1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 //
18 // Definitions of resource data structures.
19 //
20 #ifndef _LIBS_UTILS_RESOURCE_TYPES_H
21 #define _LIBS_UTILS_RESOURCE_TYPES_H
22 
23 #include <android-base/expected.h>
24 #include <android-base/unique_fd.h>
25 #include <android/configuration.h>
26 #include <androidfw/Asset.h>
27 #include <androidfw/Errors.h>
28 #include <androidfw/LocaleData.h>
29 #include <androidfw/StringPiece.h>
30 #include <utils/ByteOrder.h>
31 #include <utils/Errors.h>
32 #include <utils/KeyedVector.h>
33 #include <utils/String16.h>
34 #include <utils/Vector.h>
35 #include <utils/threads.h>
36 
37 #include <stdint.h>
38 #include <sys/types.h>
39 
40 #include <array>
41 #include <map>
42 #include <memory>
43 #include <optional>
44 #include <string_view>
45 #include <unordered_map>
46 #include <utility>
47 
48 namespace android {
49 
50 constexpr const uint32_t kIdmapMagic = 0x504D4449u;
51 constexpr const uint32_t kIdmapCurrentVersion = 0x00000009u;
52 
53 // This must never change.
54 constexpr const uint32_t kFabricatedOverlayMagic = 0x4f525246; // FRRO (big endian)
55 
56 // The version should only be changed when a backwards-incompatible change must be made to the
57 // fabricated overlay file format. Old fabricated overlays must be migrated to the new file format
58 // to prevent losing fabricated overlay data.
59 constexpr const uint32_t kFabricatedOverlayCurrentVersion = 3;
60 
61 // Returns whether or not the path represents a fabricated overlay.
62 bool IsFabricatedOverlayName(std::string_view path);
63 bool IsFabricatedOverlay(std::string_view path);
64 bool IsFabricatedOverlay(android::base::borrowed_fd fd);
65 
66 /**
67  * In C++11, char16_t is defined as *at least* 16 bits. We do a lot of
68  * casting on raw data and expect char16_t to be exactly 16 bits.
69  */
70 #if __cplusplus >= 201103L
71 struct __assertChar16Size {
72     static_assert(sizeof(char16_t) == sizeof(uint16_t), "char16_t is not 16 bits");
73     static_assert(alignof(char16_t) == alignof(uint16_t), "char16_t is not 16-bit aligned");
74 };
75 #endif
76 
77 /** ********************************************************************
78  *  PNG Extensions
79  *
80  *  New private chunks that may be placed in PNG images.
81  *
82  *********************************************************************** */
83 
84 /**
85  * This chunk specifies how to split an image into segments for
86  * scaling.
87  *
88  * There are J horizontal and K vertical segments.  These segments divide
89  * the image into J*K regions as follows (where J=4 and K=3):
90  *
91  *      F0   S0    F1     S1
92  *   +-----+----+------+-------+
93  * S2|  0  |  1 |  2   |   3   |
94  *   +-----+----+------+-------+
95  *   |     |    |      |       |
96  *   |     |    |      |       |
97  * F2|  4  |  5 |  6   |   7   |
98  *   |     |    |      |       |
99  *   |     |    |      |       |
100  *   +-----+----+------+-------+
101  * S3|  8  |  9 |  10  |   11  |
102  *   +-----+----+------+-------+
103  *
104  * Each horizontal and vertical segment is considered to by either
105  * stretchable (marked by the Sx labels) or fixed (marked by the Fy
106  * labels), in the horizontal or vertical axis, respectively. In the
107  * above example, the first is horizontal segment (F0) is fixed, the
108  * next is stretchable and then they continue to alternate. Note that
109  * the segment list for each axis can begin or end with a stretchable
110  * or fixed segment.
111  *
112  * The relative sizes of the stretchy segments indicates the relative
113  * amount of stretchiness of the regions bordered by the segments.  For
114  * example, regions 3, 7 and 11 above will take up more horizontal space
115  * than regions 1, 5 and 9 since the horizontal segment associated with
116  * the first set of regions is larger than the other set of regions.  The
117  * ratios of the amount of horizontal (or vertical) space taken by any
118  * two stretchable slices is exactly the ratio of their corresponding
119  * segment lengths.
120  *
121  * xDivs and yDivs are arrays of horizontal and vertical pixel
122  * indices.  The first pair of Divs (in either array) indicate the
123  * starting and ending points of the first stretchable segment in that
124  * axis. The next pair specifies the next stretchable segment, etc. So
125  * in the above example xDiv[0] and xDiv[1] specify the horizontal
126  * coordinates for the regions labeled 1, 5 and 9.  xDiv[2] and
127  * xDiv[3] specify the coordinates for regions 3, 7 and 11. Note that
128  * the leftmost slices always start at x=0 and the rightmost slices
129  * always end at the end of the image. So, for example, the regions 0,
130  * 4 and 8 (which are fixed along the X axis) start at x value 0 and
131  * go to xDiv[0] and slices 2, 6 and 10 start at xDiv[1] and end at
132  * xDiv[2].
133  *
134  * The colors array contains hints for each of the regions. They are
135  * ordered according left-to-right and top-to-bottom as indicated above.
136  * For each segment that is a solid color the array entry will contain
137  * that color value; otherwise it will contain NO_COLOR. Segments that
138  * are completely transparent will always have the value TRANSPARENT_COLOR.
139  *
140  * The PNG chunk type is "npTc".
141  */
142 struct alignas(uintptr_t) Res_png_9patch
143 {
Res_png_9patchRes_png_9patch144     Res_png_9patch() : wasDeserialized(false), xDivsOffset(0),
145                        yDivsOffset(0), colorsOffset(0) { }
146 
147     int8_t wasDeserialized;
148     uint8_t numXDivs;
149     uint8_t numYDivs;
150     uint8_t numColors;
151 
152     // The offset (from the start of this structure) to the xDivs & yDivs
153     // array for this 9patch. To get a pointer to this array, call
154     // getXDivs or getYDivs. Note that the serialized form for 9patches places
155     // the xDivs, yDivs and colors arrays immediately after the location
156     // of the Res_png_9patch struct.
157     uint32_t xDivsOffset;
158     uint32_t yDivsOffset;
159 
160     int32_t paddingLeft, paddingRight;
161     int32_t paddingTop, paddingBottom;
162 
163     enum {
164         // The 9 patch segment is not a solid color.
165         NO_COLOR = 0x00000001,
166 
167         // The 9 patch segment is completely transparent.
168         TRANSPARENT_COLOR = 0x00000000
169     };
170 
171     // The offset (from the start of this structure) to the colors array
172     // for this 9patch.
173     uint32_t colorsOffset;
174 
175     // Convert data from device representation to PNG file representation.
176     void deviceToFile();
177     // Convert data from PNG file representation to device representation.
178     void fileToDevice();
179 
180     // Serialize/Marshall the patch data into a newly malloc-ed block.
181     static void* serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs,
182                            const int32_t* yDivs, const uint32_t* colors);
183     // Serialize/Marshall the patch data into |outData|.
184     static void serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs,
185                            const int32_t* yDivs, const uint32_t* colors, void* outData);
186     // Deserialize/Unmarshall the patch data
187     static Res_png_9patch* deserialize(void* data);
188     // Compute the size of the serialized data structure
189     size_t serializedSize() const;
190 
191     // These tell where the next section of a patch starts.
192     // For example, the first patch includes the pixels from
193     // 0 to xDivs[0]-1 and the second patch includes the pixels
194     // from xDivs[0] to xDivs[1]-1.
getXDivsRes_png_9patch195     inline int32_t* getXDivs() const {
196         return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + xDivsOffset);
197     }
getYDivsRes_png_9patch198     inline int32_t* getYDivs() const {
199         return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + yDivsOffset);
200     }
getColorsRes_png_9patch201     inline uint32_t* getColors() const {
202         return reinterpret_cast<uint32_t*>(reinterpret_cast<uintptr_t>(this) + colorsOffset);
203     }
204 
205 } __attribute__((packed));
206 
207 /** ********************************************************************
208  *  Base Types
209  *
210  *  These are standard types that are shared between multiple specific
211  *  resource types.
212  *
213  *********************************************************************** */
214 
215 /**
216  * Header that appears at the front of every data chunk in a resource.
217  */
218 struct ResChunk_header
219 {
220     // Type identifier for this chunk.  The meaning of this value depends
221     // on the containing chunk.
222     uint16_t type;
223 
224     // Size of the chunk header (in bytes).  Adding this value to
225     // the address of the chunk allows you to find its associated data
226     // (if any).
227     uint16_t headerSize;
228 
229     // Total size of this chunk (in bytes).  This is the chunkSize plus
230     // the size of any data associated with the chunk.  Adding this value
231     // to the chunk allows you to completely skip its contents (including
232     // any child chunks).  If this value is the same as chunkSize, there is
233     // no data associated with the chunk.
234     uint32_t size;
235 };
236 
237 enum {
238     RES_NULL_TYPE                     = 0x0000,
239     RES_STRING_POOL_TYPE              = 0x0001,
240     RES_TABLE_TYPE                    = 0x0002,
241     RES_XML_TYPE                      = 0x0003,
242 
243     // Chunk types in RES_XML_TYPE
244     RES_XML_FIRST_CHUNK_TYPE          = 0x0100,
245     RES_XML_START_NAMESPACE_TYPE      = 0x0100,
246     RES_XML_END_NAMESPACE_TYPE        = 0x0101,
247     RES_XML_START_ELEMENT_TYPE        = 0x0102,
248     RES_XML_END_ELEMENT_TYPE          = 0x0103,
249     RES_XML_CDATA_TYPE                = 0x0104,
250     RES_XML_LAST_CHUNK_TYPE           = 0x017f,
251     // This contains a uint32_t array mapping strings in the string
252     // pool back to resource identifiers.  It is optional.
253     RES_XML_RESOURCE_MAP_TYPE         = 0x0180,
254 
255     // Chunk types in RES_TABLE_TYPE
256     RES_TABLE_PACKAGE_TYPE            = 0x0200,
257     RES_TABLE_TYPE_TYPE               = 0x0201,
258     RES_TABLE_TYPE_SPEC_TYPE          = 0x0202,
259     RES_TABLE_LIBRARY_TYPE            = 0x0203,
260     RES_TABLE_OVERLAYABLE_TYPE        = 0x0204,
261     RES_TABLE_OVERLAYABLE_POLICY_TYPE = 0x0205,
262     RES_TABLE_STAGED_ALIAS_TYPE       = 0x0206,
263 };
264 
265 /**
266  * Macros for building/splitting resource identifiers.
