/* * Copyright (C) 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "GeneratedTestUtils.h" #include "SupportLibraryTestUtils.h" #include "SupportLibraryWrapper.h" #include "TmpDirectoryUtils.h" // Systrace is not available from CTS tests due to platform layering // constraints. We reuse the NNTEST_ONLY_PUBLIC_API flag, as that should also be // the case for CTS (public APIs only). #ifndef NNTEST_ONLY_PUBLIC_API #include #else #define NNTRACE_FULL_RAW(...) #define NNTRACE_APP(...) #define NNTRACE_APP_SWITCH(...) #endif const char* kQCDspLoadPathEnv = "ADSP_LIBRARY_PATH"; extern std::string SUPPORT_LIBRARY_NAME; namespace android::nn::generated_tests { using namespace sl_wrapper; using namespace test_helper; enum ComputeWithDeviceMemoriesResult { SKIP, OK, }; class GeneratedTests : public GeneratedTestBase { protected: void SetUp() override; void TearDown() override; bool shouldSkipTest(); ANeuralNetworksMemory* createDeviceMemoryForInput(const Compilation& compilation, uint32_t index); ANeuralNetworksMemory* createDeviceMemoryForOutput(const Compilation& compilation, uint32_t index); ComputeWithDeviceMemoriesResult computeWithDeviceMemories( const Compilation& compilation, const TestModel& testModel, Execution* execution, Execution::ComputeMode computeMode, Result* result, std::vector* outputs); bool checkSupported(const Model& model, ANeuralNetworksDevice* device); std::optional compileModel(const Model& model, ANeuralNetworksDevice* device); void executeWithCompilation(const Compilation& compilation, const TestModel& testModel); void executeOnce(const Model& model, const TestModel& testModel); void executeMultithreadedOwnCompilation(const Model& model, const TestModel& testModel); void executeMultithreadedSharedCompilation(const Model& model, const TestModel& testModel); // Test driver for those generated from ml/nn/runtime/test/spec void execute(const TestModel& testModel); // VNDK version of the device under test. static int mVndkVersion; std::string mCacheDir; std::vector mToken; bool mTestCompilationCaching = false; bool mTestDynamicOutputShape = false; bool mExpectFailure = false; bool mTestQuantizationCoupling = false; bool mTestDeviceMemory = false; Execution::ComputeMode mComputeMode = Execution::getComputeMode(); std::unique_ptr mNnApi; }; int GeneratedTests::mVndkVersion = __ANDROID_API_FUTURE__; // Tag for the dynamic output shape tests class DynamicOutputShapeTest : public GeneratedTests { protected: DynamicOutputShapeTest() { mTestDynamicOutputShape = true; } }; // Tag for the fenced execute tests class FencedComputeTest : public GeneratedTests {}; // Tag for the generated validation tests class GeneratedValidationTests : public GeneratedTests { protected: GeneratedValidationTests() { mExpectFailure = true; } }; class QuantizationCouplingTest : public GeneratedTests { protected: QuantizationCouplingTest() { mTestQuantizationCoupling = true; } }; class DeviceMemoryTest : public GeneratedTests { protected: DeviceMemoryTest() { mTestDeviceMemory = true; } }; bool GeneratedTests::checkSupported(const Model& model, ANeuralNetworksDevice* device) { constexpr static int MAX_NUM_OPS = 256; std::array supportedOps; for (int i = 0; i < MAX_NUM_OPS; ++i) { supportedOps[i] = true; } EXPECT_EQ(mNnApi->getFL5()->ANeuralNetworksModel_getSupportedOperationsForDevices( model.getHandle(), &device, /*numDevices=*/1, supportedOps.data()), ANEURALNETWORKS_NO_ERROR); const bool fullySupportedModel = std::all_of(supportedOps.begin(), supportedOps.end(), [](bool v) { return