/****************************************************************************** * * Copyright 1999-2012 Broadcom Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /****************************************************************************** * * This file contains L2CAP internal definitions * ******************************************************************************/ #ifndef L2C_INT_H #define L2C_INT_H #include #include #include #include #include "internal_include/bt_target.h" #include "l2c_api.h" #include "l2cdefs.h" #include "macros.h" #include "osi/include/alarm.h" #include "osi/include/fixed_queue.h" #include "osi/include/list.h" #include "stack/include/bt_hdr.h" #include "stack/include/btm_sec_api_types.h" #include "stack/include/hci_error_code.h" #include "types/hci_role.h" #include "types/raw_address.h" #define L2CAP_MIN_MTU 48 /* Minimum acceptable MTU is 48 bytes */ #define MAX_ACTIVE_AVDT_CONN 2 constexpr uint16_t L2CAP_CREDIT_BASED_MIN_MTU = 64; constexpr uint16_t L2CAP_CREDIT_BASED_MIN_MPS = 64; /* * Timeout values (in milliseconds). */ #define L2CAP_LINK_ROLE_SWITCH_TIMEOUT_MS (10 * 1000) /* 10 seconds */ #define L2CAP_LINK_CONNECT_TIMEOUT_MS (60 * 1000) /* 60 seconds */ #define L2CAP_LINK_CONNECT_EXT_TIMEOUT_MS (120 * 1000) /* 120 seconds */ #define L2CAP_LINK_FLOW_CONTROL_TIMEOUT_MS (2 * 1000) /* 2 seconds */ #define L2CAP_LINK_DISCONNECT_TIMEOUT_MS (30 * 1000) /* 30 seconds */ #define L2CAP_CHNL_CONNECT_TIMEOUT_MS (60 * 1000) /* 60 seconds */ #define L2CAP_CHNL_CONNECT_EXT_TIMEOUT_MS (120 * 1000) /* 120 seconds */ #define L2CAP_CHNL_CFG_TIMEOUT_MS (30 * 1000) /* 30 seconds */ #define L2CAP_CHNL_DISCONNECT_TIMEOUT_MS (10 * 1000) /* 10 seconds */ #define L2CAP_DELAY_CHECK_SM4_TIMEOUT_MS (2 * 1000) /* 2 seconds */ #define L2CAP_WAIT_INFO_RSP_TIMEOUT_MS (3 * 1000) /* 3 seconds */ #define L2CAP_BLE_LINK_CONNECT_TIMEOUT_MS (30 * 1000) /* 30 seconds */ #define L2CAP_FCR_ACK_TIMEOUT_MS 200 /* 200 milliseconds */ /* Define the possible L2CAP channel states. The names of * the states may seem a bit strange, but they are taken from * the Bluetooth specification. */ typedef enum { CST_CLOSED, /* Channel is in closed state */ CST_ORIG_W4_SEC_COMP, /* Originator waits security clearence */ CST_TERM_W4_SEC_COMP, /* Acceptor waits security clearence */ CST_W4_L2CAP_CONNECT_RSP, /* Waiting for peer conenct response */ CST_W4_L2CA_CONNECT_RSP, /* Waiting for upper layer connect rsp */ CST_CONFIG, /* Negotiating configuration */ CST_OPEN, /* Data transfer state */ CST_W4_L2CAP_DISCONNECT_RSP, /* Waiting for peer disconnect rsp */ CST_W4_L2CA_DISCONNECT_RSP /* Waiting for upper layer disc rsp */ } tL2C_CHNL_STATE; inline std::string channel_state_text(const tL2C_CHNL_STATE& state) { switch (state) { CASE_RETURN_TEXT(CST_CLOSED); CASE_RETURN_TEXT(CST_ORIG_W4_SEC_COMP); CASE_RETURN_TEXT(CST_TERM_W4_SEC_COMP); CASE_RETURN_TEXT(CST_W4_L2CAP_CONNECT_RSP); CASE_RETURN_TEXT(CST_W4_L2CA_CONNECT_RSP); CASE_RETURN_TEXT(CST_CONFIG); CASE_RETURN_TEXT(CST_OPEN); CASE_RETURN_TEXT(CST_W4_L2CAP_DISCONNECT_RSP); CASE_RETURN_TEXT(CST_W4_L2CA_DISCONNECT_RSP); default: return base::StringPrintf("UNKNOWN[%d]", state); } } /* Define the possible L2CAP link states */ typedef enum { LST_DISCONNECTED, LST_CONNECT_HOLDING, LST_CONNECTING_WAIT_SWITCH, LST_CONNECTING, LST_CONNECTED, LST_DISCONNECTING } tL2C_LINK_STATE; inline std::string link_state_text(const tL2C_LINK_STATE& state) { switch (state) { case LST_DISCONNECTED: return std::string("LST_DISCONNECTED"); case LST_CONNECT_HOLDING: return std::string("LST_CONNECT_HOLDING"); case LST_CONNECTING_WAIT_SWITCH: return std::string("LST_CONNECTING_WAIT_SWITCH"); case LST_CONNECTING: return std::string("LST_CONNECTING"); case LST_CONNECTED: return std::string("LST_CONNECTED"); case LST_DISCONNECTING: return std::string("LST_DISCONNECTING"); default: return