267  */
268 #define Res_VALIDID(resid) (resid != 0)
269 #define Res_CHECKID(resid) ((resid&0xFFFF0000) != 0)
270 #define Res_MAKEID(package, type, entry) \
271     (((package+1)<<24) | (((type+1)&0xFF)<<16) | (entry&0xFFFF))
272 #define Res_GETPACKAGE(id) ((id>>24)-1)
273 #define Res_GETTYPE(id) (((id>>16)&0xFF)-1)
274 #define Res_GETENTRY(id) (id&0xFFFF)
275 
276 #define Res_INTERNALID(resid) ((resid&0xFFFF0000) != 0 && (resid&0xFF0000) == 0)
277 #define Res_MAKEINTERNAL(entry) (0x01000000 | (entry&0xFFFF))
278 #define Res_MAKEARRAY(entry) (0x02000000 | (entry&0xFFFF))
279 
280 static const size_t Res_MAXPACKAGE = 255;
281 static const size_t Res_MAXTYPE = 255;
282 
283 /**
284  * Representation of a value in a resource, supplying type
285  * information.
286  */
287 struct Res_value
288 {
289     // Number of bytes in this structure.
290     uint16_t size;
291 
292     // Always set to 0.
293     uint8_t res0;
294 
295     // Type of the data value.
296     enum : uint8_t {
297         // The 'data' is either 0 or 1, specifying this resource is either
298         // undefined or empty, respectively.
299         TYPE_NULL = 0x00,
300         // The 'data' holds a ResTable_ref, a reference to another resource
301         // table entry.
302         TYPE_REFERENCE = 0x01,
303         // The 'data' holds an attribute resource identifier.
304         TYPE_ATTRIBUTE = 0x02,
305         // The 'data' holds an index into the containing resource table's
306         // global value string pool.
307         TYPE_STRING = 0x03,
308         // The 'data' holds a single-precision floating point number.
309         TYPE_FLOAT = 0x04,
310         // The 'data' holds a complex number encoding a dimension value,
311         // such as "100in".
312         TYPE_DIMENSION = 0x05,
313         // The 'data' holds a complex number encoding a fraction of a
314         // container.
315         TYPE_FRACTION = 0x06,
316         // The 'data' holds a dynamic ResTable_ref, which needs to be
317         // resolved before it can be used like a TYPE_REFERENCE.
318         TYPE_DYNAMIC_REFERENCE = 0x07,
319         // The 'data' holds an attribute resource identifier, which needs to be resolved
320         // before it can be used like a TYPE_ATTRIBUTE.
321         TYPE_DYNAMIC_ATTRIBUTE = 0x08,
322 
323         // Beginning of integer flavors...
324         TYPE_FIRST_INT = 0x10,
325 
326         // The 'data' is a raw integer value of the form n..n.
327         TYPE_INT_DEC = 0x10,
328         // The 'data' is a raw integer value of the form 0xn..n.
329         TYPE_INT_HEX = 0x11,
330         // The 'data' is either 0 or 1, for input "false" or "true" respectively.
331         TYPE_INT_BOOLEAN = 0x12,
332 
333         // Beginning of color integer flavors...
334         TYPE_FIRST_COLOR_INT = 0x1c,
335 
336         // The 'data' is a raw integer value of the form #aarrggbb.
337         TYPE_INT_COLOR_ARGB8 = 0x1c,
338         // The 'data' is a raw integer value of the form #rrggbb.
339         TYPE_INT_COLOR_RGB8 = 0x1d,
340         // The 'data' is a raw integer value of the form #argb.
341         TYPE_INT_COLOR_ARGB4 = 0x1e,
342         // The 'data' is a raw integer value of the form #rgb.
343         TYPE_INT_COLOR_RGB4 = 0x1f,
344 
345         // ...end of integer flavors.
346         TYPE_LAST_COLOR_INT = 0x1f,
347 
348         // ...end of integer flavors.
349         TYPE_LAST_INT = 0x1f
350     };
351     uint8_t dataType;
352 
353     // Structure of complex data values (TYPE_UNIT and TYPE_FRACTION)
354     enum {
355         // Where the unit type information is.  This gives us 16 possible
356         // types, as defined below.
357         COMPLEX_UNIT_SHIFT = 0,
358         COMPLEX_UNIT_MASK = 0xf,
359 
360         // TYPE_DIMENSION: Value is raw pixels.
361         COMPLEX_UNIT_PX = 0,
362         // TYPE_DIMENSION: Value is Device Independent Pixels.
363         COMPLEX_UNIT_DIP = 1,
364         // TYPE_DIMENSION: Value is a Scaled device independent Pixels.
365         COMPLEX_UNIT_SP = 2,
366         // TYPE_DIMENSION: Value is in points.
367         COMPLEX_UNIT_PT = 3,
368         // TYPE_DIMENSION: Value is in inches.
369         COMPLEX_UNIT_IN = 4,
370         // TYPE_DIMENSION: Value is in millimeters.
371         COMPLEX_UNIT_MM = 5,
372 
373         // TYPE_FRACTION: A basic fraction of the overall size.
374         COMPLEX_UNIT_FRACTION = 0,
375         // TYPE_FRACTION: A fraction of the parent size.
376         COMPLEX_UNIT_FRACTION_PARENT = 1,
377 
378         // Where the radix information is, telling where the decimal place
379         // appears in the mantissa.  This give us 4 possible fixed point
380         // representations as defined below.
381         COMPLEX_RADIX_SHIFT = 4,
382         COMPLEX_RADIX_MASK = 0x3,
383 
384         // The mantissa is an integral number -- i.e., 0xnnnnnn.0
385         COMPLEX_RADIX_23p0 = 0,
386         // The mantissa magnitude is 16 bits -- i.e, 0xnnnn.nn
387         COMPLEX_RADIX_16p7 = 1,
388         // The mantissa magnitude is 8 bits -- i.e, 0xnn.nnnn
389         COMPLEX_RADIX_8p15 = 2,
390         // The mantissa magnitude is 0 bits -- i.e, 0x0.nnnnnn
391         COMPLEX_RADIX_0p23 = 3,
392 
393         // Where the actual value is.  This gives us 23 bits of
394         // precision.  The top bit is the sign.
395         COMPLEX_MANTISSA_SHIFT = 8,
396         COMPLEX_MANTISSA_MASK = 0xffffff
397     };
398 
399     // Possible data values for TYPE_NULL.
400     enum {
401         // The value is not defined.
402         DATA_NULL_UNDEFINED = 0,
403         // The value is explicitly defined as empty.
404         DATA_NULL_EMPTY = 1
405     };
406 
407     // The data for this item, as interpreted according to dataType.
408     typedef uint32_t data_type;
409     data_type data;
410 
411     void copyFrom_dtoh(const Res_value& src);
412 };
413 
414 /**
415  *  This is a reference to a unique entry (a ResTable_entry structure)
416  *  in a resource table.  The value is structured as: 0xpptteeee,
417  *  where pp is the package index, tt is the type index in that
418  *  package, and eeee is the entry index in that type.  The package
419  *  and type values start at 1 for the first item, to help catch cases
420  *  where they have not been supplied.
421  */
422 struct ResTable_ref
423 {
424     uint32_t ident;
425 };
426 
427 /**
428  * Reference to a string in a string pool.
429  */
430 struct ResStringPool_ref
431 {
432     // Index into the string pool table (uint32_t-offset from the indices
433     // immediately after ResStringPool_header) at which to find the location
434     // of the string data in the pool.
435     uint32_t index;
436 };
437 
438 /** ********************************************************************
439  *  String Pool
440  *
441  *  A set of strings that can be references by others through a
442  *  ResStringPool_ref.
443  *
444  *********************************************************************** */
445 
446 /**
447  * Definition for a pool of strings.  The data of this chunk is an
448  * array of uint32_t providing indices into the pool, relative to
449  * stringsStart.  At stringsStart are all of the UTF-16 strings
450  * concatenated together; each starts with a uint16_t of the string's
451  * length and each ends with a 0x0000 terminator.  If a string is >
452  * 32767 characters, the high bit of the length is set meaning to take
453  * those 15 bits as a high word and it will be followed by another
454  * uint16_t containing the low word.
455  *
456  * If styleCount is not zero, then immediately following the array of
457  * uint32_t indices into the string table is another array of indices
458  * into a style table starting at stylesStart.  Each entry in the
459  * style table is an array of ResStringPool_span structures.
460  */
461 struct ResStringPool_header
462 {
463     struct ResChunk_header header;
464 
465     // Number of strings in this pool (number of uint32_t indices that follow
466     // in the data).
467     uint32_t stringCount;
468 
469     // Number of style span arrays in the pool (number of uint32_t indices
470     // follow the string indices).
471     uint32_t styleCount;
472 
473     // Flags.
474     enum {
475         // If set, the string index is sorted by the string values (based
476         // on strcmp16()).
477         SORTED_FLAG = 1<<0,
478 
479         // String pool is encoded in UTF-8
480         UTF8_FLAG = 1<<8
481     };
482     uint32_t flags;
483 
484     // Index from header of the string data.
485     uint32_t stringsStart;
486 
487     // Index from header of the style data.
488     uint32_t stylesStart;
489 };
490 
491 /**
492  * This structure defines a span of style information associated with
493  * a string in the pool.
494  */
495 struct ResStringPool_span
496 {
497     enum {
498         END = 0xFFFFFFFF
499     };
500 
501     // This is the name of the span -- that is, the name of the XML
502     // tag that defined it.  The special value END (0xFFFFFFFF) indicates
503     // the end of an array of spans.
504     ResStringPool_ref name;
505 
506     // The range of characters in the string that this span applies to.
507     uint32_t firstChar, lastChar;
508 };
509 
510 /**
511  * Convenience class for accessing data in a ResStringPool resource.
