/* ** Copyright 2011, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include "BlobCache.h" #include #include #include #include #include #include #include #include namespace android { template using sp = std::shared_ptr; class BlobCacheTest : public ::testing::TestWithParam { protected: enum { OK = 0, BAD_VALUE = -EINVAL }; enum { MAX_KEY_SIZE = 6, MAX_VALUE_SIZE = 8, MAX_TOTAL_SIZE = 13, }; virtual void SetUp() { mBC.reset(new BlobCache(MAX_KEY_SIZE, MAX_VALUE_SIZE, MAX_TOTAL_SIZE, GetParam())); } virtual void TearDown() { mBC.reset(); } std::unique_ptr mBC; }; INSTANTIATE_TEST_SUITE_P( Policy, BlobCacheTest, ::testing::Values( BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::HALVE), BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::HALVE), BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT), BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT), BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT_HALVE), BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT_HALVE))); TEST_P(BlobCacheTest, CacheSingleValueSucceeds) { unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee}; mBC->set("abcd", 4, "efgh", 4); ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4)); ASSERT_EQ('e', buf[0]); ASSERT_EQ('f', buf[1]); ASSERT_EQ('g', buf[2]); ASSERT_EQ('h', buf[3]); } TEST_P(BlobCacheTest, CacheTwoValuesSucceeds) { unsigned char buf[2] = {0xee, 0xee}; mBC->set("ab", 2, "cd", 2); mBC->set("ef", 2, "gh", 2); ASSERT_EQ(size_t(2), mBC->get("ab", 2, buf, 2)); ASSERT_EQ('c', buf[0]); ASSERT_EQ('d', buf[1]); ASSERT_EQ(size_t(2), mBC->get("ef", 2, buf, 2)); ASSERT_EQ('g', buf[0]); ASSERT_EQ('h', buf[1]); } TEST_P(BlobCacheTest, CacheTwoValuesMallocSucceeds) { unsigned char* bufPtr; mBC->set("ab", 2, "cd", 2); mBC->set("ef", 2, "gh", 2); bufPtr = nullptr; ASSERT_EQ(size_t(2), mBC->get("ab", 2, &bufPtr, malloc)); ASSERT_NE(nullptr, bufPtr); ASSERT_EQ('c', bufPtr[0]); ASSERT_EQ('d', bufPtr[1]); free(bufPtr); bufPtr = nullptr; ASSERT_EQ(size_t(2), mBC->get("ef", 2, &bufPtr, malloc)); ASSERT_NE(nullptr, bufPtr); ASSERT_EQ('g', bufPtr[0]); ASSERT_EQ('h', bufPtr[1]); free(bufPtr); } TEST_P(BlobCacheTest, GetOnlyWritesInsideBounds) { unsigned char buf[6] = {0xee, 0xee, 0xee, 0xee, 0xee, 0xee}; mBC->set("abcd", 4, "efgh", 4); ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf + 1, 4)); ASSERT_EQ(0xee, buf[0]); ASSERT_EQ('e', buf[1]); ASSERT_EQ('f', buf[2]); ASSERT_EQ('g', buf[3]); ASSERT_EQ('h', buf[4]); ASSERT_EQ(0xee, buf[5]); } TEST_P(BlobCacheTest, GetOnlyWritesIfBufferIsLargeEnough) { unsigned char buf[3] = {0xee, 0xee, 0xee}; mBC->set("abcd", 4, "efgh", 4); ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 3)); ASSERT_EQ(0xee, buf[0]); ASSERT_EQ(0xee, buf[1]); ASSERT_EQ(0xee, buf[2]); } TEST_P(BlobCacheTest, GetWithFailedAllocator) { unsigned char buf[3] = {0xee, 0xee, 0xee}; mBC->set("abcd", 4, "efgh", 4); // If allocator fails, verify that we set the value pointer to // nullptr, and that we do not modify the buffer that the value // pointer originally pointed to. unsigned char* bufPtr = &buf[0]; ASSERT_EQ(size_t(4), mBC->get("abcd", 