std::string("UNKNOWN"); } } /* Define input events to the L2CAP link and channel state machines. The names * of the events may seem a bit strange, but they are taken from * the Bluetooth specification. */ typedef enum : uint16_t { /* Lower layer */ L2CEVT_LP_CONNECT_CFM = 0, /* connect confirm */ L2CEVT_LP_CONNECT_CFM_NEG = 1, /* connect confirm (failed) */ L2CEVT_LP_CONNECT_IND = 2, /* connect indication */ L2CEVT_LP_DISCONNECT_IND = 3, /* disconnect indication */ /* Security */ L2CEVT_SEC_COMP = 7, /* cleared successfully */ L2CEVT_SEC_COMP_NEG = 8, /* procedure failed */ /* Peer connection */ L2CEVT_L2CAP_CONNECT_REQ = 10, /* request */ L2CEVT_L2CAP_CONNECT_RSP = 11, /* response */ L2CEVT_L2CAP_CONNECT_RSP_PND = 12, /* response pending */ L2CEVT_L2CAP_CONNECT_RSP_NEG = 13, /* response (failed) */ /* Peer configuration */ L2CEVT_L2CAP_CONFIG_REQ = 14, /* request */ L2CEVT_L2CAP_CONFIG_RSP = 15, /* response */ L2CEVT_L2CAP_CONFIG_RSP_NEG = 16, /* response (failed) */ L2CEVT_L2CAP_DISCONNECT_REQ = 17, /* Peer disconnect request */ L2CEVT_L2CAP_DISCONNECT_RSP = 18, /* Peer disconnect response */ L2CEVT_L2CAP_INFO_RSP = 19, /* Peer information response */ L2CEVT_L2CAP_DATA = 20, /* Peer data */ /* Upper layer */ L2CEVT_L2CA_CONNECT_REQ = 21, /* connect request */ L2CEVT_L2CA_CONNECT_RSP = 22, /* connect response */ L2CEVT_L2CA_CONNECT_RSP_NEG = 23, /* connect response (failed)*/ L2CEVT_L2CA_CONFIG_REQ = 24, /* config request */ L2CEVT_L2CA_CONFIG_RSP = 25, /* config response */ L2CEVT_L2CA_DISCONNECT_REQ = 27, /* disconnect request */ L2CEVT_L2CA_DISCONNECT_RSP = 28, /* disconnect response */ L2CEVT_L2CA_DATA_READ = 29, /* data read */ L2CEVT_L2CA_DATA_WRITE = 30, /* data write */ L2CEVT_TIMEOUT = 32, /* Timeout */ L2CEVT_SEC_RE_SEND_CMD = 33, /* btm_sec has enough info to proceed */ L2CEVT_ACK_TIMEOUT = 34, /* RR delay timeout */ L2CEVT_L2CA_SEND_FLOW_CONTROL_CREDIT = 35, /* Upper layer credit packet \ */ /* Peer credit based connection */ L2CEVT_L2CAP_RECV_FLOW_CONTROL_CREDIT = 36, /* credit packet */ L2CEVT_L2CAP_CREDIT_BASED_CONNECT_REQ = 37, /* credit based connection request */ L2CEVT_L2CAP_CREDIT_BASED_CONNECT_RSP = 38, /* accepted credit based connection */ L2CEVT_L2CAP_CREDIT_BASED_CONNECT_RSP_NEG = 39, /* rejected credit based connection */ L2CEVT_L2CAP_CREDIT_BASED_RECONFIG_REQ = 40, /* credit based reconfig request*/ L2CEVT_L2CAP_CREDIT_BASED_RECONFIG_RSP = 41, /* credit based reconfig response */ /* Upper layer credit based connection */ L2CEVT_L2CA_CREDIT_BASED_CONNECT_REQ = 42, /* connect request */ L2CEVT_L2CA_CREDIT_BASED_CONNECT_RSP = 43, /* connect response */ L2CEVT_L2CA_CREDIT_BASED_CONNECT_RSP_NEG = 44, /* connect response (failed)*/ L2CEVT_L2CA_CREDIT_BASED_RECONFIG_REQ = 45, /* reconfig request */ } tL2CEVT; /* Constants for LE Dynamic PSM values */ #define LE_DYNAMIC_PSM_START 0x0080 #define LE_DYNAMIC_PSM_END 0x00FF #define LE_DYNAMIC_PSM_RANGE (LE_DYNAMIC_PSM_END - LE_DYNAMIC_PSM_START + 1) /* Return values for l2cu_process_peer_cfg_req() */ #define L2CAP_PEER_CFG_UNACCEPTABLE 0 #define L2CAP_PEER_CFG_OK 1 #define L2CAP_PEER_CFG_DISCONNECT 2 /* eL2CAP option constants */ /* Min retransmission timeout if no flush timeout or PBF */ #define L2CAP_MIN_RETRANS_TOUT 2000 /* Min monitor timeout if no flush timeout or PBF */ #define L2CAP_MIN_MONITOR_TOUT 12000 #define L2CAP_MAX_FCR_CFG_TRIES 2 /* Config attempts before disconnecting */ typedef uint8_t tL2C_BLE_FIXED_CHNLS_MASK; typedef struct { uint8_t next_tx_seq; /* Next sequence number to be Tx'ed */ uint8_t last_rx_ack; /* Last sequence number ack'ed by the peer */ uint8_t next_seq_expected; /* Next peer sequence number expected */ uint8_t last_ack_sent; /* Last peer sequence number ack'ed */ uint8_t num_tries; /* Number of retries to send a packet */ uint8_t max_held_acks; /* Max acks we can hold before sending */ bool remote_busy; /* true