512  */
513 class ResStringPool
514 {
515 public:
516  ResStringPool();
517  explicit ResStringPool(bool optimize_name_lookups);
518  ResStringPool(const void* data, size_t size, bool copyData = false,
519                bool optimize_name_lookups = false);
520  virtual ~ResStringPool();
521 
522  void setToEmpty();
523  status_t setTo(incfs::map_ptr<void> data, size_t size, bool copyData = false);
524 
525  status_t getError() const;
526 
527  void uninit();
528 
529  // Return string entry as UTF16; if the pool is UTF8, the string will
530  // be converted before returning.
stringAt(const ResStringPool_ref & ref)531  inline base::expected<StringPiece16, NullOrIOError> stringAt(const ResStringPool_ref& ref) const {
532    return stringAt(ref.index);
533  }
534     virtual base::expected<StringPiece16, NullOrIOError> stringAt(size_t idx) const;
535 
536     // Note: returns null if the string pool is not UTF8.
537     virtual base::expected<StringPiece, NullOrIOError> string8At(size_t idx) const;
538 
539     // Return string whether the pool is UTF8 or UTF16.  Does not allow you
540     // to distinguish null.
541     base::expected<String8, IOError> string8ObjectAt(size_t idx) const;
542 
543     base::expected<incfs::map_ptr<ResStringPool_span>, NullOrIOError> styleAt(
544         const ResStringPool_ref& ref) const;
545     base::expected<incfs::map_ptr<ResStringPool_span>, NullOrIOError> styleAt(size_t idx) const;
546 
547     base::expected<size_t, NullOrIOError> indexOfString(const char16_t* str, size_t strLen) const;
548 
549     virtual size_t size() const;
550     size_t styleCount() const;
551     size_t bytes() const;
552     incfs::map_ptr<void> data() const;
553 
554     bool isSorted() const;
555     bool isUTF8() const;
556 
557 private:
558     status_t                                      mError;
559     void*                                         mOwnedData;
560     incfs::verified_map_ptr<ResStringPool_header> mHeader;
561     size_t                                        mSize;
562     mutable Mutex                                 mCachesLock;
563     incfs::map_ptr<uint32_t>                      mEntries;
564     incfs::map_ptr<uint32_t>                      mEntryStyles;
565     incfs::map_ptr<void>                          mStrings;
566     char16_t mutable**                            mCache;
567     uint32_t                                      mStringPoolSize;    // number of uint16_t
568     incfs::map_ptr<uint32_t>                      mStyles;
569     uint32_t                                      mStylePoolSize;    // number of uint32_t
570 
571     mutable std::optional<std::pair<std::unordered_map<std::string_view, int>,
572                                     std::unordered_map<std::u16string_view, int>>>
573         mIndexLookupCache;
574 
575     base::expected<StringPiece, NullOrIOError> stringDecodeAt(
576         size_t idx, incfs::map_ptr<uint8_t> str, size_t encLen) const;
577 };
578 
579 /**
580  * Wrapper class that allows the caller to retrieve a string from
581  * a string pool without knowing which string pool to look.
582  */
583 class StringPoolRef {
584 public:
585  StringPoolRef() = default;
586  StringPoolRef(const ResStringPool* pool, uint32_t index);
587 
588  base::expected<StringPiece, NullOrIOError> string8() const;
589  base::expected<StringPiece16, NullOrIOError> string16() const;
590 
591 private:
592  const ResStringPool* mPool = nullptr;
593  uint32_t mIndex = 0u;
594 };
595 
596 /** ********************************************************************
597  *  XML Tree
598  *
599  *  Binary representation of an XML document.  This is designed to
600  *  express everything in an XML document, in a form that is much
601  *  easier to parse on the device.
602  *
603  *********************************************************************** */
604 
605 /**
606  * XML tree header.  This appears at the front of an XML tree,
607  * describing its content.  It is followed by a flat array of
608  * ResXMLTree_node structures; the hierarchy of the XML document
609  * is described by the occurrance of RES_XML_START_ELEMENT_TYPE
610  * and corresponding RES_XML_END_ELEMENT_TYPE nodes in the array.
611  */
612 struct ResXMLTree_header
613 {
614     struct ResChunk_header header;
615 };
616 
617 /**
618  * Basic XML tree node.  A single item in the XML document.  Extended info
619  * about the node can be found after header.headerSize.
620  */
621 struct ResXMLTree_node
622 {
623     struct ResChunk_header header;
624 
625     // Line number in original source file at which this element appeared.
626     uint32_t lineNumber;
627 
628     // Optional XML comment that was associated with this element; -1 if none.
629     struct ResStringPool_ref comment;
630 };
631 
632 /**
633  * Extended XML tree node for CDATA tags -- includes the CDATA string.
634  * Appears header.headerSize bytes after a ResXMLTree_node.
635  */
636 struct ResXMLTree_cdataExt
637 {
638     // The raw CDATA character data.
639     struct ResStringPool_ref data;
640 
641     // The typed value of the character data if this is a CDATA node.
642     struct Res_value typedData;
643 };
644 
645 /**
646  * Extended XML tree node for namespace start/end nodes.
647  * Appears header.headerSize bytes after a ResXMLTree_node.
648  */
649 struct ResXMLTree_namespaceExt
650 {
651     // The prefix of the namespace.
652     struct ResStringPool_ref prefix;
653 
654     // The URI of the namespace.
655     struct ResStringPool_ref uri;
656 };
657 
658 /**
659  * Extended XML tree node for element start/end nodes.
660  * Appears header.headerSize bytes after a ResXMLTree_node.
661  */
662 struct ResXMLTree_endElementExt
663 {
664     // String of the full namespace of this element.
665     struct ResStringPool_ref ns;
666 
667     // String name of this node if it is an ELEMENT; the raw
668     // character data if this is a CDATA node.
669     struct ResStringPool_ref name;
670 };
671 
672 /**
673  * Extended XML tree node for start tags -- includes attribute
674  * information.
675  * Appears header.headerSize bytes after a ResXMLTree_node.
676  */
677 struct ResXMLTree_attrExt
678 {
679     // String of the full namespace of this element.
680     struct ResStringPool_ref ns;
681 
682     // String name of this node if it is an ELEMENT; the raw
683     // character data if this is a CDATA node.
684     struct ResStringPool_ref name;
685 
686     // Byte offset from the start of this structure where the attributes start.
687     uint16_t attributeStart;
688 
689     // Size of the ResXMLTree_attribute structures that follow.
690     uint16_t attributeSize;
691 
692     // Number of attributes associated with an ELEMENT.  These are
693     // available as an array of ResXMLTree_attribute structures
694     // immediately following this node.
695     uint16_t attributeCount;
696 
697     // Index (1-based) of the "id" attribute. 0 if none.
698     uint16_t idIndex;
699 
700     // Index (1-based) of the "class" attribute. 0 if none.
701     uint16_t classIndex;
702 
703     // Index (1-based) of the "style" attribute. 0 if none.
704     uint16_t styleIndex;
705 };
706 
707 struct ResXMLTree_attribute
708 {
709     // Namespace of this attribute.
710     struct ResStringPool_ref ns;
711 
712     // Name of this attribute.
713     struct ResStringPool_ref name;
714 
715     // The original raw string value of this attribute.
716     struct ResStringPool_ref rawValue;
717 
718     // Processesd typed value of this attribute.
719     struct Res_value typedValue;
720 };
721 
722 class ResXMLTree;
723 
724 class ResXMLParser
725 {
726 public:
727     explicit ResXMLParser(const ResXMLTree& tree);
728 
729     enum event_code_t {
730         BAD_DOCUMENT = -1,
731         START_DOCUMENT = 0,
732         END_DOCUMENT = 1,
733 
734         FIRST_CHUNK_CODE = RES_XML_FIRST_CHUNK_TYPE,
735 
736         START_NAMESPACE = RES_XML_START_NAMESPACE_TYPE,
737         END_NAMESPACE = RES_XML_END_NAMESPACE_TYPE,
738         START_TAG = RES_XML_START_ELEMENT_TYPE,
739         END_TAG = RES_XML_END_ELEMENT_TYPE,
740         TEXT = RES_XML_CDATA_TYPE
741     };
742 
743     struct ResXMLPosition
744     {
745         event_code_t                eventCode;
746         const ResXMLTree_node*      curNode;
747         const void*                 curExt;
748     };
749 
750     void restart();
751 
752     const ResStringPool& getStrings() const;
753 
754     event_code_t getEventType() const;
755     // Note, unlike XmlPullParser, the first call to next() will return
756     // START_TAG of the first element.
757     event_code_t next();
758 
759     // These are available for all nodes:
760     int32_t getCommentID() const;
761     const char16_t* getComment(size_t* outLen) const;
762     uint32_t getLineNumber() const;
763 
764     // This is available for TEXT:
765     int32_t getTextID() const;
766     const char16_t* getText(size_t* outLen) const;
767     ssize_t getTextValue(Res_value* outValue) const;
768 
769     // These are available for START_NAMESPACE and END_NAMESPACE:
770     int32_t getNamespacePrefixID() const;
771     const char16_t* getNamespacePrefix(size_t* outLen) const;
772     int32_t getNamespaceUriID() const;
773     const char16_t* getNamespaceUri(size_t* outLen) const;
774 
775     // These are available for START_TAG and END_TAG:
776     int32_t getElementNamespaceID() const;
777     const char16_t* getElementNamespace(size_t* outLen) const;
778     int32_t getElementNameID() const;
779     const char16_t* getElementName(size_t* outLen) const;
780 
781     // Remaining methods are for retrieving information about attributes
782     // associated with a START_TAG:
783 
784     size_t getAttributeCount() const;
785 
786     // Returns -1 if no namespace, -2 if idx out of range.
787     int32_t getAttributeNamespaceID(size_t idx) const;
788     const char16_t* getAttributeNamespace(size_t idx, size_t* outLen) const;
789 
790     int32_t getAttributeNameID(size_t idx) const;
791     const char16_t* getAttributeName(size_t idx, size_t* outLen) const;
792     uint32_t getAttributeNameResID(size_t idx) const;
793 
794     // These will work only if the underlying string pool is UTF-8.
