/* * SpanDSP - a series of DSP components for telephony * * g722_encode.c - The ITU G.722 codec, encode part. * * Written by Steve Underwood * * Copyright (C) 2005 Steve Underwood * * All rights reserved. * * Despite my general liking of the GPL, I place my own contributions * to this code in the public domain for the benefit of all mankind - * even the slimy ones who might try to proprietize my work and use it * to my detriment. * * Based on a single channel 64kbps only G.722 codec which is: * ***** Copyright (c) CMU 1993 ***** * Computer Science, Speech Group * Chengxiang Lu and Alex Hauptmann * * $Id: g722_encode.c,v 1.14 2006/07/07 16:37:49 steveu Exp $ */ /*! \file */ #include #include #include "g722_typedefs.h" #include "g722_enc_dec.h" #if !defined(FALSE) #define FALSE 0 #endif #if !defined(TRUE) #define TRUE (!FALSE) #endif #define PACKED_OUTPUT (0) #define BITS_PER_SAMPLE (8) #ifndef BUILD_FEATURE_G722_USE_INTRINSIC_SAT static __inline int16_t saturate(int32_t amp) { int16_t amp16; /* Hopefully this is optimised for the common case - not clipping */ amp16 = (int16_t) amp; if (amp == amp16) return amp16; if (amp > 0x7FFF) return 0x7FFF; return 0x8000; } #else static __inline int16_t saturate(int32_t val) { register int32_t res; __asm volatile ( "SSAT %0, #16, %1\n\t" :"=r"(res) :"r"(val) :); return (int16_t)res; } #endif /*- End of function --------------------------------------------------------*/ static void block4(g722_band_t *band, int d) { int wd1; int wd2; int wd3; int i; int sg[7]; int ap1, ap2; int sg0, sgi; int sz; /* Block 4, RECONS */ band->d[0] = d; band->r[0] = saturate(band->s + d); /* Block 4, PARREC */ band->p[0] = saturate(band->sz + d); /* Block 4, UPPOL2 */ for (i = 0; i < 3; i++) sg[i] = band->p[i] >> 15; wd1 = saturate(band->a[1] << 2); wd2 = (sg[0] == sg[1]) ? -wd1 : wd1; if (wd2 > 32767) wd2 = 32767; ap2 = (wd2 >> 7) + ((sg[0] == sg[2]) ? 128 : -128); ap2 += (band->a[2]*32512) >> 15; if (ap2 > 12288) ap2 = 12288; else if (ap2 < -12288) ap2 = -12288; band->ap[2] = ap2; /* Block 4, UPPOL1 */ sg[0] = band->p[0] >> 15; sg[1] = band->p[1] >> 15; wd1 = (sg[0] == sg[1]) ? 192 : -192; wd2 = (band->a[1]*32640) >> 15; ap1 = saturate(wd1 + wd2); wd3 = saturate(15360 - band->ap[2]); if (ap1 > wd3) ap1 = wd3; else if (ap1 < -wd3) ap1 = -wd3; band->ap[1] = ap1; /* Block 4, UPZERO */ /* Block 4, FILTEZ */ wd1 = (d == 0) ? 0 : 128; sg0 = sg[0] = d >> 15; for (i = 1; i < 7; i++) { sgi = band->d[i] >> 15; wd2 = (sgi == sg0) ? wd1 : -wd1; wd3 = (band->b[i]*32640) >> 15; band->bp[i] = saturate(wd2 + wd3); } /* Block 4, DELAYA */ sz = 0; for (i = 6; i > 0; i--) { int bi; band->d[i] = band->d[i - 1]; bi = band->b[i] = band->bp[i]; wd1 = saturate(band->d[i] + band->d[i]); sz += (bi*wd1) >> 15; } band->sz = sz; for (i = 2; i > 0; i--) { band->r[i] = band->r[i - 1]; band->p[i] = band->p[i - 1]; band->a[i] = band->ap[i]; } /* Block 4, FILTEP */ wd1 = saturate(band->r[1] + band->r[1]); wd1 = (band->a[1]*wd1) >> 15; wd2 = saturate(band->r[2] + band->r[2]); wd2 = (band->a[2]*wd2) >> 15; band->sp = saturate(wd1 + wd2); /* Block 4, PREDIC */ band->s = saturate(band->sp + band->sz); } /*- End of function --------------------------------------------------------*/ g722_encode_state_t *g722_encode_init(g722_encode_state_t *s, unsigned int rate, int options) { if (s == NULL) { #ifdef G722_SUPPORT_MALLOC if ((s = (g722_encode_state_t *) malloc(sizeof(*s))) == NULL) #endif return NULL; } memset(s, 0, sizeof(*s)); if (rate == 48000) s->bits_per_sample = 6; else if (rate == 56000) s->bits_per_sample = 7; else s->bits_per_sample = 8; s->band[0].det = 32; s->band[1].det = 8; return s; } /*- End of function --------------------------------------------------------*/ int g722_encode_release(g722_encode_state_t *s) { free(s); return 0; } /*- End of function --------------------------------------------------------*/ /* WebRtc, tlegrand: * Only define the following if bit-exactness with reference implementation * is needed. Will only have any effect if input signal is saturated. */ //#define RUN_LIKE_REFERENCE_G722 #ifdef RUN_LIKE_REFERENCE_G722 int16_t limitValues (int16_t rl) { int16_t yl; yl = (rl > 16383) ? 16383 : ((rl < -16384) ? -16384 : rl); return (yl); } /*- End of function --------------------------------------------------------*/ #endif static int16_t q6[32] = { 0, 35, 72, 110, 150, 190, 233, 276, 323, 370, 422, 473, 530, 587, 650, 714, 786, 858, 940, 1023, 1121, 1219, 1339, 1458, 1612, 1765, 1980, 2195, 2557, 2919, 0, 0 }; static int16_t iln[32] = { 0, 63, 62, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 0 }; static int16_t ilp[32] = { 0, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 0 }; static int16_t wl[8] = { -60, -30, 58, 172, 334, 538, 1198, 3042 }; static int16_t rl42[16] = { 0, 7, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 0 }; static int16_t ilb[32] = { 2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383, 2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834, 2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371, 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008 }; static int16_t qm4[16] = { 0, -20456, -12896, -8968, -6288, -4240, -2584, -1200, 20456, 12896, 8968, 6288, 4240, 2584, 1200, 0 }; static int16_t qm2[4] = { -7408, -1616, 7408, 1616 }; static int16_t qmf_coeffs[12] = { 3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11, }; static int16_t ihn[3] = {0, 1, 0}; static int16_t ihp[3] = {0, 3, 2}; static int16_t wh[3] = {0, -214, 798}; static int16_t rh2[4] = {2, 1, 2, 1}; int g722_encode(g722_encode_state_t *s, uint8_t g722_data[], const int16_t amp[], int len) { int dlow; int dhigh; int el; int wd; int wd1; int ril; int wd2; int il4; int ih2; int wd3; int eh; int mih; int i; int j; /* Low and high band PCM from the QMF */ int xlow; int xhigh; int g722_bytes; /* Even and odd tap accumulators */ int sumeven; int sumodd; int ihigh; int ilow; int code; g722_bytes = 0; xhigh = 0; for (j = 0; j < len; ) { if (s->itu_test_mode) { xlow = xhigh = amp[j++] >> 1; } else { { /* Apply the transmit QMF */ /* Shuffle the buffer down */ for (i = 0; i < 22; i++) s->x[i] = s->x[i + 2]; //TODO: if len is odd, then this can be a buffer overrun s->x[22] = amp[j++]; s->x[23] = amp[j++]; /* Discard every other QMF output */ sumeven = 0; sumodd = 0; for (i = 0; i < 12; i++) { sumodd += s->x[2*i]*qmf_coeffs[i]; sumeven += s->x[2*i + 1]*qmf_coeffs[11 - i]; } /* We shift by 12 to allow for the QMF filters (DC gain = 4096), plus 1 to allow for us summing two filters, plus 1 to allow for the 15 bit input to the G.722 algorithm. */ xlow = (sumeven + sumodd) >> 14; xhigh = (sumeven - sumodd) >> 14; #ifdef RUN_LIKE_REFERENCE_G722 /* The following lines are only used to verify bit-exactness * with reference implementation of G.722. Higher precision * is achieved without limiting the values. */ xlow = limitValues(xlow); xhigh = limitValues(xhigh); #endif } } /* Block 1L, SUBTRA */ el = saturate(xlow - s->band[0].s); /* Block 1L, QUANTL */ wd = (el >= 0) ? el : -(el + 1); for (i = 1; i < 30; i++) { wd1 = (q6[i]*s->band[0].det) >> 12; if (wd < wd1) break; } ilow = (el < 0) ? iln[i] : ilp[i]; /* Block 2L, INVQAL */ ril = ilow >> 2; wd2 = qm4[ril]; dlow = (s->band[0].det*wd2) >> 15; /* Block 3L, LOGSCL */ il4 = rl42[ril]; wd = (s->band[0].nb*127) >> 7; s->band[0].nb = wd + wl[il4]; if (s->band[0].nb < 0) s->band[0].nb = 0; else if (s->band[0].nb > 18432) s->band[0].nb = 18432; /* Block 3L, SCALEL */ wd1 = (s->band[0].nb >> 6) & 31; wd2 = 8 - (s->band[0].nb >> 11); wd3 = (wd2 < 0) ? (ilb[wd1] << -wd2) : (ilb[wd1] >> wd2); s->band[0].det = wd3 << 2; block4(&s->band[0], dlow); { int nb; /* Block 1H, SUBTRA */ eh = saturate(xhigh - s->band[1].s); /* Block 1H, QUANTH */ wd = (eh >= 0) ? eh : -(eh + 1); wd1 = (564*s->band[1].det) >> 12; mih = (wd >= wd1) ? 2 : 1; ihigh = (eh < 0) ? ihn[mih] : ihp[mih]; /* Block 2H, INVQAH */ wd2 = qm2[ihigh]; dhigh = (s->band[1].det*wd2) >> 15; /* Block 3H, LOGSCH */ ih2 = rh2[ihigh]; wd = (s->band[1].nb*127) >> 7; nb = wd + wh[ih2]; if (nb < 0) nb = 0; else if (nb > 22528) nb = 22528; s->band[1].nb = nb; /* Block 3H, SCALEH */ wd1 = (s->band[1].nb >> 6) & 31; wd2 = 10 - (s->band[1].nb >> 11); wd3 = (wd2 < 0) ? (ilb[wd1] << -wd2) : (ilb[wd1] >> wd2); s->band[1].det = wd3 << 2; block4(&s->band[1], dhigh); #if BITS_PER_SAMPLE == 8 code = ((ihigh << 6) | ilow); #elif BITS_PER_SAMPLE == 7 code = ((ihigh << 6) | ilow) >> 1; #elif BITS_PER_SAMPLE == 6 code = ((ihigh << 6) | ilow) >> 2; #endif } #if PACKED_OUTPUT == 1 /* Pack the code bits */ s->out_buffer |= (code << s->out_bits); s->out_bits += s->bits_per_sample; if (s->out_bits >= 8) { g722_data[g722_bytes++] = (uint8_t) (s->out_buffer & 0xFF); s->out_bits -= 8; s->out_buffer >>= 8; } #else g722_data[g722_bytes++] = (uint8_t) code; #endif } return g722_bytes; } /*- End of function --------------------------------------------------------*/ /*- End of file ------------------------------------------------------------*/