4, &bufPtr, [](size_t) -> void* { return nullptr; })); ASSERT_EQ(nullptr, bufPtr); ASSERT_EQ(0xee, buf[0]); ASSERT_EQ(0xee, buf[1]); ASSERT_EQ(0xee, buf[2]); } TEST_P(BlobCacheTest, GetDoesntAccessNullBuffer) { mBC->set("abcd", 4, "efgh", 4); ASSERT_EQ(size_t(4), mBC->get("abcd", 4, NULL, 0)); } TEST_P(BlobCacheTest, MultipleSetsCacheLatestValue) { unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee}; mBC->set("abcd", 4, "efgh", 4); mBC->set("abcd", 4, "ijkl", 4); ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4)); ASSERT_EQ('i', buf[0]); ASSERT_EQ('j', buf[1]); ASSERT_EQ('k', buf[2]); ASSERT_EQ('l', buf[3]); } TEST_P(BlobCacheTest, SecondSetKeepsFirstValueIfTooLarge) { unsigned char buf[MAX_VALUE_SIZE + 1] = {0xee, 0xee, 0xee, 0xee}; mBC->set("abcd", 4, "efgh", 4); mBC->set("abcd", 4, buf, MAX_VALUE_SIZE + 1); ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4)); ASSERT_EQ('e', buf[0]); ASSERT_EQ('f', buf[1]); ASSERT_EQ('g', buf[2]); ASSERT_EQ('h', buf[3]); } TEST_P(BlobCacheTest, DoesntCacheIfKeyIsTooBig) { char key[MAX_KEY_SIZE + 1]; unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee}; for (int i = 0; i < MAX_KEY_SIZE + 1; i++) { key[i] = 'a'; } mBC->set(key, MAX_KEY_SIZE + 1, "bbbb", 4); ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE + 1, buf, 4)); ASSERT_EQ(0xee, buf[0]); ASSERT_EQ(0xee, buf[1]); ASSERT_EQ(0xee, buf[2]); ASSERT_EQ(0xee, buf[3]); // If key is too large, verify that we do not call the allocator, // that we set the value pointer to nullptr, and that we do not // modify the buffer that the value pointer originally pointed to. unsigned char* bufPtr = &buf[0]; bool calledAlloc = false; ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE + 1, &bufPtr, [&calledAlloc](size_t) -> void* { calledAlloc = true; return nullptr; })); ASSERT_EQ(false, calledAlloc); ASSERT_EQ(nullptr, bufPtr); ASSERT_EQ(0xee, buf[0]); ASSERT_EQ(0xee, buf[1]); ASSERT_EQ(0xee, buf[2]); ASSERT_EQ(0xee, buf[3]); } TEST_P(BlobCacheTest, DoesntCacheIfValueIsTooBig) { unsigned char buf[MAX_VALUE_SIZE + 1]; for (int i = 0; i < MAX_VALUE_SIZE + 1; i++) { buf[i] = 'b'; } mBC->set("abcd", 4, buf, MAX_VALUE_SIZE + 1); for (int i = 0; i < MAX_VALUE_SIZE + 1; i++) { buf[i] = 0xee; } ASSERT_EQ(size_t(0), mBC->get("abcd", 4, buf, MAX_VALUE_SIZE + 1)); for (int i = 0; i < MAX_VALUE_SIZE + 1; i++) { SCOPED_TRACE(i); ASSERT_EQ(0xee, buf[i]); } } TEST_P(BlobCacheTest, DoesntCacheIfKeyValuePairIsTooBig) { // Check a testing assumptions ASSERT_TRUE(MAX_TOTAL_SIZE < MAX_KEY_SIZE + MAX_VALUE_SIZE); ASSERT_TRUE(MAX_KEY_SIZE < MAX_TOTAL_SIZE); enum { bufSize = MAX_TOTAL_SIZE - MAX_KEY_SIZE + 1 }; char key[MAX_KEY_SIZE]; char buf[bufSize]; for (int i = 0; i < MAX_KEY_SIZE; i++) { key[i] = 'a'; } for (int i = 0; i < bufSize; i++) { buf[i] = 'b'; } mBC->set(key, MAX_KEY_SIZE, buf, MAX_VALUE_SIZE); ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE, NULL, 0)); } TEST_P(BlobCacheTest, CacheMaxKeySizeSucceeds) { char key[MAX_KEY_SIZE]; unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee}; for (int i = 0; i < MAX_KEY_SIZE; i++) { key[i] = 