795     const char* getAttributeNamespace8(size_t idx, size_t* outLen) const;
796     const char* getAttributeName8(size_t idx, size_t* outLen) const;
797 
798     int32_t getAttributeValueStringID(size_t idx) const;
799     const char16_t* getAttributeStringValue(size_t idx, size_t* outLen) const;
800 
801     int32_t getAttributeDataType(size_t idx) const;
802     int32_t getAttributeData(size_t idx) const;
803     ssize_t getAttributeValue(size_t idx, Res_value* outValue) const;
804 
805     ssize_t indexOfAttribute(const char* ns, const char* attr) const;
806     ssize_t indexOfAttribute(const char16_t* ns, size_t nsLen,
807                              const char16_t* attr, size_t attrLen) const;
808 
809     ssize_t indexOfID() const;
810     ssize_t indexOfClass() const;
811     ssize_t indexOfStyle() const;
812 
813     void getPosition(ResXMLPosition* pos) const;
814     void setPosition(const ResXMLPosition& pos);
815 
816     void setSourceResourceId(const uint32_t resId);
817     uint32_t getSourceResourceId() const;
818 
819 private:
820     friend class ResXMLTree;
821 
822     event_code_t nextNode();
823 
824     const ResXMLTree&           mTree;
825     event_code_t                mEventCode;
826     const ResXMLTree_node*      mCurNode;
827     const void*                 mCurExt;
828     uint32_t                    mSourceResourceId;
829 };
830 
831 static inline bool operator==(const android::ResXMLParser::ResXMLPosition& lhs,
832                               const android::ResXMLParser::ResXMLPosition& rhs) {
833   return lhs.curNode == rhs.curNode;
834 }
835 
836 class DynamicRefTable;
837 
838 /**
839  * Convenience class for accessing data in a ResXMLTree resource.
840  */
841 class ResXMLTree : public ResXMLParser
842 {
843 public:
844     /**
845      * Creates a ResXMLTree with the specified DynamicRefTable for run-time package id translation.
846      * The tree stores a clone of the specified DynamicRefTable, so any changes to the original
847      * DynamicRefTable will not affect this tree after instantiation.
848      **/
849     explicit ResXMLTree(std::shared_ptr<const DynamicRefTable> dynamicRefTable);
850     ResXMLTree();
851     ~ResXMLTree();
852 
853     status_t setTo(const void* data, size_t size, bool copyData=false);
854 
855     status_t getError() const;
856 
857     void uninit();
858 
859 private:
860     friend class ResXMLParser;
861 
862     status_t validateNode(const ResXMLTree_node* node) const;
863 
864     std::shared_ptr<const DynamicRefTable> mDynamicRefTable;
865 
866     status_t                    mError;
867     void*                       mOwnedData;
868     const ResXMLTree_header*    mHeader;
869     size_t                      mSize;
870     const uint8_t*              mDataEnd;
871     ResStringPool               mStrings;
872     const uint32_t*             mResIds;
873     size_t                      mNumResIds;
874     const ResXMLTree_node*      mRootNode;
875     const void*                 mRootExt;
876     event_code_t                mRootCode;
877 };
878 
879 /** ********************************************************************
880  *  RESOURCE TABLE
881  *
882  *********************************************************************** */
883 
884 /**
885  * Header for a resource table.  Its data contains a series of
886  * additional chunks:
887  *   * A ResStringPool_header containing all table values.  This string pool
888  *     contains all of the string values in the entire resource table (not
889  *     the names of entries or type identifiers however).
890  *   * One or more ResTable_package chunks.
891  *
892  * Specific entries within a resource table can be uniquely identified
893  * with a single integer as defined by the ResTable_ref structure.
894  */
895 struct ResTable_header
896 {
897     struct ResChunk_header header;
898 
899     // The number of ResTable_package structures.
900     uint32_t packageCount;
901 };
902 
903 /**
904  * A collection of resource data types within a package.  Followed by
905  * one or more ResTable_type and ResTable_typeSpec structures containing the
906  * entry values for each resource type.
907  */
908 struct ResTable_package
909 {
910     struct ResChunk_header header;
911 
912     // If this is a base package, its ID.  Package IDs start
913     // at 1 (corresponding to the value of the package bits in a
914     // resource identifier).  0 means this is not a base package.
915     uint32_t id;
916 
917     // Actual name of this package, \0-terminated.
918     uint16_t name[128];
919 
920     // Offset to a ResStringPool_header defining the resource
921     // type symbol table.  If zero, this package is inheriting from
922     // another base package (overriding specific values in it).
923     uint32_t typeStrings;
924 
925     // Last index into typeStrings that is for public use by others.
926     uint32_t lastPublicType;
927 
928     // Offset to a ResStringPool_header defining the resource
929     // key symbol table.  If zero, this package is inheriting from
930     // another base package (overriding specific values in it).
931     uint32_t keyStrings;
932 
933     // Last index into keyStrings that is for public use by others.
934     uint32_t lastPublicKey;
935 
936     uint32_t typeIdOffset;
937 };
938 
939 // The most specific locale can consist of:
940 //
941 // - a 3 char language code
942 // - a 3 char region code prefixed by a 'r'
943 // - a 4 char script code prefixed by a 's'
944 // - a 8 char variant code prefixed by a 'v'
945 //
946 // each separated by a single char separator, which sums up to a total of 24
947 // chars, (25 include the string terminator). Numbering system specificator,
948 // if present, can add up to 14 bytes (-u-nu-xxxxxxxx), giving 39 bytes,
949 // or 40 bytes to make it 4 bytes aligned.
950 #define RESTABLE_MAX_LOCALE_LEN 40
951 
952 
953 /**
954  * Describes a particular resource configuration.
955  */
956 struct ResTable_config
957 {
958     // Number of bytes in this structure.
959     uint32_t size;
960 
961     union {
962         struct {
963             // Mobile country code (from SIM).  0 means "any".
964             uint16_t mcc;
965             // Mobile network code (from SIM).  0 means "any".
966             uint16_t mnc;
967         };
968         uint32_t imsi;
969     };
970 
971     union {
972         struct {
973             // This field can take three different forms:
974             // - \0\0 means "any".
975             //
976             // - Two 7 bit ascii values interpreted as ISO-639-1 language
977             //   codes ('fr', 'en' etc. etc.). The high bit for both bytes is
978             //   zero.
979             //
980             // - A single 16 bit little endian packed value representing an
981             //   ISO-639-2 3 letter language code. This will be of the form:
982             //
983             //   {1, t, t, t, t, t, s, s, s, s, s, f, f, f, f, f}
984             //
985             //   bit[0, 4] = first letter of the language code
986             //   bit[5, 9] = second letter of the language code
987             //   bit[10, 14] = third letter of the language code.
988             //   bit[15] = 1 always
989             //
990             // For backwards compatibility, languages that have unambiguous
991             // two letter codes are represented in that format.
992             //
993             // The layout is always bigendian irrespective of the runtime
994             // architecture.
995             char language[2];
996 
997             // This field can take three different forms:
998             // - \0\0 means "any".
999             //
1000             // - Two 7 bit ascii values interpreted as 2 letter region
1001             //   codes ('US', 'GB' etc.). The high bit for both bytes is zero.
1002             //
1003             // - An UN M.49 3 digit region code. For simplicity, these are packed
1004             //   in the same manner as the language codes, though we should need
1005             //   only 10 bits to represent them, instead of the 15.
1006             //
1007             // The layout is always bigendian irrespective of the runtime
1008             // architecture.
1009             char country[2];
1010         };
1011         uint32_t locale;
1012     };
1013 
1014     enum {
1015         ORIENTATION_ANY  = ACONFIGURATION_ORIENTATION_ANY,
1016         ORIENTATION_PORT = ACONFIGURATION_ORIENTATION_PORT,
1017         ORIENTATION_LAND = ACONFIGURATION_ORIENTATION_LAND,
1018         ORIENTATION_SQUARE = ACONFIGURATION_ORIENTATION_SQUARE,
1019     };
1020 
1021     enum {
1022         TOUCHSCREEN_ANY  = ACONFIGURATION_TOUCHSCREEN_ANY,
1023         TOUCHSCREEN_NOTOUCH  = ACONFIGURATION_TOUCHSCREEN_NOTOUCH,
1024         TOUCHSCREEN_STYLUS  = ACONFIGURATION_TOUCHSCREEN_STYLUS,
1025         TOUCHSCREEN_FINGER  = ACONFIGURATION_TOUCHSCREEN_FINGER,
1026     };
1027 
1028     enum {
1029         DENSITY_DEFAULT = ACONFIGURATION_DENSITY_DEFAULT,
1030         DENSITY_LOW = ACONFIGURATION_DENSITY_LOW,
1031         DENSITY_MEDIUM = ACONFIGURATION_DENSITY_MEDIUM,
1032         DENSITY_TV = ACONFIGURATION_DENSITY_TV,
1033         DENSITY_HIGH = ACONFIGURATION_DENSITY_HIGH,
1034         DENSITY_XHIGH = ACONFIGURATION_DENSITY_XHIGH,
1035         DENSITY_XXHIGH = ACONFIGURATION_DENSITY_XXHIGH,
1036         DENSITY_XXXHIGH = ACONFIGURATION_DENSITY_XXXHIGH,
1037         DENSITY_ANY = ACONFIGURATION_DENSITY_ANY,
1038         DENSITY_NONE = ACONFIGURATION_DENSITY_NONE
1039     };
1040 
1041     union {
1042         struct {
1043             uint8_t orientation;
1044             uint8_t touchscreen;
1045             uint16_t density;
1046         };
1047         uint32_t screenType;
1048     };
1049 
1050     enum {
1051         KEYBOARD_ANY  = ACONFIGURATION_KEYBOARD_ANY,
1052         KEYBOARD_NOKEYS  = ACONFIGURATION_KEYBOARD_NOKEYS,
1053         KEYBOARD_QWERTY  = ACONFIGURATION_KEYBOARD_QWERTY,
1054         KEYBOARD_12KEY  = ACONFIGURATION_KEYBOARD_12KEY,
1055     };
1056 
1057     enum {
1058         NAVIGATION_ANY  = ACONFIGURATION_NAVIGATION_ANY,
1059         NAVIGATION_NONAV  = ACONFIGURATION_NAVIGATION_NONAV,
1060         NAVIGATION_DPAD  = ACONFIGURATION_NAVIGATION_DPAD,
1061         NAVIGATION_TRACKBALL  = ACONFIGURATION_NAVIGATION_TRACKBALL,
1062         NAVIGATION_WHEEL  = ACONFIGURATION_NAVIGATION_WHEEL,
1063     };
1064 
1065     enum {
1066         MASK_KEYSHIDDEN = 0x0003,
1067         KEYSHIDDEN_ANY = ACONFIGURATION_KEYSHIDDEN_ANY,
1068         KEYSHIDDEN_NO = ACONFIGURATION_KEYSHIDDEN_NO,
1069         KEYSHIDDEN_YES = ACONFIGURATION_KEYSHIDDEN_YES,
1070         KEYSHIDDEN_SOFT = ACONFIGURATION_KEYSHIDDEN_SOFT,
1071     };
1072 
1073     enum {
1074         MASK_NAVHIDDEN = 0x000c,
1075         SHIFT_NAVHIDDEN = 2,
1076         NAVHIDDEN_ANY = ACONFIGURATION_NAVHIDDEN_ANY << SHIFT_NAVHIDDEN,
1077         NAVHIDDEN_NO = ACONFIGURATION_NAVHIDDEN_NO << SHIFT_NAVHIDDEN,
1078         NAVHIDDEN_YES = ACONFIGURATION_NAVHIDDEN_YES << SHIFT_NAVHIDDEN,
1079     };
1080 
1081     enum {
1082         GRAMMATICAL_GENDER_ANY = ACONFIGURATION_GRAMMATICAL_GENDER_ANY,
1083         GRAMMATICAL_GENDER_NEUTER = ACONFIGURATION_GRAMMATICAL_GENDER_NEUTER,
1084         GRAMMATICAL_GENDER_FEMININE = ACONFIGURATION_GRAMMATICAL_GENDER_FEMININE,
1085         GRAMMATICAL_GENDER_MASCULINE = ACONFIGURATION_GRAMMATICAL_GENDER_MASCULINE,
1086         GRAMMATICAL_INFLECTION_GENDER_MASK = 0b11,
1087     };
1088 
1089     struct {
1090         union {
1091             struct {
1092                 uint8_t keyboard;
1093                 uint8_t navigation;
1094                 uint8_t inputFlags;
1095                 uint8_t inputFieldPad0;
1096             };
1097             struct {
1098                 uint32_t input : 24;
1099                 uint32_t inputFullPad0 : 8;
1100             };
1101             struct {
1102                 uint8_t grammaticalInflectionPad0[3];
1103                 uint8_t grammaticalInflection;
1104             };
1105         };
1106     };
1107 
1108     enum {
1109         SCREENWIDTH_ANY = 0
1110     };
1111 
1112     enum {
1113         SCREENHEIGHT_ANY = 0
1114     };
1115 
1116     union {
1117         struct {
1118             uint16_t screenWidth;
1119             uint16_t screenHeight;
1120         };
1121         uint32_t screenSize;
1122     };
1123 
1124     enum {
1125         SDKVERSION_ANY = 0
1126     };
1127 
1128     enum {
1129         MINORVERSION_ANY = 0
1130     };
1131 
1132     union {
1133         struct {
1134             uint16_t sdkVersion;
1135             // For now minorVersion must always be 0!!!  Its meaning
1136             // is currently undefined.
