80000000; // sign= sign(x) hx ^= sign; if (hx >= 0x7ff00000) { return (x + x); // cbrt(NaN,INF) is itself } if ((hx | __LO(x)) == 0) { return (x); // cbrt(0) is itself } x = __HI(x, hx); // x <- |x| // rough cbrt to 5 bits if (hx < 0x00100000) { // subnormal number t = __HI(t, 0x43500000); // set t= 2**54 t *= x; t = __HI(t, __HI(t) / 3 + B2); } else { t = __HI(t, hx / 3 + B1); } // new cbrt to 23 bits, may be implemented in single precision r = t * t / x; s = C + r * t; t *= G + F / (s + E + D / s); // chopped to 20 bits and make it larger than cbrt(x) t = __LO(t, 0); t = __HI(t, __HI(t) + 0x00000001); // one step newton iteration to 53 bits with error less than 0.667 ulps s = t * t; // t*t is exact r = x / s; w = t + t; r = (r - t) / (w + r); // r-s is exact t = t + t * r; // restore the sign bit t = __HI(t, __HI(t) | sign); return (t); } } /** * hypot(x,y) * * Method : If (assume round-to-nearest) z = x*x + y*y has error less than sqrt(2)/2 ulp, than * sqrt(z) has error less than 1 ulp (exercise). * * So, compute sqrt(x*x + y*y) with some care as follows to get the error below 1 ulp: * * Assume x > y > 0; (if possible, set rounding to round-to-nearest) 1. if x > 2y use x1*x1 + * (y*y + (x2*(x + x1))) for x*x + y*y where x1 = x with lower 32 bits cleared, x2 = x - x1; * else 2. if x <= 2y use t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y)) where t1 = 2x with lower 32 * bits cleared, t2 = 2x - t1, y1= y with lower 32 bits chopped, y2 = y - y1. * * NOTE: scaling may be necessary if some argument is too large or too tiny * * Special cases: hypot(x,y) is INF if x or y is +INF or -INF; else hypot(x,y) is NAN if x or y * is NAN. * * Accuracy: hypot(x,y) returns sqrt(x^2 + y^2) with error less than 1 ulps (units in the last * place) */ static class Hypot { public static double compute(double x, double y) { double a = x; double b = y; double t1, t2, y1, y2, w; int j, k, ha, hb; ha = __HI(x) & 0x7fffffff; // high word of x hb = __HI(y) & 0x7fffffff; // high word of y if (hb > ha) { a = y; b = x; j = ha; ha = hb; hb = j; } else { a = x; b = y; } a = __HI(a, ha); // a <- |a| b = __HI(b, hb); // b <- |b| if ((ha - hb) > 0x3c00000) { return a + b; // x / y > 2**60 } k = 0; if (ha > 0x5f300000) { // a>2**500 if (ha >= 0x7ff00000) { // Inf or NaN w = a + b; // for sNaN if (((ha & 0xfffff) | __LO(a)) == 0) { w = a; } if (((hb ^ 0x7ff00000) | __LO(b)) == 0) { w = b; } return w; } // scale a and b by 2**-600 ha -= 0x25800000; hb -= 0x25800000; k += 600; a = __HI(a, ha); b = __HI(b, hb); } if (hb < 0x20b00000) { // b < 2**-500 if (hb <= 0x000fffff) { // subnormal b or 0 */ if ((hb | (__LO(b))) == 0) { return a; } t1 = 0; t1 = __HI(t1, 0x7fd00000); // t1=2^1022 b *= t1; a *= t1; k -= 1022; } else { // scale a and b by 2^600 ha += 0x25800000; // a *= 2^600 hb += 0x25800000; // b *= 2^600 k -= 600; a = __HI(a, ha); b = __HI(b, hb); } } // medium size a and b w = a - b; if (w > b) { t1 = 0; t1 = __HI(t1, ha); t2 = a - t1; w = Math.sqrt(t1 * t1 - (b * (-b) - t2 * (a + t1))); } else { a = a + a; y1 = 0; y1 = __HI(y1, hb); y2 = b - y1; t1 = 0; t1 = __HI(t1, ha + 0x00100000); t2 = a - t1; w = Math.sqrt(t1 * y1 - (w * (-w) - (t1 * y2 + t2 * b))); } if (k != 0) { t1 = 1.0; int t1_hi = __HI(t1); t1_hi += (k << 20); t1 = __HI(t1, t1_hi); return t1 * w; } else { return w; } } } /** * Returns the exponential of x. * * Method 1. Argument reduction: Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. Given x, * find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2. * * Here r will be represented as r = hi-lo for better accuracy. * * 2. Approximation of exp(r) by a special rational function on the interval [0,0.34658]: Write * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... We use a special Reme * algorithm on [0,0.34658] to generate a polynomial of degree 5 to approximate R. The maximum * error of this polynomial approximation is bounded by 2**-59. In other words, R(z) ~ 2.0 + * P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 (where z=r*r, and the values of P1 to P5 are * listed below) and | 5 | -59 | 2.0+P1*z+...