/* * Copyright (C) 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Provides C++ classes to more easily use the Neural Networks API. // TODO(b/117845862): this should be auto generated from NeuralNetworksWrapper.h. #ifndef ANDROID_PACKAGES_MODULES_NEURALNETWORKS_SL_SUPPORT_LIBRARY_WRAPPER_H #define ANDROID_PACKAGES_MODULES_NEURALNETWORKS_SL_SUPPORT_LIBRARY_WRAPPER_H #include #include #include #include #include #include #include #include #include #include #include "NeuralNetworksWrapper.h" #include "SupportLibrary.h" using namespace ::android::nn::wrapper; namespace android { namespace nn { namespace sl_wrapper { using ::android::nn::wrapper::Duration; using ::android::nn::wrapper::OperandType; using ::android::nn::wrapper::Result; class Memory { public: // Takes ownership of a ANeuralNetworksMemory Memory(const NnApiSupportLibrary* nnapi, ANeuralNetworksMemory* memory) : mNnApi(nnapi), mMemory(memory), mSize(0) {} // Create from a FD and may takes ownership of the fd. Memory(const NnApiSupportLibrary* nnapi, size_t size, int protect, int fd, size_t offset, bool ownsFd = false) : mNnApi(nnapi), mOwnedFd(ownsFd ? std::optional{fd} : std::nullopt), mSize(size) { mValid = mNnApi->getFL5()->ANeuralNetworksMemory_createFromFd( size, protect, fd, offset, &mMemory) == ANEURALNETWORKS_NO_ERROR; } // Create from a buffer, may take ownership. Memory(const NnApiSupportLibrary* nnapi, AHardwareBuffer* buffer, bool ownAHWB, size_t size) : mNnApi(nnapi), mOwnedAHWB(ownAHWB ? buffer : nullptr), mSize(size) { mValid = mNnApi->getFL5()->ANeuralNetworksMemory_createFromAHardwareBuffer( buffer, &mMemory) == ANEURALNETWORKS_NO_ERROR; } // Create from a desc Memory(const NnApiSupportLibrary* nnapi, ANeuralNetworksMemoryDesc* desc, size_t size) : mNnApi(nnapi), mSize(size) { mValid = mNnApi->getFL5()->ANeuralNetworksMemory_createFromDesc(desc, &mMemory) == ANEURALNETWORKS_NO_ERROR; } virtual ~Memory() { if (mMemory) { mNnApi->getFL5()->ANeuralNetworksMemory_free(mMemory); } if (mOwnedFd) { close(*mOwnedFd); } if (mOwnedAHWB) { AHardwareBuffer_release(mOwnedAHWB); } } // Disallow copy semantics to ensure the runtime object can only be freed // once. Copy semantics could be enabled if some sort of reference counting // or deep-copy system for runtime objects is added later. Memory(const Memory&) = delete; Memory& operator=(const Memory&) = delete; // Move semantics to remove access to the runtime object from the wrapper // object that is being moved. This ensures the runtime object will be // freed only once. Memory(Memory&& other) { *this = std::move(other); } Memory& operator=(Memory&& other) { if (this != &other) { if (mMemory) { mNnApi->getFL5()->ANeuralNetworksMemory_free(mMemory); } if (mOwnedFd) { close(*mOwnedFd); } if (mOwnedAHWB) { AHardwareBuffer_release(mOwnedAHWB); } mMemory = other.mMemory; mValid = other.mValid; mNnApi = other.mNnApi; mOwnedFd = other.mOwnedFd; mOwnedAHWB = other.mOwnedAHWB; other.mMemory = nullptr; other.mValid = false; other.mOwnedFd.reset(); other.mOwnedAHWB = nullptr; } return *this; } ANeuralNetworksMemory* get() const { return mMemory; } bool isValid() const { return mValid; } size_t getSize() const { return mSize; } Result copyTo(Memory& other) { return static_cast( mNnApi->getFL5()->ANeuralNetworksMemory_copy(mMemory, other.mMemory)); } private: const NnApiSupportLibrary* mNnApi = nullptr; ANeuralNetworksMemory* mMemory = nullptr; bool mValid = true; std::optional mOwnedFd; AHardwareBuffer* mOwnedAHWB = nullptr; size_t mSize; }; class Model { public: Model(const NnApiSupportLibrary* nnapi) : mNnApi(nnapi) { mValid = mNnApi->getFL5()->ANeuralNetworksModel_create(&mModel) == ANEURALNETWORKS_NO_ERROR; } ~Model() { if (mModel) { mNnApi->getFL5()->ANeuralNetworksModel_free(mModel); } } // Disallow copy semantics to ensure the runtime object can only be freed // once. Copy semantics could be enabled if some sort of reference counting // or deep-copy system for runtime objects is added later. Model(const Model&) = delete; Model& operator=(const Model&) = delete; // Move semantics to remove access to the runtime object from the wrapper // object that is being moved. This ensures the runtime object will be // freed only once. Model(Model&& other) { *this = std::move(other); } Model& operator=(Model&& other) { if (this != &other) { if (mModel != nullptr) { mNnApi->getFL5()->ANeuralNetworksModel_free(mModel); } mNnApi = other.mNnApi; mModel = other.mModel; mNextOperandId = other.mNextOperandId; mValid = other.mValid; mRelaxed = other.mRelaxed; mFinished = other.mFinished; mOperands = std::move(other.mOperands); mInputs = std::move(other.mInputs); mOutputs = std::move(other.mOutputs); other.mModel = nullptr; other.mNextOperandId = 0; other.mValid = false; other.mRelaxed = false; other.mFinished = false; } return *this; } Result finish() { if (mValid) { auto result = static_cast(mNnApi->getFL5()->ANeuralNetworksModel_finish(mModel)); if (result != Result::NO_ERROR) { mValid = false; } mFinished = true; return result; } else { return Result::BAD_STATE; } } uint32_t addOperand(const OperandType* type) { if (mNnApi->getFL5()->ANeuralNetworksModel_addOperand(mModel, &type->operandType) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } else { mOperands.push_back(*type); } if (type->channelQuant) { if (mNnApi->getFL5()->ANeuralNetworksModel_setOperandSymmPerChannelQuantParams( mModel, mNextOperandId, &type->channelQuant.value().params) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } } return mNextOperandId++; } template uint32_t addConstantOperand(const OperandType* type, const T& value) { static_assert(sizeof(T) <= ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES, "Values larger than ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES " "not supported"); uint32_t index = addOperand(type); setOperandValue(index, &value); return index; } uint32_t addModelOperand(const Model* value) { OperandType operandType(Type::MODEL, {}); uint32_t operand = addOperand(&operandType); setOperandValueFromModel(operand, value); return operand; } void setOperandValue(uint32_t index, const void* buffer, size_t length) { if (mNnApi->getFL5()->ANeuralNetworksModel_setOperandValue(mModel, index, buffer, length) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } } template void setOperandValue(uint32_t index, const T* value) { static_assert(!std::is_pointer(), "No operand may have a pointer as its value"); return setOperandValue(index, value, sizeof(T)); } void setOperandValueFromMemory(uint32_t index, const Memory* memory, uint32_t offset, size_t length) { if (mNnApi->getFL5()->ANeuralNetworksModel_setOperandValueFromMemory( mModel, index, memory->get(), offset, length) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } } void setOperandValueFromModel(uint32_t index, const Model* value) { if (mNnApi->getFL5()->ANeuralNetworksModel_setOperandValueFromModel( mModel, index, value->mModel) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } } void setOperandValueFromModel(uint32_t index, ANeuralNetworksModel* value) { if (mNnApi->getFL5()->ANeuralNetworksModel_setOperandValueFromModel(mModel, index, value) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } } void addOperation(ANeuralNetworksOperationType type, const std::vector& inputs, const std::vector& outputs) { if (mNnApi->getFL5()->ANeuralNetworksModel_addOperation( mModel, type, static_cast(inputs.size()), inputs.data(), static_cast(outputs.size()), outputs.data()) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } } void identifyInputsAndOutputs(const std::vector& inputs, const std::vector& outputs) { if (mNnApi->getFL5()->ANeuralNetworksModel_identifyInputsAndOutputs( mModel, static_cast(inputs.size()), inputs.data(), static_cast(outputs.size()), outputs.data()) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } else { mInputs = inputs; mOutputs = outputs; } } void relaxComputationFloat32toFloat16(bool isRelax) { if (mNnApi->getFL5()->ANeuralNetworksModel_relaxComputationFloat32toFloat16( mModel, isRelax) == ANEURALNETWORKS_NO_ERROR) { mRelaxed = isRelax; } } void getExtensionOperandType(const std::string& extensionName, uint16_t operandCodeWithinExtension, int32_t* type) { if (mNnApi->getFL5()->ANeuralNetworksModel_getExtensionOperandType( mModel, extensionName.c_str(), operandCodeWithinExtension, type) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } } void getExtensionOperationType(const std::string& extensionName, uint16_t operandCodeWithinExtension, ANeuralNetworksOperationType* type) { if (mNnApi->getFL5()->ANeuralNetworksModel_getExtensionOperationType( mModel, extensionName.c_str(), operandCodeWithinExtension, type) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } } void setOperandExtensionData(int32_t operandId, const void* data, size_t length) { if (mNnApi->getFL5()->ANeuralNetworksModel_setOperandExtensionData( mModel, operandId, data, length) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } } ANeuralNetworksModel* getHandle() const { return mModel; } bool isValid() const { return mValid; } bool isRelaxed() const { return mRelaxed; } bool isFinished() const { return mFinished; } const std::vector& getInputs() const { return mInputs; } const std::vector& getOutputs() const { return mOutputs; } const std::vector& getOperands() const { return mOperands; } protected: const NnApiSupportLibrary* mNnApi = nullptr; ANeuralNetworksModel* mModel = nullptr; // We keep track of the operand ID as a convenience to the caller. uint32_t mNextOperandId = 0; // We keep track of the operand datatypes/dimensions as a convenience to the caller. std::vector mOperands; std::vector mInputs; std::vector mOutputs; bool mValid = true; bool mRelaxed = false; bool mFinished = false; }; class Compilation { public: // On success, createForDevice(s) will return Result::NO_ERROR and the created compilation; // otherwise, it will return the error code and Compilation object wrapping a nullptr handle. static std::pair createForDevice(const NnApiSupportLibrary* nnapi, const Model* model, const ANeuralNetworksDevice* device) { return createForDevices(nnapi, model, {device}); } static std::pair createForDevices( const NnApiSupportLibrary* nnapi, const Model* model, const std::vector& devices) { ANeuralNetworksCompilation* compilation = nullptr; const Result result = static_cast(nnapi->getFL5()->ANeuralNetworksCompilation_createForDevices( model->getHandle(), devices.empty() ? nullptr : devices.data(), devices.size(), &compilation)); return {result, Compilation(nnapi, compilation)}; } ~Compilation() { mNnApi->getFL5()->ANeuralNetworksCompilation_free(mCompilation); } // Disallow copy semantics to ensure the runtime object can only be freed // once. Copy semantics could be enabled if some sort of reference counting // or deep-copy system for runtime objects is added later. Compilation(const Compilation&) = delete; Compilation& operator=(const Compilation&) = delete; // Move semantics to remove access to the runtime object from the wrapper // object that is being moved. This ensures the runtime object will be // freed only once. Compilation(Compilation&& other) { *this = std::move(other); } Compilation& operator=(Compilation&& other) { if (this != &other) { mNnApi = other.mNnApi; mNnApi->getFL5()->ANeuralNetworksCompilation_free(mCompilation); mCompilation = other.mCompilation; other.mCompilation = nullptr; } return *this; } Result setPreference(ExecutePreference preference) { return static_cast(mNnApi->getFL5()->ANeuralNetworksCompilation_setPreference( mCompilation, static_cast(preference))); } Result setPriority(ExecutePriority priority) { return static_cast(mNnApi->getFL5()->ANeuralNetworksCompilation_setPriority( mCompilation, static_cast(priority))); } Result setTimeout(uint64_t durationNs) { return static_cast( mNnApi->getFL5()->ANeuralNetworksCompilation_setTimeout(mCompilation, durationNs)); } Result setCaching(const std::string& cacheDir, const std::vector& token) { if (token.size() != ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN) { return Result::BAD_DATA; } return static_cast(mNnApi->getFL5()->ANeuralNetworksCompilation_setCaching( mCompilation, cacheDir.c_str(), token.data())); } Result setCachingFromFds(const std::vector& modelCacheFds, const std::vector& dataCacheFds, const std::vector& token) { if (token.size() != ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN) { return Result::BAD_DATA; } return static_cast( mNnApi->getFL5()->SL_ANeuralNetworksCompilation_setCachingFromFds( mCompilation, modelCacheFds.data(), modelCacheFds.size(), dataCacheFds.data(), dataCacheFds.size(), token.data())); } Result setCachingFromFds(const std::vector& modelCacheOwnedFds, const std::vector& dataCacheOwnedFds, const std::vector& token) { std::vector modelCacheFds, dataCacheFds; for (const auto& fd : modelCacheOwnedFds) { modelCacheFds.push_back(fd.get()); } for (const auto& fd : dataCacheOwnedFds) { dataCacheFds.push_back(fd.get()); } return