1137             uint16_t minorVersion;
1138         };
1139         uint32_t version;
1140     };
1141 
1142     enum {
1143         // screenLayout bits for screen size class.
1144         MASK_SCREENSIZE = 0x0f,
1145         SCREENSIZE_ANY = ACONFIGURATION_SCREENSIZE_ANY,
1146         SCREENSIZE_SMALL = ACONFIGURATION_SCREENSIZE_SMALL,
1147         SCREENSIZE_NORMAL = ACONFIGURATION_SCREENSIZE_NORMAL,
1148         SCREENSIZE_LARGE = ACONFIGURATION_SCREENSIZE_LARGE,
1149         SCREENSIZE_XLARGE = ACONFIGURATION_SCREENSIZE_XLARGE,
1150 
1151         // screenLayout bits for wide/long screen variation.
1152         MASK_SCREENLONG = 0x30,
1153         SHIFT_SCREENLONG = 4,
1154         SCREENLONG_ANY = ACONFIGURATION_SCREENLONG_ANY << SHIFT_SCREENLONG,
1155         SCREENLONG_NO = ACONFIGURATION_SCREENLONG_NO << SHIFT_SCREENLONG,
1156         SCREENLONG_YES = ACONFIGURATION_SCREENLONG_YES << SHIFT_SCREENLONG,
1157 
1158         // screenLayout bits for layout direction.
1159         MASK_LAYOUTDIR = 0xC0,
1160         SHIFT_LAYOUTDIR = 6,
1161         LAYOUTDIR_ANY = ACONFIGURATION_LAYOUTDIR_ANY << SHIFT_LAYOUTDIR,
1162         LAYOUTDIR_LTR = ACONFIGURATION_LAYOUTDIR_LTR << SHIFT_LAYOUTDIR,
1163         LAYOUTDIR_RTL = ACONFIGURATION_LAYOUTDIR_RTL << SHIFT_LAYOUTDIR,
1164     };
1165 
1166     enum {
1167         // uiMode bits for the mode type.
1168         MASK_UI_MODE_TYPE = 0x0f,
1169         UI_MODE_TYPE_ANY = ACONFIGURATION_UI_MODE_TYPE_ANY,
1170         UI_MODE_TYPE_NORMAL = ACONFIGURATION_UI_MODE_TYPE_NORMAL,
1171         UI_MODE_TYPE_DESK = ACONFIGURATION_UI_MODE_TYPE_DESK,
1172         UI_MODE_TYPE_CAR = ACONFIGURATION_UI_MODE_TYPE_CAR,
1173         UI_MODE_TYPE_TELEVISION = ACONFIGURATION_UI_MODE_TYPE_TELEVISION,
1174         UI_MODE_TYPE_APPLIANCE = ACONFIGURATION_UI_MODE_TYPE_APPLIANCE,
1175         UI_MODE_TYPE_WATCH = ACONFIGURATION_UI_MODE_TYPE_WATCH,
1176         UI_MODE_TYPE_VR_HEADSET = ACONFIGURATION_UI_MODE_TYPE_VR_HEADSET,
1177 
1178         // uiMode bits for the night switch.
1179         MASK_UI_MODE_NIGHT = 0x30,
1180         SHIFT_UI_MODE_NIGHT = 4,
1181         UI_MODE_NIGHT_ANY = ACONFIGURATION_UI_MODE_NIGHT_ANY << SHIFT_UI_MODE_NIGHT,
1182         UI_MODE_NIGHT_NO = ACONFIGURATION_UI_MODE_NIGHT_NO << SHIFT_UI_MODE_NIGHT,
1183         UI_MODE_NIGHT_YES = ACONFIGURATION_UI_MODE_NIGHT_YES << SHIFT_UI_MODE_NIGHT,
1184     };
1185 
1186     union {
1187         struct {
1188             uint8_t screenLayout;
1189             uint8_t uiMode;
1190             uint16_t smallestScreenWidthDp;
1191         };
1192         uint32_t screenConfig;
1193     };
1194 
1195     union {
1196         struct {
1197             uint16_t screenWidthDp;
1198             uint16_t screenHeightDp;
1199         };
1200         uint32_t screenSizeDp;
1201     };
1202 
1203     // The ISO-15924 short name for the script corresponding to this
1204     // configuration. (eg. Hant, Latn, etc.). Interpreted in conjunction with
1205     // the locale field.
1206     char localeScript[4];
1207 
1208     // A single BCP-47 variant subtag. Will vary in length between 4 and 8
1209     // chars. Interpreted in conjunction with the locale field.
1210     char localeVariant[8];
1211 
1212     enum {
1213         // screenLayout2 bits for round/notround.
1214         MASK_SCREENROUND = 0x03,
1215         SCREENROUND_ANY = ACONFIGURATION_SCREENROUND_ANY,
1216         SCREENROUND_NO = ACONFIGURATION_SCREENROUND_NO,
1217         SCREENROUND_YES = ACONFIGURATION_SCREENROUND_YES,
1218     };
1219 
1220     enum {
1221         // colorMode bits for wide-color gamut/narrow-color gamut.
1222         MASK_WIDE_COLOR_GAMUT = 0x03,
1223         WIDE_COLOR_GAMUT_ANY = ACONFIGURATION_WIDE_COLOR_GAMUT_ANY,
1224         WIDE_COLOR_GAMUT_NO = ACONFIGURATION_WIDE_COLOR_GAMUT_NO,
1225         WIDE_COLOR_GAMUT_YES = ACONFIGURATION_WIDE_COLOR_GAMUT_YES,
1226 
1227         // colorMode bits for HDR/LDR.
1228         MASK_HDR = 0x0c,
1229         SHIFT_COLOR_MODE_HDR = 2,
1230         HDR_ANY = ACONFIGURATION_HDR_ANY << SHIFT_COLOR_MODE_HDR,
1231         HDR_NO = ACONFIGURATION_HDR_NO << SHIFT_COLOR_MODE_HDR,
1232         HDR_YES = ACONFIGURATION_HDR_YES << SHIFT_COLOR_MODE_HDR,
1233     };
1234 
1235     // An extension of screenConfig.
1236     union {
1237         struct {
1238             uint8_t screenLayout2;      // Contains round/notround qualifier.
1239             uint8_t colorMode;          // Wide-gamut, HDR, etc.
1240             uint16_t screenConfigPad2;  // Reserved padding.
1241         };
1242         uint32_t screenConfig2;
1243     };
1244 
1245     // If false and localeScript is set, it means that the script of the locale
1246     // was explicitly provided.
1247     //
1248     // If true, it means that localeScript was automatically computed.
1249     // localeScript may still not be set in this case, which means that we
1250     // tried but could not compute a script.
1251     bool localeScriptWasComputed;
1252 
1253     // The value of BCP 47 Unicode extension for key 'nu' (numbering system).
1254     // Varies in length from 3 to 8 chars. Zero-filled value.
1255     char localeNumberingSystem[8];
1256 
1257     void copyFromDeviceNoSwap(const ResTable_config& o);
1258 
1259     void copyFromDtoH(const ResTable_config& o);
1260 
1261     void swapHtoD();
1262 
1263     int compare(const ResTable_config& o) const;
1264     int compareLogical(const ResTable_config& o) const;
1265 
1266     inline bool operator<(const ResTable_config& o) const { return compare(o) < 0; }
1267 
1268     // Flags indicating a set of config values.  These flag constants must
1269     // match the corresponding ones in android.content.pm.ActivityInfo and
1270     // attrs_manifest.xml.