if peer has flowed us off */ bool rej_sent; /* Reject was sent */ bool srej_sent; /* Selective Reject was sent */ bool wait_ack; /* Transmitter is waiting ack (poll sent) */ bool rej_after_srej; /* Send a REJ when SREJ clears */ bool send_f_rsp; /* We need to send an F-bit response */ uint16_t rx_sdu_len; /* Length of the SDU being received */ BT_HDR* p_rx_sdu; /* Buffer holding the SDU being received */ fixed_queue_t* waiting_for_ack_q; /* Buffers sent and waiting for peer to ack */ fixed_queue_t* srej_rcv_hold_q; /* Buffers rcvd but held pending SREJ rsp */ fixed_queue_t* retrans_q; /* Buffers being retransmitted */ alarm_t* ack_timer; /* Timer delaying RR */ alarm_t* mon_retrans_timer; /* Timer Monitor or Retransmission */ } tL2C_FCRB; typedef struct { bool in_use; bool log_packets; uint16_t psm; uint16_t real_psm; /* This may be a dummy RCB for an o/b connection but */ /* this is the real PSM that we need to connect to */ tL2CAP_APPL_INFO api; tL2CAP_ERTM_INFO ertm_info; tL2CAP_LE_CFG_INFO coc_cfg; uint16_t my_mtu; uint16_t required_remote_mtu; } tL2C_RCB; #ifndef L2CAP_CBB_DEFAULT_DATA_RATE_BUFF_QUOTA #define L2CAP_CBB_DEFAULT_DATA_RATE_BUFF_QUOTA 100 #endif typedef struct { uint16_t psm; tBT_TRANSPORT transport; bool is_originator; tBTM_SEC_CALLBACK* p_callback; void* p_ref_data; } tL2CAP_SEC_DATA; /* Define a channel control block (CCB). There may be many channel control * blocks between the same two Bluetooth devices (i.e. on the same link). * Each CCB has unique local and remote CIDs. All channel control blocks on * the same physical link and are chained together. */ typedef struct t_l2c_ccb { bool in_use; /* true when in use, false when not */ tL2C_CHNL_STATE chnl_state; /* Channel state */ tL2CAP_LE_CFG_INFO local_conn_cfg; /* Our config for ble conn oriented channel */ tL2CAP_LE_CFG_INFO peer_conn_cfg; /* Peer device config ble conn oriented channel */ bool is_first_seg; /* Dtermine whether the received packet is the first segment or not */ BT_HDR* ble_sdu; /* Buffer for storing unassembled sdu*/ uint16_t ble_sdu_length; /* Length of unassembled sdu length*/ struct t_l2c_ccb* p_next_ccb; /* Next CCB in the chain */ struct t_l2c_ccb* p_prev_ccb; /* Previous CCB in the chain */ struct t_l2c_linkcb* p_lcb; /* Link this CCB is assigned to */ uint16_t local_cid; /* Local CID */ uint16_t remote_cid; /* Remote CID */ alarm_t* l2c_ccb_timer; /* CCB Timer Entry */ tL2C_RCB* p_rcb; /* Registration CB for this Channel */ #define IB_CFG_DONE 0x01 #define OB_CFG_DONE 0x02 #define RECONFIG_FLAG 0x04 /* True after initial configuration */ uint8_t config_done; /* Configuration flag word */ uint16_t remote_config_rsp_result; /* The config rsp result from remote */ uint8_t local_id; /* Transaction ID for local trans */ uint8_t remote_id; /* Transaction ID for local */ #define CCB_FLAG_NO_RETRY 0x01 /* no more retry */ #define CCB_FLAG_SENT_PENDING 0x02 /* already sent pending response */ uint8_t flags; bool connection_initiator; /* true if we sent ConnectReq */ tL2CAP_CFG_INFO our_cfg; /* Our saved configuration options */ tL2CAP_CFG_INFO peer_cfg; /* Peer's saved configuration options */ fixed_queue_t* xmit_hold_q; /* Transmit data hold queue */ bool cong_sent; /* Set when congested status sent */ uint16_t buff_quota; /* Buffer quota before sending congestion */ tL2CAP_CHNL_PRIORITY ccb_priority; /* Channel priority */ tL2CAP_CHNL_DATA_RATE tx_data_rate; /* Channel Tx data rate */ tL2CAP_CHNL_DATA_RATE rx_data_rate; /* Channel Rx data rate */ /* Fields used for eL2CAP */ tL2CAP_ERTM_INFO ertm_info; tL2C_FCRB fcrb; uint16_t tx_mps; /* TX MPS adjusted based on current controller */ uint16_t max_rx_mtu; uint8_t fcr_cfg_tries; /* Max number of negotiation attempts */ bool peer_cfg_already_rejected; /* If mode rejected once, set to true */ bool out_cfg_fcr_present; /* true if cfg response should