v; }); return fullySupportedModel; } static std::vector createCacheFds(const std::vector& files) { std::vector fds; fds.reserve(files.size()); for (const auto& file : files) { auto fd = base::unique_fd(open(file.c_str(), O_RDWR | O_CREAT, S_IRUSR | S_IWUSR)); if (fd.get() == -1) { [] { FAIL(); }(); return {}; } fds.push_back(std::move(fd)); } return fds; } std::optional GeneratedTests::compileModel(const Model& model, ANeuralNetworksDevice* device) { NNTRACE_APP(NNTRACE_PHASE_COMPILATION, "compileModel"); if (mTestCompilationCaching) { // Compile the model twice with the same token, so that compilation caching will be // exercised if supported by the driver. // No invalid model will be passed to this branch. EXPECT_FALSE(mExpectFailure); std::string mode = ::android::base::GetProperty("debug.nn.slts.caching", "random"); bool useSetCachingFromFds; if (mode == "path") { useSetCachingFromFds = false; } else if (mode == "fds") { useSetCachingFromFds = true; } else if (mode == "random") { std::string testName = ::testing::UnitTest::GetInstance()->current_test_info()->name(); std::seed_seq seq(testName.begin(), testName.end()); std::mt19937 gen(seq); std::bernoulli_distribution d(0.5); useSetCachingFromFds = d(gen); } else { [&mode] { FAIL() << "System property debug.nn.slts.caching should be one of \"path\", " "\"fds\", or \"random\"; got \"" << mode << "\""; }(); return {}; } SCOPED_TRACE("Use setCachingFromFds = " + std::to_string(useSetCachingFromFds) + " (" + mode + ")"); std::cout << "\nUse setCachingFromFds = " << std::boolalpha << useSetCachingFromFds << " (" << mode << ")" << std::endl; std::vector modelCacheFilenames, dataCacheFilenames; if (useSetCachingFromFds) { uint32_t numModelCacheFiles, numDataCacheFiles; EXPECT_EQ(mNnApi->getFL5()->SL_ANeuralNetworksDevice_getNumberOfCacheFilesNeeded( device, &numModelCacheFiles, &numDataCacheFiles), ANEURALNETWORKS_NO_ERROR); for (uint32_t i = 0; i < numModelCacheFiles; i++) { modelCacheFilenames.push_back({mCacheDir + "/model" + std::to_string(i)}); } for (uint32_t i = 0; i < numDataCacheFiles; i++) { dataCacheFilenames.push_back({mCacheDir + "/data" + std::to_string(i)}); } } auto resultCompilation1 = Compilation::createForDevice(mNnApi.get(), &model, device); EXPECT_EQ(resultCompilation1.first, Result::NO_ERROR); auto compilation1 = std::move(resultCompilation1.second); if (useSetCachingFromFds) { auto modelCacheFds = createCacheFds(modelCacheFilenames); auto dataCacheFds = createCacheFds(dataCacheFilenames); EXPECT_EQ(compilation1.setCachingFromFds(modelCacheFds, dataCacheFds, mToken), Result::NO_ERROR); } else { EXPECT_EQ(compilation1.setCaching(mCacheDir, mToken), Result::NO_ERROR); } EXPECT_EQ(compilation1.finish(), Result::NO_ERROR); auto resultCompilation2 = Compilation::createForDevice(mNnApi.get(), &model, device); EXPECT_EQ(resultCompilation2.first, Result::NO_ERROR); auto compilation2 = std::move(resultCompilation2.second); if (useSetCachingFromFds) { auto modelCacheFds = createCacheFds(modelCacheFilenames); auto dataCacheFds = createCacheFds(dataCacheFilenames); EXPECT_EQ(compilation2.setCachingFromFds(modelCacheFds, dataCacheFds, mToken), Result::NO_ERROR); } else { EXPECT_EQ(compilation2.setCaching(mCacheDir, mToken), Result::NO_ERROR); } EXPECT_EQ(compilation2.finish(), Result::NO_ERROR); return compilation2; } else { auto resultCompilation = Compilation::createForDevice(mNnApi.get(), &model, device); EXPECT_EQ(resultCompilation.first, Result::NO_ERROR); auto compilation = std::move(resultCompilation.second); Result