1271     enum {
1272         CONFIG_MCC = ACONFIGURATION_MCC,
1273         CONFIG_MNC = ACONFIGURATION_MNC,
1274         CONFIG_LOCALE = ACONFIGURATION_LOCALE,
1275         CONFIG_TOUCHSCREEN = ACONFIGURATION_TOUCHSCREEN,
1276         CONFIG_KEYBOARD = ACONFIGURATION_KEYBOARD,
1277         CONFIG_KEYBOARD_HIDDEN = ACONFIGURATION_KEYBOARD_HIDDEN,
1278         CONFIG_NAVIGATION = ACONFIGURATION_NAVIGATION,
1279         CONFIG_ORIENTATION = ACONFIGURATION_ORIENTATION,
1280         CONFIG_DENSITY = ACONFIGURATION_DENSITY,
1281         CONFIG_SCREEN_SIZE = ACONFIGURATION_SCREEN_SIZE,
1282         CONFIG_SMALLEST_SCREEN_SIZE = ACONFIGURATION_SMALLEST_SCREEN_SIZE,
1283         CONFIG_VERSION = ACONFIGURATION_VERSION,
1284         CONFIG_SCREEN_LAYOUT = ACONFIGURATION_SCREEN_LAYOUT,
1285         CONFIG_UI_MODE = ACONFIGURATION_UI_MODE,
1286         CONFIG_LAYOUTDIR = ACONFIGURATION_LAYOUTDIR,
1287         CONFIG_SCREEN_ROUND = ACONFIGURATION_SCREEN_ROUND,
1288         CONFIG_COLOR_MODE = ACONFIGURATION_COLOR_MODE,
1289         CONFIG_GRAMMATICAL_GENDER = ACONFIGURATION_GRAMMATICAL_GENDER,
1290     };
1291 
1292     // Compare two configuration, returning CONFIG_* flags set for each value
1293     // that is different.
1294     int diff(const ResTable_config& o) const;
1295 
1296     // Return true if 'this' is more specific than 'o'.
1297     bool isMoreSpecificThan(const ResTable_config& o) const;
1298 
1299     // Return true if 'this' is a better match than 'o' for the 'requested'
1300     // configuration.  This assumes that match() has already been used to
1301     // remove any configurations that don't match the requested configuration
1302     // at all; if they are not first filtered, non-matching results can be
1303     // considered better than matching ones.
1304     // The general rule per attribute: if the request cares about an attribute
1305     // (it normally does), if the two (this and o) are equal it's a tie.  If
1306     // they are not equal then one must be generic because only generic and
1307     // '==requested' will pass the match() call.  So if this is not generic,
1308     // it wins.  If this IS generic, o wins (return false).
1309     bool isBetterThan(const ResTable_config& o, const ResTable_config* requested) const;
1310 
1311     // Return true if 'this' can be considered a match for the parameters in
1312     // 'settings'.
1313     // Note this is asymetric.  A default piece of data will match every request
1314     // but a request for the default should not match odd specifics
1315     // (ie, request with no mcc should not match a particular mcc's data)
1316     // settings is the requested settings
1317     bool match(const ResTable_config& settings) const;
1318 
1319     // Get the string representation of the locale component of this
1320     // Config. The maximum size of this representation will be
1321     // |RESTABLE_MAX_LOCALE_LEN| (including a terminating '\0').
1322     //
1323     // Example: en-US, en-Latn-US, en-POSIX.
1324     //
1325     // If canonicalize is set, Tagalog (tl) locales get converted
1326     // to Filipino (fil).
1327     void getBcp47Locale(char* out, bool canonicalize=false) const;
1328 
1329     // Append to str the resource-qualifer string representation of the
1330     // locale component of this Config. If the locale is only country
1331     // and language, it will look like en-rUS. If it has scripts and
1332     // variants, it will be a modified bcp47 tag: b+en+Latn+US.
1333     void appendDirLocale(String8& str) const;
1334 
1335     // Sets the values of language, region, script, variant and numbering
1336     // system to the well formed BCP 47 locale contained in |in|.
1337     // The input locale is assumed to be valid and no validation is performed.
1338     void setBcp47Locale(const char* in);
1339 
clearLocaleResTable_config1340     inline void clearLocale() {
1341         locale = 0;
1342         localeScriptWasComputed = false;
1343         memset(localeScript, 0, sizeof(localeScript));
1344         memset(localeVariant, 0, sizeof(localeVariant));
1345         memset(localeNumberingSystem, 0, sizeof(localeNumberingSystem));
1346     }
1347 
computeScriptResTable_config1348     inline void computeScript() {
1349         localeDataComputeScript(localeScript, language, country);
1350     }
1351 
1352     // Get the 2 or 3 letter language code of this configuration. Trailing
1353     // bytes are set to '\0'.
1354     size_t unpackLanguage(char language[4]) const;
1355     // Get the 2 or 3 letter language code of this configuration. Trailing
1356     // bytes are set to '\0'.
1357     size_t unpackRegion(char region[4]) const;
1358 
1359     // Sets the language code of this configuration to the first three
1360     // chars at |language|.
1361     //
1362     // If |language| is a 2 letter code, the trailing byte must be '\0' or
1363     // the BCP-47 separator '-'.
1364     void packLanguage(const char* language);
1365     // Sets the region code of this configuration to the first three bytes
1366     // at |region|. If |region| is a 2 letter code, the trailing byte must be '\0'
1367     // or the BCP-47 separator '-'.
1368     void packRegion(const char* region);
1369 
1370     // Returns a positive integer if this config is more specific than |o|
1371     // with respect to their locales, a negative integer if |o| is more specific
1372     // and 0 if they're equally specific.
1373     int isLocaleMoreSpecificThan(const ResTable_config &o) const;
1374 
1375     // Returns an integer representng the imporance score of the configuration locale.
1376     int getImportanceScoreOfLocale() const;
1377 
1378     // Return true if 'this' is a better locale match than 'o' for the
1379     // 'requested' configuration. Similar to isBetterThan(), this assumes that
1380     // match() has already been used to remove any configurations that don't
1381     // match the requested configuration at all.
1382     bool isLocaleBetterThan(const ResTable_config& o, const ResTable_config* requested) const;
1383 
1384     bool isBetterThanBeforeLocale(const ResTable_config& o, const ResTable_config* requested) const;
1385 
1386     String8 toString() const;
1387 };
1388 
1389 /**
1390  * A specification of the resources defined by a particular type.
1391  *
1392  * There should be one of these chunks for each resource type.
1393  *
1394  * This structure is followed by an array of integers providing the set of
1395  * configuration change flags (ResTable_config::CONFIG_*) that have multiple
1396  * resources for that configuration.  In addition, the high bit is set if that
1397  * resource has been made public.
1398  */
1399 struct ResTable_typeSpec
1400 {
1401     struct ResChunk_header header;
1402 
1403     // The type identifier this chunk is holding.  Type IDs start
1404     // at 1 (corresponding to the value of the type bits in a
1405     // resource identifier).  0 is invalid.
1406     uint8_t id;
1407 
1408     // Must be 0.
1409     uint8_t res0;
1410     // Used to be reserved, if >0 specifies the number of ResTable_type entries for this spec.
1411     uint16_t typesCount;
1412 
1413     // Number of uint32_t entry configuration masks that follow.
1414     uint32_t entryCount;
1415 
1416     enum : uint32_t {
1417         // Additional flag indicating an entry is public.
1418         SPEC_PUBLIC = 0x40000000u,
1419 
1420         // Additional flag indicating the resource id for this resource may change in a future
1421         // build. If this flag is set, the SPEC_PUBLIC flag is also set since the resource must be
1422         // public to be exposed as an API to other applications.
1423         SPEC_STAGED_API = 0x20000000u,
1424     };
1425 };
1426 
1427 /**
1428  * A collection of resource entries for a particular resource data
1429  * type.
1430  *
1431  * If the flag FLAG_SPARSE is not set in `flags`, then this struct is
1432  * followed by an array of uint32_t defining the resource
1433  * values, corresponding to the array of type strings in the
1434  * ResTable_package::typeStrings string block. Each of these hold an
1435  * index from entriesStart; a value of NO_ENTRY means that entry is
1436  * not defined.
1437  *
1438  * If the flag FLAG_SPARSE is set in `flags`, then this struct is followed
1439  * by an array of ResTable_sparseTypeEntry defining only the entries that
1440  * have values for this type. Each entry is sorted by their entry ID such
1441  * that a binary search can be performed over the entries. The ID and offset
1442  * are encoded in a uint32_t. See ResTabe_sparseTypeEntry.
1443  *
1444  * There may be multiple of these chunks for a particular resource type,
1445  * supply different configuration variations for the resource values of
1446  * that type.
1447  *
1448  * It would be nice to have an additional ordered index of entries, so
1449  * we can do a binary search if trying to find a resource by string name.
1450  */
1451 struct ResTable_type
1452 {
1453     struct ResChunk_header header;
1454 
1455     enum {
1456         NO_ENTRY = 0xFFFFFFFF
1457     };
1458 
1459     // The type identifier this chunk is holding.  Type IDs start
1460     // at 1 (corresponding to the value of the type bits in a
1461     // resource identifier).  0 is invalid.
1462     uint8_t id;
1463 
1464     enum {
1465         // If set, the entry is sparse, and encodes both the entry ID and offset into each entry,
1466         // and a binary search is used to find the key. Only available on platforms >= O.
1467         // Mark any types that use this with a v26 qualifier to prevent runtime issues on older
1468         // platforms.
1469         FLAG_SPARSE = 0x01,
1470 
1471         // If set, the offsets to the entries are encoded in 16-bit, real_offset = offset * 4u
1472         // An 16-bit offset of 0xffffu means a NO_ENTRY
1473         FLAG_OFFSET16 = 0x02,
1474     };
1475     uint8_t flags;
1476 
1477     // Must be 0.
1478     uint16_t reserved;
1479 
1480     // Number of uint32_t entry indices that follow.
1481     uint32_t entryCount;
1482 
1483     // Offset from header where ResTable_entry data starts.
