/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Operations" #include "Elementwise.h" #include #include #include #include #include "OperationResolver.h" #include "OperationsExecutionUtils.h" #include "Tracing.h" namespace android { namespace nn { namespace elementwise { namespace { template inline bool compute(const std::function& func, const T* input, const Shape& shape, T* output) { const auto size = getNumberOfElements(shape); for (uint32_t i = 0; i < size; ++i) { output[i] = static_cast(func(static_cast(input[i]))); } return true; } template inline bool compute(IntermediateType func(IntermediateType), const T* input, const Shape& shape, T* output) { return compute(std::function(func), input, shape, output); } template auto makeQuantized(const std::function& func, float inScale, T inZeroPoint, float outScale, T outZeroPoint) { return [func, inScale, inZeroPoint, outScale, outZeroPoint](T val) -> T { // For dequantization formula, see Dequantize.cpp. using WideT = int32_t; static_assert(sizeof(T) < sizeof(WideT)); IntermediateType dequantizedVal = (static_cast(val) - static_cast(inZeroPoint)) * inScale; IntermediateType res = func(dequantizedVal); // For quantization formula, see Quantize.cpp. T quantizedRes = static_cast(std::max( static_cast(std::numeric_limits::min()), std::min(static_cast(std::numeric_limits::max()), outZeroPoint + std::round(res / outScale)))); return quantizedRes; }; } bool execute(IOperationExecutionContext* context, float func(float)) { switch (context->getInputType(kInputTensor)) { case OperandType::TENSOR_FLOAT16: return compute(func, context->getInputBuffer<_Float16>(kInputTensor), context->getInputShape(kInputTensor), context->getOutputBuffer<_Float16>(kOutputTensor)); case OperandType::TENSOR_FLOAT32: return compute(func, context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getOutputBuffer(kOutputTensor)); default: NN_RET_CHECK_FAIL() << "Unsupported tensor type for elementwise operation"; } } } // namespace bool executeAbs(IOperationExecutionContext* context) { switch (context->getInputType(kInputTensor)) { case OperandType::TENSOR_FLOAT16: return compute(std::abs, context->getInputBuffer<_Float16>(kInputTensor), context->getInputShape(kInputTensor), context->getOutputBuffer<_Float16>(kOutputTensor)); case OperandType::TENSOR_FLOAT32: return compute(std::abs, context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getOutputBuffer(kOutputTensor)); case OperandType::TENSOR_INT32: return compute(std::abs, context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getOutputBuffer(kOutputTensor)); default: NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation ABS"; } } bool executeRsqrt(IOperationExecutionContext* context) { const std::function frsqrt = [](float x) { return 1.f / std::sqrt(x); }; const auto tensorType = context->getInputType(kInputTensor); switch (tensorType) { case OperandType::TENSOR_FLOAT16: return compute(frsqrt, context->getInputBuffer<_Float16>(kInputTensor), context->getInputShape(kInputTensor), context->getOutputBuffer<_Float16>(kOutputTensor)); case OperandType::TENSOR_FLOAT32: return compute(frsqrt, context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getOutputBuffer(kOutputTensor)); case OperandType::TENSOR_QUANT8_ASYMM: { const Shape inShape = context->getInputShape(kInputTensor); const Shape outShape = context->getOutputShape(kOutputTensor); return compute( makeQuantized(frsqrt, inShape.scale, static_cast(inShape.offset), outShape.scale, static_cast(outShape.offset)), context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getOutputBuffer(kOutputTensor)); } case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: { const Shape inShape = context->getInputShape(kInputTensor); const Shape outShape = context->getOutputShape(kOutputTensor); return compute( makeQuantized(frsqrt, inShape.scale, static_cast(inShape.offset), outShape.scale, static_cast(outShape.offset)), context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getOutputBuffer(kOutputTensor)); } default: NN_RET_CHECK_FAIL() << "Unsupported tensor type " << tensorType << " for operation RSQRT"; } } bool prepare(IOperationExecutionContext* context) { Shape input = context->getInputShape(kInputTensor); Shape output = context->getOutputShape(kOutputTensor); NN_RET_CHECK(SetShape(input, &output)); return context->setOutputShape(kOutputTensor, output); } bool prepareFloor(IOperationExecutionContext* context) { Shape input = context->getInputShape(kInputTensor); Shape output = context->getOutputShape(kOutputTensor); NN_RET_CHECK_LE(getNumberOfDimensions(input), 4u); NN_RET_CHECK(SetShape(input, &output)); return context->setOutputShape(kOutputTensor, output); } bool executeExp(IOperationExecutionContext* context) { return execute(context, std::exp); } bool executeFloor(IOperationExecutionContext* context) { return execute(context, std::floor); } bool executeLog(IOperationExecutionContext* context) { return execute(context, std::log); } bool executeSin(IOperationExecutionContext* context) { return execute(context, std::sin); } bool executeSqrt(IOperationExecutionContext* context) { return execute(context, std::sqrt); } } // namespace elementwise NN_REGISTER_OPERATION_DEFAULT_VALIDATION(ABS, elementwise::prepare, elementwise::executeAbs); NN_REGISTER_OPERATION_DEFAULT_VALIDATION(EXP, elementwise::prepare, elementwise::executeExp); NN_REGISTER_OPERATION_DEFAULT_VALIDATION(FLOOR, elementwise::prepareFloor, elementwise::executeFloor); NN_REGISTER_OPERATION_DEFAULT_VALIDATION(LOG, elementwise::prepare, elementwise::executeLog); NN_REGISTER_OPERATION_DEFAULT_VALIDATION(RSQRT, elementwise::prepare, elementwise::executeRsqrt); NN_REGISTER_OPERATION_DEFAULT_VALIDATION(SIN, elementwise::prepare, elementwise::executeSin); NN_REGISTER_OPERATION_DEFAULT_VALIDATION(SQRT, elementwise::prepare, elementwise::executeSqrt); } // namespace nn } // namespace android