include fcr options */ bool is_flushable; /* true if channel is flushable */ uint16_t fixed_chnl_idle_tout; /* Idle timeout to use for the fixed channel */ uint16_t tx_data_len; /* Number of LE frames that the remote can send to us (credit count in * remote). Valid only for LE CoC */ uint16_t remote_credit_count; /* used to indicate that ECOC is used */ bool ecoc{false}; bool reconfig_started; struct { struct { unsigned bytes{0}; unsigned packets{0}; void operator()(unsigned bytes) { this->bytes += bytes; this->packets++; } } rx, tx; struct { struct { unsigned bytes{0}; unsigned packets{0}; void operator()(unsigned bytes) { this->bytes += bytes; this->packets++; } } rx, tx; } dropped; } metrics; } tL2C_CCB; /*********************************************************************** * Define a queue of linked CCBs. */ typedef struct { tL2C_CCB* p_first_ccb; /* The first channel in this queue */ tL2C_CCB* p_last_ccb; /* The last channel in this queue */ } tL2C_CCB_Q; /* Round-Robin service for the same priority channels */ #define L2CAP_NUM_CHNL_PRIORITY \ 3 /* Total number of priority group (high, medium, low)*/ #define L2CAP_CHNL_PRIORITY_WEIGHT \ 5 /* weight per priority for burst transmission quota */ #define L2CAP_GET_PRIORITY_QUOTA(pri) \ ((L2CAP_NUM_CHNL_PRIORITY - (pri)) * L2CAP_CHNL_PRIORITY_WEIGHT) /* CCBs within the same LCB are served in round robin with priority It will make * sure that low priority channel (for example, HF signaling on RFCOMM) can be * sent to the headset even if higher priority channel (for example, AV media * channel) is congested. */ typedef struct { tL2C_CCB* p_serve_ccb; /* current serving ccb within priority group */ tL2C_CCB* p_first_ccb; /* first ccb of priority group */ uint8_t num_ccb; /* number of channels in priority group */ uint8_t quota; /* burst transmission quota */ } tL2C_RR_SERV; typedef enum : uint8_t { /* disable update connection parameters */ L2C_BLE_CONN_UPDATE_DISABLE = (1u << 0), /* new connection parameter to be set */ L2C_BLE_NEW_CONN_PARAM = (1u << 1), /* waiting for connection update finished */ L2C_BLE_UPDATE_PENDING = (1u << 2), /* not using default connection parameters */ L2C_BLE_NOT_DEFAULT_PARAM = (1u << 3), } tCONN_UPDATE_MASK; /* Define a link control block. There is one link control block between * this device and any other device (i.e. BD ADDR). */ typedef struct t_l2c_linkcb { bool in_use; /* true when in use, false when not */ tL2C_LINK_STATE link_state; alarm_t* l2c_lcb_timer; /* Timer entry for timeout evt */ // This tracks if the link has ever either (a) // been used for a dynamic channel (EATT or L2CAP CoC), or (b) has been a // GATT client. If false, the local device is just a GATT server, so for // backwards compatibility we never do a link timeout. bool with_active_local_clients{false}; private: uint16_t handle_; /* The handle used with LM */ friend void l2cu_set_lcb_handle(struct t_l2c_linkcb& p_lcb, uint16_t handle); void SetHandle(uint16_t handle) { handle_ = handle; } public: uint16_t Handle() const { return handle_; } void InvalidateHandle() { handle_ = HCI_INVALID_HANDLE; } tL2C_CCB_Q ccb_queue; /* Queue of CCBs on this LCB */ tL2C_CCB* p_pending_ccb; /* ccb of waiting channel during link disconnect */ alarm_t* info_resp_timer; /* Timer entry for info resp timeout evt */ RawAddress remote_bd_addr; /* The BD address of the remote */ private: tHCI_ROLE link_role_{HCI_ROLE_CENTRAL}; /* Central or peripheral */ public: tHCI_ROLE LinkRole() const { return link_role_; } bool IsLinkRoleCentral() const { return link_role_ == HCI_ROLE_CENTRAL; } bool IsLinkRolePeripheral() const { return link_role_ == HCI_ROLE_PERIPHERAL; } void SetLinkRoleAsCentral() { link_role_ = HCI_ROLE_CENTRAL; } void SetLinkRoleAsPeripheral() { link_role_ = HCI_ROLE_PERIPHERAL; } uint8_t signal_id; /* Signalling channel id */ uint8_t cur_echo_id; /* Current