setCachingFromFds(modelCacheFds, dataCacheFds, token); } Result finish() { return static_cast( mNnApi->getFL5()->ANeuralNetworksCompilation_finish(mCompilation)); } Result getPreferredMemoryAlignmentForInput(uint32_t index, uint32_t* alignment) const { return static_cast( mNnApi->getFL5()->ANeuralNetworksCompilation_getPreferredMemoryAlignmentForInput( mCompilation, index, alignment)); }; Result getPreferredMemoryPaddingForInput(uint32_t index, uint32_t* padding) const { return static_cast( mNnApi->getFL5()->ANeuralNetworksCompilation_getPreferredMemoryPaddingForInput( mCompilation, index, padding)); }; Result getPreferredMemoryAlignmentForOutput(uint32_t index, uint32_t* alignment) const { return static_cast( mNnApi->getFL5()->ANeuralNetworksCompilation_getPreferredMemoryAlignmentForOutput( mCompilation, index, alignment)); }; Result getPreferredMemoryPaddingForOutput(uint32_t index, uint32_t* padding) const { return static_cast( mNnApi->getFL5()->ANeuralNetworksCompilation_getPreferredMemoryPaddingForOutput( mCompilation, index, padding)); }; Result addExtensionAttribute(const std::string& extensionName, uint16_t attributeCodeWithinExtension, const std::vector& extensionAttributeData) { return static_cast( mNnApi->getFL8()->ANeuralNetworksCompilation_addExtensionAttribute( mCompilation, extensionName.c_str(), attributeCodeWithinExtension, extensionAttributeData.data(), extensionAttributeData.size())); } ANeuralNetworksCompilation* getHandle() const { return mCompilation; } protected: // Takes the ownership of ANeuralNetworksCompilation. Compilation(const NnApiSupportLibrary* nnapi, ANeuralNetworksCompilation* compilation) : mNnApi(nnapi), mCompilation(compilation) {} const NnApiSupportLibrary* mNnApi = nullptr; ANeuralNetworksCompilation* mCompilation = nullptr; }; class Execution { public: Execution(const NnApiSupportLibrary* nnapi, const Compilation* compilation) : mNnApi(nnapi), mCompilation(compilation->getHandle()) { int result = mNnApi->getFL5()->ANeuralNetworksExecution_create(compilation->getHandle(), &mExecution); if (result != 0) { // TODO Handle the error } } ~Execution() { if (mExecution) { mNnApi->getFL5()->ANeuralNetworksExecution_free(mExecution); } } // Disallow copy semantics to ensure the runtime object can only be freed // once. Copy semantics could be enabled if some sort of reference counting // or deep-copy system for runtime objects is added later. Execution(const Execution&) = delete; Execution& operator=(const Execution&) = delete; // Move semantics to remove access to the runtime object from the wrapper // object that is being moved. This ensures the runtime object will be // freed only once. Execution(Execution&& other) { *this = std::move(other); } Execution& operator=(Execution&& other) { if (this != &other) { if (mExecution != nullptr) { mNnApi->getFL5()->ANeuralNetworksExecution_free(mExecution); } mNnApi = other.mNnApi; mCompilation = other.mCompilation; mExecution = other.mExecution; other.mCompilation = nullptr; other.mExecution = nullptr; } return *this; } Result setInput(uint32_t index, const void* buffer, size_t length, const ANeuralNetworksOperandType* type = nullptr) { return static_cast(mNnApi->getFL5()->ANeuralNetworksExecution_setInput( mExecution, index, type, buffer, length)); } template Result setInput(uint32_t index, const T* value, const ANeuralNetworksOperandType* type = nullptr) { static_assert(!std::is_pointer(), "No operand may have a pointer as its value"); return setInput(index, value, sizeof(T), type); } Result setInputFromMemory(uint32_t index, const Memory* memory, uint32_t offset, uint32_t length, const ANeuralNetworksOperandType* type = nullptr) { return static_cast(mNnApi->getFL5()->ANeuralNetworksExecution_setInputFromMemory( mExecution, index, type, memory->get(), offset, length)); } Result setOutput(uint32_t index, void* buffer, size_t length, const ANeuralNetworksOperandType* type = nullptr) { return static_cast(mNnApi->getFL5()->ANeuralNetworksExecution_setOutput( mExecution, index, type, buffer, length)); } template Result setOutput(uint32_t index, T* value, const ANeuralNetworksOperandType* type = nullptr) { static_assert(!std::is_pointer(), "No operand may have a pointer as its value"); return setOutput(index, value, sizeof(T), type); } Result