/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "NeuralNetworks.h" #include "NeuralNetworksOEM.h" #include "NeuralNetworksWrapper.h" #ifndef NNTEST_ONLY_PUBLIC_API #include #endif namespace { using namespace android::nn::wrapper; class OperandExtraParamsTest : public ::testing::Test { protected: virtual void SetUp() { ::testing::Test::SetUp(); ASSERT_EQ(ANeuralNetworksModel_create(&mModel), ANEURALNETWORKS_NO_ERROR); nextOperandIndex = 0; } virtual void TearDown() { ANeuralNetworksModel_free(mModel); ::testing::Test::TearDown(); } static const uint32_t CHANNEL_DIM_SIZE = 4; ANeuralNetworksOperandType createOperand(int32_t dataType) { static uint32_t dims[4] = {1, 2, 3, CHANNEL_DIM_SIZE}; switch (dataType) { case ANEURALNETWORKS_FLOAT32: case ANEURALNETWORKS_FLOAT16: case ANEURALNETWORKS_INT32: case ANEURALNETWORKS_UINT32: case ANEURALNETWORKS_BOOL: case ANEURALNETWORKS_MODEL: case ANEURALNETWORKS_OEM_SCALAR: return {.type = dataType, .dimensionCount = 0, .dimensions = nullptr, .scale = 0.0f, .zeroPoint = 0}; case ANEURALNETWORKS_TENSOR_OEM_BYTE: case ANEURALNETWORKS_TENSOR_FLOAT32: case ANEURALNETWORKS_TENSOR_FLOAT16: case ANEURALNETWORKS_TENSOR_INT32: case ANEURALNETWORKS_TENSOR_BOOL8: case ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL: return {.type = dataType, .dimensionCount = 4, .dimensions = dims, .scale = 0.0f, .zeroPoint = 0}; case ANEURALNETWORKS_TENSOR_QUANT8_ASYMM: return {.type = dataType, .dimensionCount = 4, .dimensions = dims, .scale = 1.0, .zeroPoint = 128}; case ANEURALNETWORKS_TENSOR_QUANT8_SYMM: return {.type = dataType, .dimensionCount = 4, .dimensions = dims, .scale = 1.0, .zeroPoint = 0}; case ANEURALNETWORKS_TENSOR_QUANT16_SYMM: return {.type = dataType, .dimensionCount = 4, .dimensions = dims, .scale = 1.0, .zeroPoint = 0}; case ANEURALNETWORKS_TENSOR_QUANT16_ASYMM: return {.type = dataType, .dimensionCount = 4, .dimensions = dims, .scale = 1.0, .zeroPoint = 32768}; case ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED: return {.type = dataType, .dimensionCount = 4, .dimensions = dims, .scale = 1.0, .zeroPoint = 1}; default: ADD_FAILURE(); return {}; } } ANeuralNetworksSymmPerChannelQuantParams createSymmPerChannelQuantParams() { static float scales[CHANNEL_DIM_SIZE] = {1.0, 2.0, 3.0, 4.0}; return { .channelDim = 3, .scaleCount = CHANNEL_DIM_SIZE, .scales = scales, }; } void testAddingWithSymmPerChannelQuantParams(int32_t dataType, ANeuralNetworksSymmPerChannelQuantParams params, bool expectExtraParamsSuccess) { ANeuralNetworksOperandType operandType = createOperand(dataType); EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &operandType), ANEURALNETWORKS_NO_ERROR); int operandIndex = nextOperandIndex++; EXPECT_EQ(ANeuralNetworksModel_setOperandSymmPerChannelQuantParams(mModel, operandIndex, ¶ms), expectExtraParamsSuccess ? ANEURALNETWORKS_NO_ERROR : ANEURALNETWORKS_BAD_DATA); } ANeuralNetworksModel* mModel = nullptr; int nextOperandIndex = 0; }; const uint32_t kOperandCodeNoExtraParams[]{ ANEURALNETWORKS_FLOAT32, ANEURALNETWORKS_FLOAT16, ANEURALNETWORKS_INT32, ANEURALNETWORKS_UINT32, ANEURALNETWORKS_BOOL, ANEURALNETWORKS_OEM_SCALAR, ANEURALNETWORKS_TENSOR_OEM_BYTE, ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_INT32, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_TENSOR_QUANT16_ASYMM, ANEURALNETWORKS_TENSOR_QUANT16_SYMM, ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_TENSOR_BOOL8, ANEURALNETWORKS_TENSOR_QUANT8_SYMM, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED, ANEURALNETWORKS_MODEL, }; #ifndef NNTEST_ONLY_PUBLIC_API // android::nn::k* consts are defined in private headers static_assert(sizeof(kOperandCodeNoExtraParams) / sizeof(kOperandCodeNoExtraParams[0]) == android::nn::kNumberOfDataTypes + android::nn::kNumberOfDataTypesOEM - 1, "New type added, OperandExtraParamsTest needs an update"); #endif const uint32_t kOperandCodeChannelQuant[]{ ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL, }; TEST_F(OperandExtraParamsTest, TestNoExtraParams) { // Test for operands that are expected to not have additonal parameters for (uint32_t dataType : kOperandCodeNoExtraParams) { testAddingWithSymmPerChannelQuantParams(dataType, createSymmPerChannelQuantParams(), /*expectExtraParamsSuccess=*/false); } } TEST_F(OperandExtraParamsTest, TestChannelQuant) { // Test for operands that are expected to have SymmPerChannelQuantParams value associated for (uint32_t dataType : kOperandCodeChannelQuant) { testAddingWithSymmPerChannelQuantParams(dataType, createSymmPerChannelQuantParams(), /*expectExtraParamsSuccess=*/true); } } TEST_F(OperandExtraParamsTest, TestChannelQuantValuesBadDim) { // Bad .channelDim value static float scales[4] = {1.0, 2.0, 3.0, 4.0}; ANeuralNetworksSymmPerChannelQuantParams ext = { .channelDim = 7, .scaleCount = 4, .scales = scales, }; for (uint32_t dataType : kOperandCodeChannelQuant) { testAddingWithSymmPerChannelQuantParams(dataType, ext, /*expectExtraParamsSuccess=*/false); } } TEST_F(OperandExtraParamsTest, TestChannelQuantValuesBadScalesCount) { // Bad .scaleCount value constexpr size_t kLowScaleCount = 3; constexpr size_t kHighScaleCount = 10; static float scales[kHighScaleCount] = {1.0, 2.0, 3.0, 4.0}; ANeuralNetworksSymmPerChannelQuantParams lowScaleCountExt = { .channelDim = 3, .scaleCount = kLowScaleCount, .scales = scales, }; ANeuralNetworksSymmPerChannelQuantParams highScaleCountExt = { .channelDim = 3, .scaleCount = kHighScaleCount, .scales = scales, }; for (uint32_t dataType : kOperandCodeChannelQuant) { testAddingWithSymmPerChannelQuantParams(dataType, lowScaleCountExt, /*expectExtraParamsSuccess=*/false); testAddingWithSymmPerChannelQuantParams(dataType, highScaleCountExt, /*expectExtraParamsSuccess=*/false); } } TEST_F(OperandExtraParamsTest, TestChannelQuantValuesBadScalesNegative) { // Bad .scales value static float scales[4] = {1.0, 2.0, -3.0, 4.0}; ANeuralNetworksSymmPerChannelQuantParams ext = { .channelDim = 3, .scaleCount = 4, .scales = scales, }; for (uint32_t dataType : kOperandCodeChannelQuant) { testAddingWithSymmPerChannelQuantParams(dataType, ext, /*expectExtraParamsSuccess=*/false); } } TEST_F(OperandExtraParamsTest, TestChannelQuantValuesNullScales) { // .scales == nullptr value ANeuralNetworksSymmPerChannelQuantParams ext = { .channelDim = 3, .scaleCount = 4, .scales = nullptr, }; for (uint32_t dataType : kOperandCodeChannelQuant) { testAddingWithSymmPerChannelQuantParams(dataType, ext, /*expectExtraParamsSuccess=*/false); } } TEST_F(OperandExtraParamsTest, TestChannelQuantValuesOperandScale) { for (uint32_t dataType : kOperandCodeChannelQuant) { ANeuralNetworksOperandType operandType = createOperand(dataType); operandType.scale = 1.0f; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &operandType), ANEURALNETWORKS_BAD_DATA); } } TEST_F(OperandExtraParamsTest, TestChannelQuantValuesOperandZeroPoint) { for (uint32_t dataType : kOperandCodeChannelQuant) { ANeuralNetworksOperandType operandType = createOperand(dataType); operandType.zeroPoint = 1; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &operandType), ANEURALNETWORKS_BAD_DATA); } } } // namespace