id value for echo request */ uint16_t idle_timeout; /* Idle timeout */ private: bool is_bonding_{false}; /* True - link active only for bonding */ public: bool IsBonding() const { return is_bonding_; } void SetBonding() { is_bonding_ = true; } void ResetBonding() { is_bonding_ = false; } uint16_t link_xmit_quota; /* Num outstanding pkts allowed */ bool is_round_robin_scheduling() const { return link_xmit_quota == 0; } uint16_t sent_not_acked; /* Num packets sent but not acked */ void update_outstanding_packets(uint16_t packets_acked) { if (sent_not_acked > packets_acked) sent_not_acked -= packets_acked; else sent_not_acked = 0; } bool w4_info_rsp; /* true when info request is active */ uint32_t peer_ext_fea; /* Peer's extended features mask */ list_t* link_xmit_data_q; /* Link transmit data buffer queue */ uint8_t peer_chnl_mask[L2CAP_FIXED_CHNL_ARRAY_SIZE]; tL2CAP_PRIORITY acl_priority; bool is_normal_priority() const { return acl_priority == L2CAP_PRIORITY_NORMAL; } bool is_high_priority() const { return acl_priority == L2CAP_PRIORITY_HIGH; } bool set_priority(tL2CAP_PRIORITY priority) { if (acl_priority != priority) { acl_priority = priority; return true; } return false; } bool use_latency_mode = false; tL2CAP_LATENCY preset_acl_latency = L2CAP_LATENCY_NORMAL; tL2CAP_LATENCY acl_latency = L2CAP_LATENCY_NORMAL; bool is_normal_latency() const { return acl_latency == L2CAP_LATENCY_NORMAL; } bool is_low_latency() const { return acl_latency == L2CAP_LATENCY_LOW; } bool set_latency(tL2CAP_LATENCY latency) { if (acl_latency != latency) { acl_latency = latency; return true; } return false; } tL2C_CCB* p_fixed_ccbs[L2CAP_NUM_FIXED_CHNLS]; private: tHCI_REASON disc_reason_{HCI_ERR_UNDEFINED}; public: tHCI_REASON DisconnectReason() const { return disc_reason_; } void SetDisconnectReason(tHCI_REASON disc_reason) { disc_reason_ = disc_reason; } tBT_TRANSPORT transport; bool is_transport_br_edr() const { return transport == BT_TRANSPORT_BR_EDR; } bool is_transport_ble() const { return transport == BT_TRANSPORT_LE; } uint16_t tx_data_len; /* tx data length used in data length extension */ fixed_queue_t* le_sec_pending_q; /* LE coc channels waiting for security check completion */ uint8_t sec_act; uint8_t conn_update_mask; bool conn_update_blocked_by_service_discovery; bool conn_update_blocked_by_profile_connection; uint16_t min_interval; /* parameters as requested by peripheral */ uint16_t max_interval; uint16_t latency; uint16_t timeout; uint16_t min_ce_len; uint16_t max_ce_len; #define L2C_BLE_SUBRATE_REQ_DISABLE 0x1 // disable subrate req #define L2C_BLE_NEW_SUBRATE_PARAM 0x2 // new subrate req parameter to be set #define L2C_BLE_SUBRATE_REQ_PENDING 0x4 // waiting for subrate to be completed /* subrate req params */ uint16_t subrate_min; uint16_t subrate_max; uint16_t max_latency; uint16_t cont_num; uint16_t supervision_tout; uint8_t subrate_req_mask; /* each priority group is limited burst transmission */ /* round robin service for the same priority channels */ tL2C_RR_SERV rr_serv[L2CAP_NUM_CHNL_PRIORITY]; uint8_t rr_pri; /* current serving priority group */ /* Pending ECOC reconfiguration data */ tL2CAP_LE_CFG_INFO pending_ecoc_reconfig_cfg; uint8_t pending_ecoc_reconfig_cnt; /* This is to keep list of local cids use in the * credit based connection response. */ uint16_t pending_ecoc_connection_cids[L2CAP_CREDIT_BASED_MAX_CIDS]; uint8_t pending_ecoc_conn_cnt; uint16_t pending_lead_cid; uint16_t pending_l2cap_result; unsigned number_of_active_dynamic_channels() const { unsigned cnt = 0; const tL2C_CCB* cur = ccb_queue.p_first_ccb; while (cur != nullptr) { cnt++; cur = cur->p_next_ccb; } return cnt; } } tL2C_LCB; /* Define the L2CAP control structure */ typedef struct { uint16_t controller_xmit_window; /* Total ACL window for all links */ uint16_t round_robin_quota; /* Round-robin link quota */ uint16_t round_robin_unacked; /* Round-robin unacked */ bool is_classic_round_robin_quota_available() const { return round_robin_unacked < round_robin_quota; } void update_outstanding_classic_packets(uint16_t num_packets_acked) { if (round_robin_unacked > num_packets_acked) round_robin_unacked -= num_packets_acked; else round_robin_unacked = 0; } bool check_round_robin; /* Do a round robin check */ bool is_cong_cback_context; tL2C_LCB lcb_pool[MAX_L2CAP_LINKS]; /* Link Control Block pool */ tL2C_CCB ccb_pool[MAX_L2CAP_CHANNELS]; /* Channel Control Block pool */ tL2C_RCB rcb_pool[MAX_L2CAP_CLIENTS]; /* Registration info pool */ tL2C_CCB* p_free_ccb_first; /* Pointer to first free CCB */ tL2C_CCB* p_free_ccb_last; /* Pointer to last free CCB */ bool disallow_switch; /* false, to allow switch at create conn */ uint16_t num_lm_acl_bufs; /* # of ACL buffers on controller */ uint16_t idle_timeout; /* Idle timeout */ tL2C_LCB* p_cur_hcit_lcb; /* Current HCI Transport buffer */ uint16_t num_used_lcbs; /* Number of active link control blocks */ uint16_t non_flushable_pbf; /* L2CAP_PKT_START_NON_FLUSHABLE if controller supports */ /* Otherwise, L2CAP_PKT_START */ #if (L2CAP_CONFORMANCE_TESTING == TRUE) uint32_t test_info_resp; /* Conformance testing needs a dynamic response */ #endif tL2CAP_FIXED_CHNL_REG fixed_reg[L2CAP_NUM_FIXED_CHNLS]; /* Reg info for fixed channels */ uint16_t num_ble_links_active; /* Number of LE links active */ uint16_t controller_le_xmit_window; /* Total ACL window for all links */ tL2C_BLE_FIXED_CHNLS_MASK l2c_ble_fixed_chnls_mask; // LE fixed channels mask uint16_t num_lm_ble_bufs; /* # of ACL buffers on controller */ uint16_t ble_round_robin_quota; /* Round-robin link quota */ uint16_t ble_round_robin_unacked; /* Round-robin unacked */ bool is_ble_round_robin_quota_available() const { return ble_round_robin_unacked < ble_round_robin_quota; } void update_outstanding_le_packets(uint16_t num_packets_acked) { if (ble_round_robin_unacked > num_packets_acked) ble_round_robin_unacked -= num_packets_acked; else ble_round_robin_unacked = 0; } bool ble_check_round_robin; /* Do a round robin check */ tL2C_RCB ble_rcb_pool[BLE_MAX_L2CAP_CLIENTS]; /* Registration info pool */ uint16_t le_dyn_psm; /* Next LE dynamic PSM value to try to assign */ bool le_dyn_psm_assigned[LE_DYNAMIC_PSM_RANGE]; /* Table of assigned LE PSM */ } tL2C_CB; /* Define a structure that contains the information about a connection. * This structure is used to pass between functions, and not all the * fields will always be filled in. */ typedef struct { RawAddress bd_addr; /* Remote BD address */ uint8_t status; /* Connection status */ uint16_t psm; /* PSM of the connection */ uint16_t l2cap_result; /* L2CAP result */ uint16_t l2cap_status; /* L2CAP status */ uint16_t remote_cid; /* Remote CID */ std::vector lcids; /* Used when credit based is used*/ uint16_t peer_mtu; /* Peer MTU */ } tL2C_CONN_INFO; typedef struct { bool is_active; /* is channel active */ uint16_t local_cid; /* Remote CID */ tL2C_CCB* p_ccb; /* CCB */ } tL2C_AVDT_CHANNEL_INFO; typedef void(tL2C_FCR_MGMT_EVT_HDLR)(uint8_t, tL2C_CCB*); /* Necessary info for postponed TX completion callback */ typedef struct { uint16_t local_cid; uint16_t num_sdu; tL2CA_TX_COMPLETE_CB* cb; } tL2C_TX_COMPLETE_CB_INFO; /* The offset in a buffer that L2CAP will use when building commands. */ #define L2CAP_SEND_CMD_OFFSET 0 /* Number of ACL buffers to use for high priority channel */ #define L2CAP_HIGH_PRI_MIN_XMIT_QUOTA_A (L2CAP_HIGH_PRI_MIN_XMIT_QUOTA) /* L2CAP global data *********************************** */ extern tL2C_CB l2cb; /* Functions provided by l2c_main.cc *********************************** */ void l2c_receive_hold_timer_timeout(void* data); void l2c_ccb_timer_timeout(void* data); void l2c_lcb_timer_timeout(void* data); void l2c_fcrb_ack_timer_timeout(void* data); uint8_t