# # Copyright (C) 2021 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # def test(name, input0, input1, adj0, adj1, output, input0_data, input1_data, output_data): model = Model().Operation("BATCH_MATMUL", input0, input1, adj0, adj1).To( output) quant8_signed = DataTypeConverter().Identify({ input0: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.25, 0), input1: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.50, -64), output: ("TENSOR_QUANT8_ASYMM_SIGNED", 1.00, -128), }) Example({ input0: input0_data, input1: input1_data, output: output_data, }, model=model, name=name).AddVariations("float16", "int32", quant8_signed) test( name="Simple", input0=Input("op1", "TENSOR_FLOAT32", "{1, 2, 3}"), input1=Input("op2", "TENSOR_FLOAT32", "{1, 3, 4}"), adj0=BoolScalar("adj0", False), adj1=BoolScalar("adj1", False), output=Output("op3", "TENSOR_FLOAT32", "{1, 2, 4}"), input0_data=[1, 2, 3, 4, 5, 6], input1_data=[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], output_data=[74., 80., 86., 92., 173., 188., 203., 218.], ) test( name="RHSAdjoint", input0=Input("op1", "TENSOR_FLOAT32", "{1, 2, 3}"), input1=Input("op2", "TENSOR_FLOAT32", "{1, 4, 3}"), adj0=BoolScalar("adj0", False), adj1=BoolScalar("adj1", True), output=Output("op3", "TENSOR_FLOAT32", "{1, 2, 4}"), input0_data=[1, 2, 3, 4, 5, 6], input1_data=[7, 11, 15, 8, 12, 16, 9, 13, 17, 10, 14, 18], output_data=[74., 80., 86., 92., 173., 188., 203., 218.], ) test( name="LHSAdjoint", input0=Input("op1", "TENSOR_FLOAT32", "{1, 3, 2}"), input1=Input("op2", "TENSOR_FLOAT32", "{1, 3, 4}"), adj0=BoolScalar("adj0", True), adj1=BoolScalar("adj1", False), output=Output("op3", "TENSOR_FLOAT32", "{1, 2, 4}"), input0_data=[1, 4, 2, 5, 3, 6], input1_data=[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], output_data=[74., 80., 86., 92., 173., 188., 203., 218.], ) test( name="TwoBatchSize", input0=Input("op1", "TENSOR_FLOAT32", "{2, 2, 3}"), input1=Input("op2", "TENSOR_FLOAT32", "{2, 3, 4}"), adj0=BoolScalar("adj0", False), adj1=BoolScalar("adj1", False), output=Output("op3", "TENSOR_FLOAT32", "{2, 2, 4}"), input0_data=[1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6], input1_data=[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], output_data=[74., 80., 86., 92., 173., 188., 203., 218., 74., 80., 86., 92., 173., 188., 203., 218.], )