result = compilation.finish(); // For valid model, we check the compilation result == NO_ERROR. // For invalid model, the driver may fail at compilation or execution, so any result code is // permitted at this point. if (mExpectFailure && result != Result::NO_ERROR) return std::nullopt; EXPECT_EQ(result, Result::NO_ERROR); return compilation; } } void computeWithPtrs(const TestModel& testModel, Execution* execution, Execution::ComputeMode computeMode, Result* result, std::vector* outputs) { { NNTRACE_APP(NNTRACE_PHASE_INPUTS_AND_OUTPUTS, "computeWithPtrs example"); createRequest(testModel, execution, outputs); } *result = execution->compute(computeMode); } ANeuralNetworksMemory* GeneratedTests::createDeviceMemoryForInput(const Compilation& compilation, uint32_t index) { ANeuralNetworksMemoryDesc* desc = nullptr; EXPECT_EQ(mNnApi->getFL5()->ANeuralNetworksMemoryDesc_create(&desc), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(mNnApi->getFL5()->ANeuralNetworksMemoryDesc_addInputRole( desc, compilation.getHandle(), index, 1.0f), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(mNnApi->getFL5()->ANeuralNetworksMemoryDesc_finish(desc), ANEURALNETWORKS_NO_ERROR); ANeuralNetworksMemory* memory = nullptr; mNnApi->getFL5()->ANeuralNetworksMemory_createFromDesc(desc, &memory); mNnApi->getFL5()->ANeuralNetworksMemoryDesc_free(desc); return memory; } ANeuralNetworksMemory* GeneratedTests::createDeviceMemoryForOutput(const Compilation& compilation, uint32_t index) { ANeuralNetworksMemoryDesc* desc = nullptr; EXPECT_EQ(mNnApi->getFL5()->ANeuralNetworksMemoryDesc_create(&desc), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(mNnApi->getFL5()->ANeuralNetworksMemoryDesc_addOutputRole( desc, compilation.getHandle(), index, 1.0f), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(mNnApi->getFL5()->ANeuralNetworksMemoryDesc_finish(desc), ANEURALNETWORKS_NO_ERROR); ANeuralNetworksMemory* memory = nullptr; mNnApi->getFL5()->ANeuralNetworksMemory_createFromDesc(desc, &memory); mNnApi->getFL5()->ANeuralNetworksMemoryDesc_free(desc); return memory; } // Set result = Result::NO_ERROR and outputs = {} if the test should be skipped. ComputeWithDeviceMemoriesResult GeneratedTests::computeWithDeviceMemories( const Compilation& compilation, const TestModel& testModel, Execution* execution, Execution::ComputeMode computeMode, Result* result, std::vector* outputs) { EXPECT_NE(execution, nullptr); EXPECT_NE(result, nullptr); EXPECT_NE(outputs, nullptr); outputs->clear(); std::vector inputMemories, outputMemories; { NNTRACE_APP(NNTRACE_PHASE_INPUTS_AND_OUTPUTS, "computeWithDeviceMemories example"); // Model inputs. for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) { SCOPED_TRACE("Input index: " + std::to_string(i)); const auto& operand = testModel.main.operands[testModel.main.inputIndexes[i]]; // Omitted input. if (operand.data.size() == 0) { EXPECT_EQ(Result::NO_ERROR, execution->setInput(i, nullptr, 0)); continue; } // Create device memory. ANeuralNetworksMemory* memory = createDeviceMemoryForInput(compilation, i); if (memory == nullptr) { return ComputeWithDeviceMemoriesResult::SKIP; } auto& wrapperMemory = inputMemories.emplace_back(Memory(mNnApi.get(), memory)); // Copy data from TestBuffer to device memory. auto ashmem = TestAshmem::createFrom(mNnApi.get(), operand.data); EXPECT_NE(ashmem, nullptr); EXPECT_EQ(mNnApi->getFL5()->ANeuralNetworksMemory_copy(ashmem->get()->get(), memory), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(Result::NO_ERROR, execution->setInputFromMemory(i, &wrapperMemory, 