l2c_data_write(uint16_t cid, BT_HDR* p_data, uint16_t flag); void l2c_acl_flush(uint16_t handle); tL2C_LCB* l2cu_allocate_lcb(const RawAddress& p_bd_addr, bool is_bonding, tBT_TRANSPORT transport); void l2cu_release_lcb(tL2C_LCB* p_lcb); tL2C_LCB* l2cu_find_lcb_by_bd_addr(const RawAddress& p_bd_addr, tBT_TRANSPORT transport); tL2C_LCB* l2cu_find_lcb_by_handle(uint16_t handle); bool l2cu_set_acl_priority(const RawAddress& bd_addr, tL2CAP_PRIORITY priority, bool reset_after_rs); bool l2cu_set_acl_latency(const RawAddress& bd_addr, tL2CAP_LATENCY latency); void l2cu_enqueue_ccb(tL2C_CCB* p_ccb); void l2cu_dequeue_ccb(tL2C_CCB* p_ccb); void l2cu_change_pri_ccb(tL2C_CCB* p_ccb, tL2CAP_CHNL_PRIORITY priority); tL2C_CCB* l2cu_allocate_ccb(tL2C_LCB* p_lcb, uint16_t cid, bool is_eatt = false); void l2cu_release_ccb(tL2C_CCB* p_ccb); tL2C_CCB* l2cu_find_ccb_by_cid(tL2C_LCB* p_lcb, uint16_t local_cid); tL2C_CCB* l2cu_find_ccb_by_remote_cid(tL2C_LCB* p_lcb, uint16_t remote_cid); bool l2c_is_cmd_rejected(uint8_t cmd_code, uint8_t id, tL2C_LCB* p_lcb); void l2cu_send_peer_cmd_reject(tL2C_LCB* p_lcb, uint16_t reason, uint8_t rem_id, uint16_t p1, uint16_t p2); void l2cu_send_peer_connect_req(tL2C_CCB* p_ccb); void l2cu_send_peer_connect_rsp(tL2C_CCB* p_ccb, uint16_t result, uint16_t status); void l2cu_send_peer_config_req(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg); void l2cu_send_peer_config_rsp(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg); void l2cu_send_peer_config_rej(tL2C_CCB* p_ccb, uint8_t* p_data, uint16_t data_len, uint16_t rej_len); void l2cu_send_peer_disc_req(tL2C_CCB* p_ccb); void l2cu_send_peer_disc_rsp(tL2C_LCB* p_lcb, uint8_t remote_id, uint16_t local_cid, uint16_t remote_cid); void l2cu_send_peer_echo_rsp(tL2C_LCB* p_lcb, uint8_t id, uint8_t* p_data, uint16_t data_len); void l2cu_send_peer_info_rsp(tL2C_LCB* p_lcb, uint8_t id, uint16_t info_type); void l2cu_reject_connection(tL2C_LCB* p_lcb, uint16_t remote_cid, uint8_t rem_id, uint16_t result); void l2cu_send_peer_info_req(tL2C_LCB* p_lcb, uint16_t info_type); void l2cu_set_acl_hci_header(BT_HDR* p_buf, tL2C_CCB* p_ccb); void l2cu_check_channel_congestion(tL2C_CCB* p_ccb); void l2cu_disconnect_chnl(tL2C_CCB* p_ccb); void l2cu_tx_complete(tL2C_TX_COMPLETE_CB_INFO* p_cbi); void l2cu_send_peer_ble_par_req(tL2C_LCB* p_lcb, uint16_t min_int, uint16_t max_int, uint16_t latency, uint16_t timeout); void l2cu_send_peer_ble_par_rsp(tL2C_LCB* p_lcb, uint16_t reason, uint8_t rem_id); void l2cu_reject_ble_connection(tL2C_CCB* p_ccb, uint8_t rem_id, uint16_t result); void l2cu_reject_credit_based_conn_req(tL2C_LCB* p_lcb, uint8_t rem_id, uint8_t num_of_channels, uint16_t result); void l2cu_reject_ble_coc_connection(tL2C_LCB* p_lcb, uint8_t rem_id, uint16_t result); void l2cu_send_peer_ble_credit_based_conn_res(tL2C_CCB* p_ccb, uint16_t result); void l2cu_send_peer_credit_based_conn_res(tL2C_CCB* p_ccb, std::vector& accepted_lcids, uint16_t result); void l2cu_send_peer_ble_credit_based_conn_req(tL2C_CCB* p_ccb); void l2cu_send_peer_credit_based_conn_req(tL2C_CCB* p_ccb); void l2cu_send_ble_reconfig_rsp(tL2C_LCB* p_lcb, uint8_t rem_id, uint16_t result); void l2cu_send_credit_based_reconfig_req(tL2C_CCB* p_ccb, tL2CAP_LE_CFG_INFO* p_data); void l2cu_send_peer_ble_flow_control_credit(tL2C_CCB* p_ccb, uint16_t credit_value); void l2cu_send_peer_ble_credit_based_disconn_req(tL2C_CCB* p_ccb); bool l2cu_initialize_fixed_ccb(tL2C_LCB* p_lcb, uint16_t fixed_cid); void l2cu_no_dynamic_ccbs(tL2C_LCB* p_lcb); void l2cu_process_fixed_chnl_resp(tL2C_LCB* p_lcb); bool l2cu_is_ccb_active(tL2C_CCB* p_ccb); uint16_t le_result_to_l2c_conn(uint16_t result); /* Functions provided for Broadcom Aware *************************************** */ tL2C_RCB* l2cu_allocate_rcb(uint16_t psm); tL2C_RCB* l2cu_find_rcb_by_psm(uint16_t psm); void