setOutputFromMemory(uint32_t index, const Memory* memory, uint32_t offset, uint32_t length, const ANeuralNetworksOperandType* type = nullptr) { return static_cast(mNnApi->getFL5()->ANeuralNetworksExecution_setOutputFromMemory( mExecution, index, type, memory->get(), offset, length)); } Result setLoopTimeout(uint64_t duration) { return static_cast( mNnApi->getFL5()->ANeuralNetworksExecution_setLoopTimeout(mExecution, duration)); } Result setMeasureTiming(bool measure) { return static_cast( mNnApi->getFL5()->ANeuralNetworksExecution_setMeasureTiming(mExecution, measure)); } Result setTimeout(uint64_t duration) { return static_cast( mNnApi->getFL5()->ANeuralNetworksExecution_setTimeout(mExecution, duration)); } Result getDuration(Duration durationCode, uint64_t* duration) { return static_cast(mNnApi->getFL5()->ANeuralNetworksExecution_getDuration( mExecution, static_cast(durationCode), duration)); } Result enableInputAndOutputPadding(bool enable) { return static_cast( mNnApi->getFL5()->ANeuralNetworksExecution_enableInputAndOutputPadding(mExecution, enable)); } Result setReusable(bool reusable) { return static_cast( mNnApi->getFL5()->ANeuralNetworksExecution_setReusable(mExecution, reusable)); } // By default, compute() uses the synchronous API. Either an argument or // setComputeMode() can be used to change the behavior of compute() to // use the burst API // Returns the previous ComputeMode. enum class ComputeMode { SYNC, BURST, FENCED }; static ComputeMode setComputeMode(ComputeMode mode) { ComputeMode oldComputeMode = mComputeMode; mComputeMode = mode; return oldComputeMode; } static ComputeMode getComputeMode() { return mComputeMode; } Result compute(ComputeMode computeMode = mComputeMode) { switch (computeMode) { case ComputeMode::SYNC: { return static_cast( mNnApi->getFL5()->ANeuralNetworksExecution_compute(mExecution)); } case ComputeMode::BURST: { ANeuralNetworksBurst* burst = nullptr; Result result = static_cast( mNnApi->getFL5()->ANeuralNetworksBurst_create(mCompilation, &burst)); if (result != Result::NO_ERROR) { return result; } result = static_cast( mNnApi->getFL5()->ANeuralNetworksExecution_burstCompute(mExecution, burst)); mNnApi->getFL5()->ANeuralNetworksBurst_free(burst); return result; } case ComputeMode::FENCED: { ANeuralNetworksEvent* event = nullptr; Result result = static_cast( mNnApi->getFL5()->ANeuralNetworksExecution_startComputeWithDependencies( mExecution, nullptr, 0, 0, &event)); if (result != Result::NO_ERROR) { return result; } result = static_cast(mNnApi->getFL5()->ANeuralNetworksEvent_wait(event)); mNnApi->getFL5()->ANeuralNetworksEvent_free(event); return result; } } return Result::BAD_DATA; } Result startComputeWithDependencies(const std::vector& deps, uint64_t duration, Event* event) { ANeuralNetworksEvent* ev = nullptr; Result result = static_cast( NNAPI_CALL(ANeuralNetworksExecution_startComputeWithDependencies( mExecution, deps.data(), deps.size(), duration, &ev))); event->set(ev); return result; } Result getOutputOperandDimensions(uint32_t index, std::vector* dimensions) { uint32_t rank = 0; Result result = static_cast(mNnApi->getFL5()->ANeuralNetworksExecution_getOutputOperandRank( mExecution, index, &rank)); dimensions->resize(rank); if ((result != Result::NO_ERROR && result != Result::OUTPUT_INSUFFICIENT_SIZE) || rank == 0) { return result; } result = static_cast( mNnApi->getFL5()->ANeuralNetworksExecution_getOutputOperandDimensions( mExecution, index, dimensions->data())); return result; } Result addExtensionAttribute(const std::string& extensionName, uint16_t attributeCodeWithinExtension, const std::vector& extensionAttributeData) { return static_cast(mNnApi->getFL8()->ANeuralNetworksExecution_addExtensionAttribute( mExecution, extensionName.c_str(), attributeCodeWithinExtension, extensionAttributeData.data(), extensionAttributeData.size())); } ANeuralNetworksExecution* getHandle() { return mExecution; }; private: const NnApiSupportLibrary* mNnApi = nullptr; ANeuralNetworksCompilation* mCompilation = nullptr; ANeuralNetworksExecution* mExecution = nullptr; // Initialized to ComputeMode::SYNC in TestNeuralNetworksWrapper.cpp. static ComputeMode mComputeMode; }; } // namespace sl_wrapper } // namespace nn } // namespace android #endif // ANDROID_PACKAGES_MODULES_NEURALNETWORKS_SL_SUPPORT_LIBRARY_WRAPPER_H