'a'; } mBC->set(key, MAX_KEY_SIZE, "wxyz", 4); ASSERT_EQ(size_t(4), mBC->get(key, MAX_KEY_SIZE, buf, 4)); ASSERT_EQ('w', buf[0]); ASSERT_EQ('x', buf[1]); ASSERT_EQ('y', buf[2]); ASSERT_EQ('z', buf[3]); } TEST_P(BlobCacheTest, CacheMaxValueSizeSucceeds) { char buf[MAX_VALUE_SIZE]; for (int i = 0; i < MAX_VALUE_SIZE; i++) { buf[i] = 'b'; } mBC->set("abcd", 4, buf, MAX_VALUE_SIZE); for (int i = 0; i < MAX_VALUE_SIZE; i++) { buf[i] = 0xee; } ASSERT_EQ(size_t(MAX_VALUE_SIZE), mBC->get("abcd", 4, buf, MAX_VALUE_SIZE)); for (int i = 0; i < MAX_VALUE_SIZE; i++) { SCOPED_TRACE(i); ASSERT_EQ('b', buf[i]); } } TEST_P(BlobCacheTest, CacheMaxKeyValuePairSizeSucceeds) { // Check a testing assumption ASSERT_TRUE(MAX_KEY_SIZE < MAX_TOTAL_SIZE); enum { bufSize = MAX_TOTAL_SIZE - MAX_KEY_SIZE }; char key[MAX_KEY_SIZE]; char buf[bufSize]; for (int i = 0; i < MAX_KEY_SIZE; i++) { key[i] = 'a'; } for (int i = 0; i < bufSize; i++) { buf[i] = 'b'; } mBC->set(key, MAX_KEY_SIZE, buf, bufSize); ASSERT_EQ(size_t(bufSize), mBC->get(key, MAX_KEY_SIZE, NULL, 0)); } TEST_P(BlobCacheTest, CacheMinKeyAndValueSizeSucceeds) { unsigned char buf[1] = {0xee}; mBC->set("x", 1, "y", 1); ASSERT_EQ(size_t(1), mBC->get("x", 1, buf, 1)); ASSERT_EQ('y', buf[0]); } TEST_P(BlobCacheTest, CacheSizeDoesntExceedTotalLimit) { for (int i = 0; i < 256; i++) { uint8_t k = i; mBC->set(&k, 1, "x", 1); } int numCached = 0; for (int i = 0; i < 256; i++) { uint8_t k = i; if (mBC->get(&k, 1, NULL, 0) == 1) { numCached++; } } ASSERT_GE(MAX_TOTAL_SIZE / 2, numCached); } TEST_P(BlobCacheTest, ExceedingTotalLimitHalvesCacheSize) { if (GetParam().second == BlobCache::Capacity::FIT) return; // test doesn't apply for this policy // Fill up the entire cache with 1 char key/value pairs. const int maxEntries = MAX_TOTAL_SIZE / 2; for (int i = 0; i < maxEntries; i++) { uint8_t k = i; mBC->set(&k, 1, "x", 1); } // Insert one more entry, causing a cache overflow. { uint8_t k = maxEntries; mBC->set(&k, 1, "x", 1); } // Count the number of entries in the cache; and check which // entries they are. int numCached = 0; for (int i = 0; i < maxEntries + 1; i++) { uint8_t k = i; bool found = (mBC->get(&k, 1, NULL, 0) == 1); if (found) numCached++; if (GetParam().first == BlobCache::Select::LRU) { SCOPED_TRACE(i); ASSERT_EQ(found, i >= maxEntries / 2); } } ASSERT_EQ(maxEntries / 2 + 1, numCached); } TEST_P(BlobCacheTest, ExceedingTotalLimitJustFitsSmallEntry) { if (GetParam().second != BlobCache::Capacity::FIT) return; // test doesn't apply for this policy // Fill up the entire cache with 1 char key/value pairs. const int maxEntries = MAX_TOTAL_SIZE / 2; for (int i = 0; i < maxEntries; i++) { uint8_t k = i; mBC->set(&k, 1, "x", 1); } // Insert one more entry, causing a cache overflow. { uint8_t k = maxEntries; mBC->set(&k, 1, "x", 1); } // Count the number of entries in the cache. int numCached = 0; for (int i = 0; i < maxEntries + 1; i++) { uint8_t k = i; if (mBC->get(&k, 1, NULL, 0) == 1) numCached++; } ASSERT_EQ(maxEntries, numCached); } // Also see corresponding test in nnCache_test.cpp