+P5*z - R(z) | <= * 2 | | The computation of exp(r) thus becomes 2*r exp(r) = 1 + * ------- R - r r*R1(r) = 1 + r + ----------- (for better accuracy) 2 - R1(r) where 2 4 * 10 R1(r) = r - (P1*r + P2*r + ... + P5*r ). * * 3. Scale back to obtain exp(x): From step 1, we have exp(x) = 2^k * exp(r) * * Special cases: exp(INF) is INF, exp(NaN) is NaN; exp(-INF) is 0, and for finite argument, * only exp(0)=1 is exact. * * Accuracy: according to an error analysis, the error is always less than 1 ulp (unit in the * last place). * * Misc. info. For IEEE double if x > 7.09782712893383973096e+02 then exp(x) overflow if x < * -7.45133219101941108420e+02 then exp(x) underflow * * Constants: The hexadecimal values are the intended ones for the following constants. The * decimal values may be used, provided that the compiler will convert from decimal to binary * accurately enough to produce the hexadecimal values shown. */ static class Exp { private static final double ONE = 1.0; private static final double[] HAL_F = {0.5, -0.5,}; private static final double HUGE = 1.0e+300; private static final double TWOM_1000 = 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0*/ private static final double O_THRESHOLD = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */ private static final double U_THRESHOLD = -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */ private static final double[] LN_2_HI = {6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ -6.93147180369123816490e-01}; /* 0xbfe62e42, 0xfee00000 */ private static final double[] LN_2_LO = {1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ -1.90821492927058770002e-10,}; /* 0xbdea39ef, 0x35793c76 */ private static final double INV_LN_2 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */ private static final double P1 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */ private static final double P2 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */ private static final double P3 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */ private static final double P4 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */ private static final double P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ public static strictfp double compute(double x) { double y, hi = 0, lo = 0, c, t; int k = 0, xsb; /*unsigned*/ int hx; hx = __HI(x); /* high word of x */ xsb = (hx >> 31) & 1; /* sign bit of x */ hx &= 0x7fffffff; /* high word of |x| */ /* filter out non-finite argument */ if (hx >= 0x40862E42) { /* if |x|>=709.78... */ if (hx >= 0x7ff00000) { if (((hx & 0xfffff) | __LO(x)) != 0) { return x + x; /* NaN */ } else { return (xsb == 0) ? x : 0.0; /* exp(+-inf)={inf,0} */ } } if (x > O_THRESHOLD) { return HUGE * HUGE; /* overflow */ } if (x < U_THRESHOLD) { return TWOM_1000 * TWOM_1000; /* underflow */ } } /* argument reduction */ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ hi = x - LN_2_HI[xsb]; lo = LN_2_LO[xsb]; k = 1 - xsb - xsb; } else { k = (int) (INV_LN_2 * x + HAL_F[xsb]); t = k; hi = x - t * LN_2_HI[0]; /* t*ln2HI is exact here */ lo = t * LN_2_LO[0]; } x = hi - lo; } else if (hx < 0x3e300000) { /* when |x|<2**-28 */ if (HUGE + x > ONE) { return ONE + x;/* trigger inexact */ } } else { k = 0; } /* x is now in primary range */ t = x * x; c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); if (k == 0) { return ONE - ((x * c) / (c - 2.0) - x); } else { y = ONE - ((lo - (x * c) / (2.0 - c)) - hi); } if (k >= -1021) { y = __HI(y, __HI(y) + (k << 20)); /* add k to y's exponent */ return y; } else { y = __HI(y, __HI(y) + ((k + 1000) << 20));/* add k to y's exponent */ return y * TWOM_1000; } } } }