l2cu_release_rcb(tL2C_RCB* p_rcb); void l2cu_release_ble_rcb(tL2C_RCB* p_rcb); tL2C_RCB* l2cu_allocate_ble_rcb(uint16_t psm); tL2C_RCB* l2cu_find_ble_rcb_by_psm(uint16_t psm); uint8_t l2cu_process_peer_cfg_req(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg); void l2cu_process_peer_cfg_rsp(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg); void l2cu_process_our_cfg_req(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg); void l2cu_process_our_cfg_rsp(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg); tL2C_LCB* l2cu_find_lcb_by_state(tL2C_LINK_STATE state); bool l2cu_lcb_disconnecting(void); void l2cu_create_conn_br_edr(tL2C_LCB* p_lcb); bool l2cu_create_conn_le(tL2C_LCB* p_lcb); void l2cu_create_conn_after_switch(tL2C_LCB* p_lcb); void l2cu_adjust_out_mps(tL2C_CCB* p_ccb); /* Functions provided by l2c_link.cc *********************************** */ void l2c_link_timeout(tL2C_LCB* p_lcb); void l2c_info_resp_timer_timeout(void* data); void l2c_link_check_send_pkts(tL2C_LCB* p_lcb, uint16_t local_cid, BT_HDR* p_buf); void l2c_link_adjust_allocation(void); void l2c_link_sec_comp(RawAddress p_bda, tBT_TRANSPORT transport, void* p_ref_data, tBTM_STATUS status); void l2c_link_adjust_chnl_allocation(void); #if (L2CAP_CONFORMANCE_TESTING == TRUE) /* Used only for conformance testing */ void l2cu_set_info_rsp_mask(uint32_t mask); #endif /* Functions provided by l2c_csm.cc *********************************** */ void l2c_csm_execute(tL2C_CCB* p_ccb, tL2CEVT event, void* p_data); void l2c_enqueue_peer_data(tL2C_CCB* p_ccb, BT_HDR* p_buf); /* Functions provided by l2c_fcr.cc *********************************** */ void l2c_fcr_cleanup(tL2C_CCB* p_ccb); void l2c_fcr_proc_pdu(tL2C_CCB* p_ccb, BT_HDR* p_buf); void l2c_fcr_proc_tout(tL2C_CCB* p_ccb); void l2c_fcr_proc_ack_tout(tL2C_CCB* p_ccb); void l2c_fcr_send_S_frame(tL2C_CCB* p_ccb, uint16_t function_code, uint16_t pf_bit); BT_HDR* l2c_fcr_clone_buf(BT_HDR* p_buf, uint16_t new_offset, uint16_t no_of_bytes); bool l2c_fcr_is_flow_controlled(tL2C_CCB* p_ccb); BT_HDR* l2c_fcr_get_next_xmit_sdu_seg(tL2C_CCB* p_ccb, uint16_t max_packet_length); void l2c_fcr_start_timer(tL2C_CCB* p_ccb); void l2c_lcc_proc_pdu(tL2C_CCB* p_ccb, BT_HDR* p_buf); BT_HDR* l2c_lcc_get_next_xmit_sdu_seg(tL2C_CCB* p_ccb, bool* last_piece_of_sdu); /* Configuration negotiation */ uint8_t l2c_fcr_chk_chan_modes(tL2C_CCB* p_ccb); void l2c_fcr_adj_our_rsp_options(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_peer_cfg); bool l2c_fcr_renegotiate_chan(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg); uint8_t l2c_fcr_process_peer_cfg_req(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg); void l2c_fcr_adj_monitor_retran_timeout(tL2C_CCB* p_ccb); void l2c_fcr_stop_timer(tL2C_CCB* p_ccb); /* Functions provided by l2c_ble.cc *********************************** */ bool l2cble_create_conn(tL2C_LCB* p_lcb); void l2cble_process_sig_cmd(tL2C_LCB* p_lcb, uint8_t* p, uint16_t pkt_len); void l2c_ble_link_adjust_allocation(void); void l2cble_credit_based_conn_req(tL2C_CCB* p_ccb); void l2cble_credit_based_conn_res(tL2C_CCB* p_ccb, uint16_t result); void l2cble_send_peer_disc_req(tL2C_CCB* p_ccb); void l2cble_send_flow_control_credit(tL2C_CCB* p_ccb, uint16_t credit_value); tL2CAP_LE_RESULT_CODE l2ble_sec_access_req(const RawAddress& bd_addr, uint16_t psm, bool is_originator, tBTM_SEC_CALLBACK* p_callback, void* p_ref_data); void l2cble_update_data_length(tL2C_LCB* p_lcb); void l2cu_process_fixed_disc_cback(tL2C_LCB* p_lcb); void l2cble_process_subrate_change_evt(uint16_t handle, uint8_t status, uint16_t subrate_factor, uint16_t peripheral_latency, uint16_t cont_num, uint16_t timeout); namespace fmt { template <> struct formatter : enum_formatter {}; template <> struct formatter : enum_formatter {}; template <> struct formatter : enum_formatter {}; } // namespace fmt #endif