1484     uint32_t entriesStart;
1485 
1486     // Configuration this collection of entries is designed for. This must always be last.
1487     ResTable_config config;
1488 };
1489 
1490 // Convert a 16-bit offset to 32-bit if FLAG_OFFSET16 is set
offset_from16(uint16_t off16)1491 static inline uint32_t offset_from16(uint16_t off16) {
1492     return dtohs(off16) == 0xffffu ? ResTable_type::NO_ENTRY : dtohs(off16) * 4u;
1493 }
1494 
1495 // The minimum size required to read any version of ResTable_type.
1496 constexpr size_t kResTableTypeMinSize =
1497     sizeof(ResTable_type) - sizeof(ResTable_config) + sizeof(ResTable_config::size);
1498 
1499 // Assert that the ResTable_config is always the last field. This poses a problem for extending
1500 // ResTable_type in the future, as ResTable_config is variable (over different releases).
1501 static_assert(sizeof(ResTable_type) == offsetof(ResTable_type, config) + sizeof(ResTable_config),
1502               "ResTable_config must be last field in ResTable_type");
1503 
1504 /**
1505  * An entry in a ResTable_type with the flag `FLAG_SPARSE` set.
1506  */
1507 union ResTable_sparseTypeEntry {
1508     // Holds the raw uint32_t encoded value. Do not read this.
1509     uint32_t entry;
1510     struct {
1511         // The index of the entry.
1512         uint16_t idx;
1513 
1514         // The offset from ResTable_type::entriesStart, divided by 4.
1515         uint16_t offset;
1516     };
1517 };
1518 
1519 static_assert(sizeof(ResTable_sparseTypeEntry) == sizeof(uint32_t),
1520         "ResTable_sparseTypeEntry must be 4 bytes in size");
1521 
1522 struct ResTable_map_entry;
1523 
1524 /**
1525  * This is the beginning of information about an entry in the resource
1526  * table.  It holds the reference to the name of this entry, and is
1527  * immediately followed by one of:
1528  *   * A Res_value structure, if FLAG_COMPLEX is -not- set.
1529  *   * An array of ResTable_map structures, if FLAG_COMPLEX is set.
1530  *     These supply a set of name/value mappings of data.
1531  *   * If FLAG_COMPACT is set, this entry is a compact entry for
1532  *     simple values only
1533  */
1534 union ResTable_entry
1535 {
1536     enum {
1537         // If set, this is a complex entry, holding a set of name/value
1538         // mappings.  It is followed by an array of ResTable_map structures.
1539         FLAG_COMPLEX = 0x0001,
1540         // If set, this resource has been declared public, so libraries
1541         // are allowed to reference it.
1542         FLAG_PUBLIC = 0x0002,
1543         // If set, this is a weak resource and may be overriden by strong
1544         // resources of the same name/type. This is only useful during
1545         // linking with other resource tables.
1546         FLAG_WEAK = 0x0004,
1547         // If set, this is a compact entry with data type and value directly
1548         // encoded in the this entry, see ResTable_entry::compact
1549         FLAG_COMPACT = 0x0008,
1550     };
1551 
1552     struct Full {
1553         // Number of bytes in this structure.
1554         uint16_t size;
1555 
1556         uint16_t flags;
1557 
1558         // Reference into ResTable_package::keyStrings identifying this entry.
1559         struct ResStringPool_ref key;
1560     } full;
1561 
1562     /* A compact entry is indicated by FLAG_COMPACT, with flags at the same
1563      * offset as a normal entry. This is only for simple data values where
1564      *
1565      * - size for entry or value can be inferred (both being 8 bytes).
1566      * - key index is encoded in 16-bit
1567      * - dataType is encoded as the higher 8-bit of flags
1568      * - data is encoded directly in this entry
1569      */
1570     struct Compact {
1571         uint16_t key;
1572         uint16_t flags;
1573         uint32_t data;
1574     } compact;
1575 
flags()1576     uint16_t flags()  const { return dtohs(full.flags); };
is_compact()1577     bool is_compact() const { return flags() & FLAG_COMPACT; }
is_complex()1578     bool is_complex() const { return flags() & FLAG_COMPLEX; }
1579 
size()1580     size_t size() const {
1581         return is_compact() ? sizeof(ResTable_entry) : dtohs(this->full.size);
1582     }
1583 
key()1584     uint32_t key() const {
1585         return is_compact() ? dtohs(this->compact.key) : dtohl(this->full.key.index);
1586     }
1587 
1588     /* Always verify the memory associated with this entry and its value
1589      * before calling value() or map_entry()
1590      */
value()1591     Res_value value() const {
1592         Res_value v;
1593         if (is_compact()) {
1594             v.size = sizeof(Res_value);
1595             v.res0 = 0;
1596             v.data = dtohl(this->compact.data);
1597             v.dataType = dtohs(compact.flags) >> 8;
1598         } else {
1599             auto vaddr = reinterpret_cast<const uint8_t*>(this) + dtohs(this->full.size);
1600             auto value = reinterpret_cast<const Res_value*>(vaddr);
1601             v.size = dtohs(value->size);
1602             v.res0 = value->res0;
1603             v.data = dtohl(value->data);
1604             v.dataType = value->dataType;
1605         }
1606         return v;
1607     }
1608 
map_entry()1609     const ResTable_map_entry* map_entry() const {
1610         return is_complex() && !is_compact() ?
1611             reinterpret_cast<const ResTable_map_entry*>(this) : nullptr;
1612     }
1613 };
1614 
1615 /* Make sure size of ResTable_entry::Full and ResTable_entry::Compact
1616  * be the same as ResTable_entry. This is to allow iteration of entries
1617  * to work in either cases.
1618  *
1619  * The offset of flags must be at the same place for both structures,
1620  * to ensure the correct reading to decide whether this is a full entry
1621  * or a compact entry.
1622  */
1623 static_assert(sizeof(ResTable_entry) == sizeof(ResTable_entry::Full));
1624 static_assert(sizeof(ResTable_entry) == sizeof(ResTable_entry::Compact));
1625 static_assert(offsetof(ResTable_entry, full.flags) == offsetof(ResTable_entry, compact.flags));
1626 
1627 /**
1628  * Extended form of a ResTable_entry for map entries, defining a parent map
1629  * resource from which to inherit values.
1630  */
1631 struct ResTable_map_entry : public ResTable_entry::Full
1632 {
1633     // Resource identifier of the parent mapping, or 0 if there is none.
1634     // This is always treated as a TYPE_DYNAMIC_REFERENCE.
1635     ResTable_ref parent;
1636     // Number of name/value pairs that follow for FLAG_COMPLEX.
1637     uint32_t count;
1638 };
1639 
1640 /**
1641  * A single name/value mapping that is part of a complex resource
1642  * entry.
1643  */
1644 struct ResTable_map
1645 {
1646     // The resource identifier defining this mapping's name.  For attribute
1647     // resources, 'name' can be one of the following special resource types
1648     // to supply meta-data about the attribute; for all other resource types
1649     // it must be an attribute resource.
1650     ResTable_ref name;
1651 
1652     // Special values for 'name' when defining attribute resources.
1653     enum {
1654         // This entry holds the attribute's type code.
1655         ATTR_TYPE = Res_MAKEINTERNAL(0),
1656 
1657         // For integral attributes, this is the minimum value it can hold.
1658         ATTR_MIN = Res_MAKEINTERNAL(1),
1659 
1660         // For integral attributes, this is the maximum value it can hold.
1661         ATTR_MAX = Res_MAKEINTERNAL(2),
1662 
1663         // Localization of this resource is can be encouraged or required with
1664         // an aapt flag if this is set
1665         ATTR_L10N = Res_MAKEINTERNAL(3),
1666 
1667         // for plural support, see android.content.res.PluralRules#attrForQuantity(int)
1668         ATTR_OTHER = Res_MAKEINTERNAL(4),
1669         ATTR_ZERO = Res_MAKEINTERNAL(5),
1670         ATTR_ONE = Res_MAKEINTERNAL(6),
1671         ATTR_TWO = Res_MAKEINTERNAL(7),
1672         ATTR_FEW = Res_MAKEINTERNAL(8),
1673         ATTR_MANY = Res_MAKEINTERNAL(9)
1674 
1675     };
1676 
1677     // Bit mask of allowed types, for use with ATTR_TYPE.
1678     enum {
1679         // No type has been defined for this attribute, use generic
1680         // type handling.  The low 16 bits are for types that can be
1681         // handled generically; the upper 16 require additional information
1682         // in the bag so can not be handled generically for TYPE_ANY.
1683         TYPE_ANY = 0x0000FFFF,
1684 
1685         // Attribute holds a references to another resource.
1686         TYPE_REFERENCE = 1<<0,
1687 
1688         // Attribute holds a generic string.
1689         TYPE_STRING = 1<<1,
1690 
1691         // Attribute holds an integer value.  ATTR_MIN and ATTR_MIN can
1692         // optionally specify a constrained range of possible integer values.
1693         TYPE_INTEGER = 1<<2,
1694 
1695         // Attribute holds a boolean integer.
1696         TYPE_BOOLEAN = 1<<3,
1697 
1698         // Attribute holds a color value.
1699         TYPE_COLOR = 1<<4,
1700 
1701         // Attribute holds a floating point value.
1702         TYPE_FLOAT = 1<<5,
1703 
1704         // Attribute holds a dimension value, such as "20px".
1705         TYPE_DIMENSION = 1<<6,
1706 
1707         // Attribute holds a fraction value, such as "20%".
1708         TYPE_FRACTION = 1<<7,
1709 
1710         // Attribute holds an enumeration.  The enumeration values are
1711         // supplied as additional entries in the map.
1712         TYPE_ENUM = 1<<16,
1713 
1714         // Attribute holds a bitmaks of flags.  The flag bit values are
1715         // supplied as additional entries in the map.
1716         TYPE_FLAGS = 1<<17
1717     };
1718 
1719     // Enum of localization modes, for use with ATTR_L10N.
1720     enum {
1721         L10N_NOT_REQUIRED = 0,
1722         L10N_SUGGESTED    = 1
1723     };
1724 
1725     // This mapping's value.