TEST_P(BlobCacheTest, ExceedingTotalLimitFitsBigEntry) { // Fill up the entire cache with 1 char key/value pairs. const int maxEntries = MAX_TOTAL_SIZE / 2; for (int i = 0; i < maxEntries; i++) { uint8_t k = i; mBC->set(&k, 1, "x", 1); } // Insert one more entry, causing a cache overflow. const int bigValueSize = std::min((MAX_TOTAL_SIZE * 3) / 4 - 1, int(MAX_VALUE_SIZE)); ASSERT_GT(bigValueSize + 1, MAX_TOTAL_SIZE / 2); // Check testing assumption { unsigned char buf[MAX_VALUE_SIZE]; for (int i = 0; i < bigValueSize; i++) buf[i] = 0xee; uint8_t k = maxEntries; mBC->set(&k, 1, buf, bigValueSize); } // Count the number and size of entries in the cache. int numCached = 0; size_t sizeCached = 0; for (int i = 0; i < maxEntries + 1; i++) { uint8_t k = i; size_t size = mBC->get(&k, 1, NULL, 0); if (size) { numCached++; sizeCached += (size + 1); } } switch (GetParam().second) { case BlobCache::Capacity::HALVE: // New value is too big for this cleaning algorithm. So // we cleaned the cache, but did not insert the new value. ASSERT_EQ(maxEntries / 2, numCached); ASSERT_EQ(size_t((maxEntries / 2) * 2), sizeCached); break; case BlobCache::Capacity::FIT: case BlobCache::Capacity::FIT_HALVE: { // We had to clean more than half the cache to fit the new // value. const int initialNumEntries = maxEntries; const int initialSizeCached = initialNumEntries * 2; const int initialFreeSpace = MAX_TOTAL_SIZE - initialSizeCached; // (bigValueSize + 1) = value size + key size // trailing "+ 1" is in order to round up // "/ 2" is because initial entries are size 2 (1 byte key, 1 byte value) const int cleanNumEntries = ((bigValueSize + 1) - initialFreeSpace + 1) / 2; const int cleanSpace = cleanNumEntries * 2; const int postCleanNumEntries = initialNumEntries - cleanNumEntries; const int postCleanSizeCached = initialSizeCached - cleanSpace; ASSERT_EQ(postCleanNumEntries + 1, numCached); ASSERT_EQ(size_t(postCleanSizeCached + bigValueSize + 1), sizeCached); break; } default: FAIL() << "Unknown Capacity value"; } } TEST_P(BlobCacheTest, FailedGetWithAllocator) { // If get doesn't find anything, verify that we do not call the // allocator, that we set the value pointer to nullptr, and that // we do not modify the buffer that the value pointer originally // pointed to. unsigned char buf[1] = {0xee}; unsigned char* bufPtr = &buf[0]; bool calledAlloc = false; ASSERT_EQ(size_t(0), mBC->get("a", 1, &bufPtr, [&calledAlloc](size_t) -> void* { calledAlloc = true; return nullptr; })); ASSERT_EQ(false, calledAlloc); ASSERT_EQ(nullptr, bufPtr); ASSERT_EQ(0xee, buf[0]); } TEST_P(BlobCacheTest, ExceedingTotalLimitRemovesLRUEntries) { if (GetParam().first != BlobCache::Select::LRU) return; // test doesn't apply for this policy // Fill up the entire cache with 1 char key/value pairs. static const int maxEntries = MAX_TOTAL_SIZE / 2; for (int i = 0; i < maxEntries; i++) { uint8_t k = i; mBC->set(&k, 1, "x", 1); } // Access entries in some known pseudorandom order. int accessSequence[maxEntries]; std::iota(&accessSequence[0], &accessSequence[maxEntries], 0); std::mt19937 randomEngine(MAX_TOTAL_SIZE /* seed */); std::shuffle(&accessSequence[0], &accessSequence[maxEntries], randomEngine); for (int i = 0; i < maxEntries; i++) { uint8_t k = accessSequence[i]; uint8_t buf[1]; // If we were to pass NULL to get() as the value pointer, this // won't count as an access for LRU purposes. mBC->get(&k, 1, buf, 1); } // Insert one more entry, causing a cache overflow. { uint8_t k = maxEntries; mBC->set(&k, 1, "x", 1); } // Check which entries are in the cache. We expect to see the // "one more entry" we just added, and also the most-recently // accessed (according to accessSequence). That is, we should // find exactly the entries with the following keys: // . maxEntries // . accessSequence[j..maxEntries-1] for some 0 <= j < maxEntries uint8_t k = maxEntries; ASSERT_EQ(size_t(1), mBC->get(&k, 1, NULL, 0)); bool foundAny = false; for (int i = 0; i < maxEntries; i++) { uint8_t k = accessSequence[i]; bool found = (mBC->get(&k, 1, NULL, 0) == 1); if (foundAny == found) continue; if (!foundAny) { // found == true, so we just discovered j == i foundAny = true; } else { // foundAny == true, found == false -- oops FAIL() << "found [" << i - 1 << "]th entry but not [" << i << "]th entry"; } } } class BlobCacheFlattenTest : public BlobCacheTest { protected: virtual void SetUp() { BlobCacheTest::SetUp(); mBC2.reset(new BlobCache(MAX_KEY_SIZE, MAX_VALUE_SIZE, MAX_TOTAL_SIZE, GetParam())); } virtual void TearDown() { mBC2.reset(); BlobCacheTest::TearDown(); } void roundTrip() { size_t size = mBC->getFlattenedSize(); uint8_t* flat = new uint8_t[size]; ASSERT_EQ(OK, mBC->flatten(flat, size)); ASSERT_EQ(OK, mBC2->unflatten(flat, size)); delete[] flat; } sp mBC2; }; INSTANTIATE_TEST_SUITE_P( Policy, BlobCacheFlattenTest, ::testing::Values( BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::HALVE), BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::HALVE), BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT), BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT), BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT_HALVE), BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT_HALVE))); TEST_P(BlobCacheFlattenTest, FlattenOneValue) { unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee}; mBC->set("abcd", 4, "efgh", 4); roundTrip(); ASSERT_EQ(size_t(4), mBC2->get("abcd", 4, buf, 4)); ASSERT_EQ('e', buf[0]); ASSERT_EQ('f', buf[1]); ASSERT_EQ('g', buf[2]); ASSERT_EQ('h', buf[3]); } TEST_P(BlobCacheFlattenTest, FlattenFullCache) { // Fill up the entire cache with 1 char key/value pairs. const int maxEntries = MAX_TOTAL_SIZE / 2; for (int i = 0; i < maxEntries; i++) { uint8_t k = i; mBC->set(&k, 1, &k, 1); } roundTrip(); // Verify the deserialized cache for (int i = 0; i < maxEntries; i++) { uint8_t k = i; uint8_t v = 0xee; ASSERT_EQ(size_t(1), mBC2->get(&k, 1, &v, 1)); ASSERT_EQ(k, v); } } TEST_P(BlobCacheFlattenTest, FlattenDoesntChangeCache) { // Fill up the entire cache with 1 char key/value pairs. const int maxEntries = MAX_TOTAL_SIZE / 2; for (int i = 0; i < maxEntries; i++) { uint8_t k = i; mBC->set(&k, 1, &k, 1); } size_t size = mBC->getFlattenedSize(); uint8_t* flat = new uint8_t[size]; ASSERT_EQ(OK, mBC->flatten(flat, size)); delete[] flat; // Verify the cache that we just serialized for (int i = 0; i < maxEntries; i++) { uint8_t k = i; uint8_t v = 0xee; ASSERT_EQ(size_t(1), mBC->get(&k, 1, &v, 1)); ASSERT_EQ(k, v); } } TEST_P(BlobCacheFlattenTest, FlattenCatchesBufferTooSmall) { // Fill up the entire cache with 1 char key/value pairs. const int maxEntries = MAX_TOTAL_SIZE / 2; for (int i = 0; i < maxEntries; i++) { uint8_t k = i; mBC->set(&k, 1, &k, 1); } size_t size = mBC->getFlattenedSize() - 1; uint8_t* flat = new uint8_t[size]; // ASSERT_EQ(BAD_VALUE, mBC->flatten(flat, size)); // TODO: The above fails. I expect this is so because getFlattenedSize() // overstimates the size by using PROPERTY_VALUE_MAX. delete[] flat; } TEST_P(BlobCacheFlattenTest, UnflattenCatchesBadMagic) { unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee}; mBC->set("abcd", 4, "efgh", 4); size_t size = mBC->getFlattenedSize(); uint8_t* flat = new uint8_t[size]; ASSERT_EQ(OK, mBC->flatten(flat, size)); flat[1] = ~flat[1]; // Bad magic should cause an error. ASSERT_EQ(BAD_VALUE, mBC2->unflatten(flat, size)); delete[] flat; // The error should cause the unflatten to result in an empty cache ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); } TEST_P(BlobCacheFlattenTest, UnflattenCatchesBadBlobCacheVersion) { unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee}; mBC->set("abcd", 4, "efgh", 4); size_t size = mBC->getFlattenedSize(); uint8_t* flat = new uint8_t[size]; ASSERT_EQ(OK, mBC->flatten(flat, size)); flat[5] = ~flat[5]; // Version mismatches shouldn't cause errors, but should not use the // serialized entries ASSERT_EQ(OK, mBC2->unflatten(flat, size)); delete[] flat; // The version mismatch should cause the unflatten to result in an empty // cache ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); } TEST_P(BlobCacheFlattenTest, UnflattenCatchesBadBlobCacheDeviceVersion) { unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee}; mBC->set("abcd", 4, "efgh", 4); size_t size = mBC->getFlattenedSize(); uint8_t* flat = new uint8_t[size]; ASSERT_EQ(OK, mBC->flatten(flat, size)); flat[10] = ~flat[10]; // Version mismatches shouldn't cause errors, but should not use the // serialized entries ASSERT_EQ(OK, mBC2->unflatten(flat, size)); delete[] flat; // The version mismatch should cause the unflatten to result in an empty // cache ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); } TEST_P(BlobCacheFlattenTest, UnflattenCatchesBufferTooSmall) { unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee}; mBC->set("abcd", 4, "efgh", 4); size_t size = mBC->getFlattenedSize(); uint8_t* flat = new uint8_t[size]; ASSERT_EQ(OK, mBC->flatten(flat, size)); // A buffer truncation shouldt cause an error // ASSERT_EQ(BAD_VALUE, mBC2->unflatten(flat, size-1)); // TODO: The above appears to fail because getFlattenedSize() is // conservative. delete[] flat; // The error should cause the unflatten to result in an empty cache ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); } } // namespace android