0, 0)); } // Model outputs. for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) { SCOPED_TRACE("Output index: " + std::to_string(i)); ANeuralNetworksMemory* memory = createDeviceMemoryForOutput(compilation, i); if (memory == nullptr) { return ComputeWithDeviceMemoriesResult::SKIP; } auto& wrapperMemory = outputMemories.emplace_back(Memory(mNnApi.get(), memory)); EXPECT_EQ(Result::NO_ERROR, execution->setOutputFromMemory(i, &wrapperMemory, 0, 0)); } } *result = execution->compute(computeMode); // Copy out output results. for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) { SCOPED_TRACE("Output index: " + std::to_string(i)); const auto& operand = testModel.main.operands[testModel.main.outputIndexes[i]]; const size_t bufferSize = operand.data.size(); auto& output = outputs->emplace_back(bufferSize); auto ashmem = TestAshmem::createFrom(mNnApi.get(), output); EXPECT_NE(ashmem, nullptr); EXPECT_EQ(mNnApi->getFL5()->ANeuralNetworksMemory_copy(outputMemories[i].get(), ashmem->get()->get()), ANEURALNETWORKS_NO_ERROR); std::copy(ashmem->dataAs(), ashmem->dataAs() + bufferSize, output.getMutable()); } return ComputeWithDeviceMemoriesResult::OK; } void GeneratedTests::executeWithCompilation(const Compilation& compilation, const TestModel& testModel) { NNTRACE_APP(NNTRACE_PHASE_EXECUTION, "executeWithCompilation example"); Execution execution(mNnApi.get(), &compilation); Result result; std::vector outputs; if (mTestDeviceMemory) { if (computeWithDeviceMemories(compilation, testModel, &execution, mComputeMode, &result, &outputs) == ComputeWithDeviceMemoriesResult::SKIP) { std::cout << "\nModel not supported by device memories. Skipping" << std::endl; return; } } else { computeWithPtrs(testModel, &execution, mComputeMode, &result, &outputs); } if (result == Result::NO_ERROR && outputs.empty()) { return; } { NNTRACE_APP(NNTRACE_PHASE_RESULTS, "executeWithCompilation example"); if (mExpectFailure) { ASSERT_NE(result, Result::NO_ERROR); return; } else { ASSERT_EQ(result, Result::NO_ERROR); } // Check output dimensions. for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) { SCOPED_TRACE("Output index: " + std::to_string(i)); const auto& output = testModel.main.operands[testModel.main.outputIndexes[i]]; if (output.isIgnored) continue; std::vector actualDimensions; ASSERT_EQ(Result::NO_ERROR, execution.getOutputOperandDimensions(i, &actualDimensions)); ASSERT_EQ(output.dimensions, actualDimensions); } checkResults(testModel, outputs); } } void GeneratedTests::executeOnce(const Model& model, const TestModel& testModel) { NNTRACE_APP(NNTRACE_PHASE_OVERALL, "executeOnce"); uint32_t numDevices = 0; mNnApi->getFL5()->ANeuralNetworks_getDeviceCount(&numDevices); bool modelSupported = false; for (uint32_t i = 0; i < numDevices; ++i) { ANeuralNetworksDevice* device = nullptr; mNnApi->getFL5()->ANeuralNetworks_getDevice(i, &device); const char* deviceName = nullptr; mNnApi->getFL5()->ANeuralNetworksDevice_getName(device, &deviceName); SCOPED_TRACE("Device = " + std::string(deviceName)); std::cout << "\nDevice = " << deviceName << std::endl; if (!checkSupported(model, device)) { std::cout << "\nModel not supported by device " << deviceName << ". Skipping" << std::endl; continue; } modelSupported = true; std::cout << "\nModel supported" << std::endl; std::optional compilation = compileModel(model, device); // Early return if compilation fails. The compilation result code is // checked in compileModel. if (!compilation) return; executeWithCompilation(compilation.value(), testModel); std::cout << "\nExecution completed" << std::endl; } if (!modelSupported) { std::cout << "\nModel not supported by any device\n" << "SKIPPED" << std::endl; } } void GeneratedTests::executeMultithreadedOwnCompilation(const Model& model, const TestModel& testModel) { NNTRACE_APP(NNTRACE_PHASE_OVERALL, "executeMultithreadedOwnCompilation"); SCOPED_TRACE("MultithreadedOwnCompilation"); std::cout << "\nMultithreadedOwnCompilation" << std::endl; std::vector threads; for (int i = 0; i < 10; i++) { threads.push_back(std::thread([&]() { executeOnce(model, testModel); })); } std::for_each(threads.begin(), threads.end(), [](std::thread& t) { t.join(); }); } void GeneratedTests::executeMultithreadedSharedCompilation(const Model& model, const TestModel& testModel) { NNTRACE_APP(NNTRACE_PHASE_OVERALL, "executeMultithreadedSharedCompilation"); SCOPED_TRACE("MultithreadedSharedCompilation"); std::cout << "\nMultithreadedSharedCompilation" << std::endl; uint32_t numDevices = 0; mNnApi->getFL5()->ANeuralNetworks_getDeviceCount(&numDevices); bool modelSupported = false; for (uint32_t i = 0; i < numDevices; ++i) { ANeuralNetworksDevice* device = nullptr; mNnApi->getFL5()->ANeuralNetworks_getDevice(i, &device); const char* deviceName = nullptr; mNnApi->getFL5()->ANeuralNetworksDevice_getName(device, &deviceName); SCOPED_TRACE("Device = " + std::string(deviceName)); std::cout << "\nDevice = " << deviceName << std::endl; if (!checkSupported(model, device)) { std::cout << "\nModel not supported by device " << deviceName << ". Skipping" << std::endl; continue; } modelSupported = true; std::cout << "\nModel supported" << std::endl; std::optional compilation = compileModel(model, device); // Early return if compilation fails. The ompilation result code is // checked in compileModel. if (!compilation) return; std::vector threads; for (int i = 0; i < 10; i++) { threads.push_back( std::thread([&]() { executeWithCompilation(compilation.value(), testModel); })); } std::for_each(threads.begin(), threads.end(), [](std::thread& t) { t.join(); }); std::cout << "\nExecution completed" << std::endl; } if (!modelSupported) { std::cout << "\nModel not supported by any device\n" << "SKIPPED" << std::endl; } } // Test driver for those generated from ml/nn/runtime/test/spec void GeneratedTests::execute(const TestModel& testModel) { NNTRACE_APP(NNTRACE_PHASE_OVERALL, "execute"); GeneratedModel model(mNnApi.get()); createModel(mNnApi.get(), testModel, mTestDynamicOutputShape, &model); if (testModel.expectFailure && !model.isValid()) { return; } ASSERT_EQ(model.finish(), Result::NO_ERROR); ASSERT_TRUE(model.isValid()); auto executeInternal = [&testModel, &model, this]() { SCOPED_TRACE("TestCompilationCaching = " + std::to_string(mTestCompilationCaching)); std::cout << "\nCompilationCaching = " << std::boolalpha << mTestCompilationCaching << std::endl; #ifndef NNTEST_MULTITHREADED executeOnce(model, testModel); #else // defined(NNTEST_MULTITHREADED) executeMultithreadedOwnCompilation(model, testModel); executeMultithreadedSharedCompilation(model, testModel); #endif // !defined(NNTEST_MULTITHREADED) }; mTestCompilationCaching = false; executeInternal(); if (!mExpectFailure) { mTestCompilationCaching = true; executeInternal(); } } bool GeneratedTests::shouldSkipTest() { // A map of {min VNDK version -> tests that should be skipped with earlier VNDK versions}. // The listed tests are added in a later release, but exercising old APIs. They should be // skipped if the device has a mixed build of system and vendor partitions. static const std::map> kMapOfMinVndkVersionToTests = { { __ANDROID_API_R__, { "add_broadcast_quant8_all_inputs_as_internal", }, }, }; for (const auto& [minVersion, names] : kMapOfMinVndkVersionToTests) { if (mVndkVersion < minVersion && names.count(kTestName) > 0) { return true; } } return false; } void GeneratedTests::SetUp() { const char* libdir = dirname(SUPPORT_LIBRARY_NAME.c_str()); setenv(kQCDspLoadPathEnv, libdir, 1); LOG(INFO) << "Overwritten system env variable " << kQCDspLoadPathEnv << " with " << libdir; mNnApi = loadNnApiSupportLibrary(SUPPORT_LIBRARY_NAME); GeneratedTestBase::SetUp(); mVndkVersion = ::android::base::GetIntProperty("ro.vndk.version", __ANDROID_API_FUTURE__); if (shouldSkipTest()) { GTEST_SKIP(); return; } char cacheDirTemp[] = NN_TMP_DIR "/TestCompilationCachingXXXXXX"; char* cacheDir = mkdtemp(cacheDirTemp); ASSERT_NE(cacheDir, nullptr); mCacheDir = cacheDir; mToken = std::vector(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); } void GeneratedTests::TearDown() { mNnApi.reset(nullptr); if (!::testing::Test::HasFailure()) { // TODO: Switch to std::filesystem::remove_all once libc++fs is made available in CTS. // Remove the cache directory specified by path recursively. auto callback = [](const char* child, const struct stat*, int, struct FTW*) { return remove(child); }; nftw(mCacheDir.c_str(), callback, 128, FTW_DEPTH | FTW_MOUNT | FTW_PHYS); } GeneratedTestBase::TearDown(); } #ifdef NNTEST_COMPUTE_MODE TEST_P(GeneratedTests, Sync) { std::cout << "\nComputeMode = SYNC" << std::endl; mComputeMode = Execution::ComputeMode::SYNC; execute(testModel); } TEST_P(GeneratedTests, Burst) { std::cout << "\nComputeMode = BURST" << std::endl; mComputeMode = Execution::ComputeMode::BURST; execute(testModel); } #else TEST_P(GeneratedTests, Test) { execute(testModel); } #endif TEST_P(DynamicOutputShapeTest, Test) { execute(testModel); } TEST_P(GeneratedValidationTests, Test) { execute(testModel); } TEST_P(QuantizationCouplingTest, Test) { execute(convertQuant8AsymmOperandsToSigned(testModel)); } TEST_P(DeviceMemoryTest, Test) { execute(testModel); } TEST_P(FencedComputeTest, Test) { mComputeMode = Execution::ComputeMode::FENCED; execute(testModel); } INSTANTIATE_GENERATED_TEST(GeneratedTests, [](const TestModel& testModel) { return !testModel.expectFailure; }); INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest, [](const TestModel& testModel) { return !testModel.expectFailure && !testModel.hasScalarOutputs(); }); INSTANTIATE_GENERATED_TEST(GeneratedValidationTests, [](const TestModel& testModel) { return testModel.expectFailure && !testModel.isInfiniteLoopTimeoutTest(); }); INSTANTIATE_GENERATED_TEST(QuantizationCouplingTest, [](const TestModel& testModel) { return !testModel.expectFailure && testModel.main.operations.size() == 1 && testModel.referenced.size() == 0 && testModel.hasQuant8CoupledOperands(); }); INSTANTIATE_GENERATED_TEST(DeviceMemoryTest, [](const TestModel& testModel) { return !testModel.expectFailure && std::all_of(testModel.main.outputIndexes.begin(), testModel.main.outputIndexes.end(), [&testModel](uint32_t index) { return testModel.main.operands[index].data.size() > 0; }); }); INSTANTIATE_GENERATED_TEST(FencedComputeTest, [](const TestModel& testModel) { return !testModel.expectFailure && std::all_of(testModel.main.outputIndexes.begin(), testModel.main.outputIndexes.end(), [&testModel](uint32_t index) { return testModel.main.operands[index].data.size() > 0; }); }); } // namespace android::nn::generated_tests