1726     Res_value value;
1727 };
1728 
1729 /**
1730  * A package-id to package name mapping for any shared libraries used
1731  * in this resource table. The package-id's encoded in this resource
1732  * table may be different than the id's assigned at runtime. We must
1733  * be able to translate the package-id's based on the package name.
1734  */
1735 struct ResTable_lib_header
1736 {
1737     struct ResChunk_header header;
1738 
1739     // The number of shared libraries linked in this resource table.
1740     uint32_t count;
1741 };
1742 
1743 /**
1744  * A shared library package-id to package name entry.
1745  */
1746 struct ResTable_lib_entry
1747 {
1748     // The package-id this shared library was assigned at build time.
1749     // We use a uint32 to keep the structure aligned on a uint32 boundary.
1750     uint32_t packageId;
1751 
1752     // The package name of the shared library. \0 terminated.
1753     uint16_t packageName[128];
1754 };
1755 
1756 /**
1757  * A map that allows rewriting staged (non-finalized) resource ids to their finalized counterparts.
1758  */
1759 struct ResTable_staged_alias_header
1760 {
1761     struct ResChunk_header header;
1762 
1763     // The number of ResTable_staged_alias_entry that follow this header.
1764     uint32_t count;
1765 };
1766 
1767 /**
1768  * Maps the staged (non-finalized) resource id to its finalized resource id.
1769  */
1770 struct ResTable_staged_alias_entry
1771 {
1772   // The compile-time staged resource id to rewrite.
1773   uint32_t stagedResId;
1774 
1775   // The compile-time finalized resource id to which the staged resource id should be rewritten.
1776   uint32_t finalizedResId;
1777 };
1778 
1779 /**
1780  * Specifies the set of resources that are explicitly allowed to be overlaid by RROs.
1781  */
1782 struct ResTable_overlayable_header
1783 {
1784   struct ResChunk_header header;
1785 
1786   // The name of the overlayable set of resources that overlays target.
1787   uint16_t name[256];
1788 
1789  // The component responsible for enabling and disabling overlays targeting this chunk.
1790   uint16_t actor[256];
1791 };
1792 
1793 /**
1794  * Holds a list of resource ids that are protected from being overlaid by a set of policies. If
1795  * the overlay fulfils at least one of the policies, then the overlay can overlay the list of
1796  * resources.
1797  */
1798 struct ResTable_overlayable_policy_header
1799 {
1800   /**
1801    * Flags for a bitmask for all possible overlayable policy options.
1802    *
1803    * Any changes to this set should also update aidl/android/os/OverlayablePolicy.aidl
1804    */
1805   enum PolicyFlags : uint32_t {
1806     // Base
1807     NONE = 0x00000000,
1808 
1809     // Any overlay can overlay these resources.
1810     PUBLIC = 0x00000001,
1811 
1812     // The overlay must reside of the system partition or must have existed on the system partition
1813     // before an upgrade to overlay these resources.
1814     SYSTEM_PARTITION = 0x00000002,
1815 
1816     // The overlay must reside of the vendor partition or must have existed on the vendor partition
1817     // before an upgrade to overlay these resources.
1818     VENDOR_PARTITION = 0x00000004,
1819 
1820     // The overlay must reside of the product partition or must have existed on the product
1821     // partition before an upgrade to overlay these resources.
1822     PRODUCT_PARTITION = 0x00000008,
1823 
1824     // The overlay must be signed with the same signature as the package containing the target
1825     // resource
1826     SIGNATURE = 0x00000010,
1827 
1828     // The overlay must reside of the odm partition or must have existed on the odm
1829     // partition before an upgrade to overlay these resources.
1830     ODM_PARTITION = 0x00000020,
1831 
1832     // The overlay must reside of the oem partition or must have existed on the oem
1833     // partition before an upgrade to overlay these resources.
1834     OEM_PARTITION = 0x00000040,
1835 
1836     // The overlay must be signed with the same signature as the actor declared for the target
1837     // resource
1838     ACTOR_SIGNATURE = 0x00000080,
1839 
1840     // The overlay must be signed with the same signature as the reference package declared
1841     // in the SystemConfig
1842     CONFIG_SIGNATURE = 0x00000100,
1843   };
1844 
1845   using PolicyBitmask = uint32_t;
1846 
1847   struct ResChunk_header header;
1848 
1849   PolicyFlags policy_flags;
1850 
1851   // The number of ResTable_ref that follow this header.
1852   uint32_t entry_count;
1853 };
1854 
1855 inline ResTable_overlayable_policy_header::PolicyFlags& operator |=(
1856     ResTable_overlayable_policy_header::PolicyFlags& first,
1857     ResTable_overlayable_policy_header::PolicyFlags second) {
1858   first = static_cast<ResTable_overlayable_policy_header::PolicyFlags>(first | second);
1859   return first;
1860 }
1861 
1862 using ResourceId = uint32_t;  // 0xpptteeee
1863 
1864 using DataType = uint8_t;    // Res_value::dataType
1865 using DataValue = uint32_t;  // Res_value::data
1866 
1867 struct OverlayManifestInfo {
1868   std::string package_name;     // NOLINT(misc-non-private-member-variables-in-classes)
1869   std::string name;             // NOLINT(misc-non-private-member-variables-in-classes)
1870   std::string target_package;   // NOLINT(misc-non-private-member-variables-in-classes)
1871   std::string target_name;      // NOLINT(misc-non-private-member-variables-in-classes)
1872   ResourceId resource_mapping;  // NOLINT(misc-non-private-member-variables-in-classes)
1873 };
1874 
1875 struct FabricatedOverlayEntryParameters {
1876   std::string resource_name;
1877   DataType data_type;
1878   DataValue data_value;
1879   std::string data_string_value;
1880   std::optional<android::base::borrowed_fd> data_binary_value;
1881   off64_t binary_data_offset;
1882   size_t binary_data_size;
1883   std::string configuration;
1884   bool nine_patch;
1885 };
1886 
1887 class AssetManager2;
1888 
1889 /**
1890  * Holds the shared library ID table. Shared libraries are assigned package IDs at
1891  * build time, but they may be loaded in a different order, so we need to maintain
1892  * a mapping of build-time package ID to run-time assigned package ID.
1893  *
1894  * Dynamic references are not currently supported in overlays. Only the base package
1895  * may have dynamic references.
1896  */
1897 class DynamicRefTable
1898 {
1899     friend class AssetManager2;
1900 public:
1901     DynamicRefTable();
1902     DynamicRefTable(uint8_t packageId, bool appAsLib);
1903     virtual ~DynamicRefTable() = default;
1904 
1905     // Loads an unmapped reference table from the package.
1906     status_t load(const ResTable_lib_header* const header);
1907 
1908     // Adds mappings from the other DynamicRefTable
1909     status_t addMappings(const DynamicRefTable& other);
1910 
1911     // Creates a mapping from build-time package ID to run-time package ID for
1912     // the given package.
1913     status_t addMapping(const String16& packageName, uint8_t packageId);
1914 
1915     void addMapping(uint8_t buildPackageId, uint8_t runtimePackageId);
1916 
1917     using AliasMap = std::vector<std::pair<uint32_t, uint32_t>>;
setAliases(AliasMap aliases)1918     void setAliases(AliasMap aliases) {
1919         mAliasId = std::move(aliases);
1920     }
1921 
1922     // Returns whether or not the value must be looked up.
1923     bool requiresLookup(const Res_value* value) const;
1924 
1925     // Performs the actual conversion of build-time resource ID to run-time
1926     // resource ID.
1927     virtual status_t lookupResourceId(uint32_t* resId) const;
1928     status_t lookupResourceValue(Res_value* value) const;
1929 
entries()1930     inline const KeyedVector<String16, uint8_t>& entries() const {
1931         return mEntries;
1932     }
1933 
1934    private:
1935     uint8_t mLookupTable[256];
1936     uint8_t mAssignedPackageId;
1937     bool mAppAsLib;
1938     KeyedVector<String16, uint8_t> mEntries;
1939     AliasMap mAliasId;
1940 };
1941 
1942 bool U16StringToInt(const char16_t* s, size_t len, Res_value* outValue);
1943 
1944 template<typename TChar, typename E>
UnpackOptionalString(base::expected<BasicStringPiece<TChar>,E> && result,size_t * outLen)1945 static const TChar* UnpackOptionalString(base::expected<BasicStringPiece<TChar>, E>&& result,
1946                                          size_t* outLen) {
1947   if (result.has_value()) {
1948     *outLen = result->size();
1949     return result->data();
1950   }
1951   return NULL;
1952 }
1953 
1954 /**
1955  * Convenience class for accessing data in a ResTable resource.
1956  */
1957 class ResTable
1958 {
1959 public:
1960     ResTable();
1961     ResTable(const void* data, size_t size, const int32_t cookie,
1962              bool copyData=false);
1963     ~ResTable();
1964 
1965     status_t add(const void* data, size_t size, const int32_t cookie=-1, bool copyData=false);
1966     status_t add(const void* data, size_t size, const void* idmapData, size_t idmapDataSize,
1967             const int32_t cookie=-1, bool copyData=false, bool appAsLib=false);
1968 
1969     status_t add(Asset* asset, const int32_t cookie=-1, bool copyData=false);
1970     status_t add(Asset* asset, Asset* idmapAsset, const int32_t cookie=-1, bool copyData=false,
1971             bool appAsLib=false, bool isSystemAsset=false);
1972 
1973     status_t add(ResTable* src, bool isSystemAsset=false);
1974     status_t addEmpty(const int32_t cookie);
1975 
1976     status_t getError() const;
1977 
1978     void uninit();
1979 
1980     struct resource_name
1981     {
1982         const char16_t* package = NULL;
1983         size_t packageLen;
1984         const char16_t* type = NULL;
1985         const char* type8 = NULL;
1986         size_t typeLen;
1987         const char16_t* name = NULL;
1988         const char* name8 = NULL;
1989         size_t nameLen;
1990     };
1991 
1992     bool getResourceName(uint32_t resID, bool allowUtf8, resource_name* outName) const;
1993 
1994     bool getResourceFlags(uint32_t resID, uint32_t* outFlags) const;
1995 
1996     /**
1997      * Returns whether or not the package for the given resource has been dynamically assigned.
1998      * If the resource can't be found, returns 'false'.
1999      */
2000     bool isResourceDynamic(uint32_t resID) const;
2001 
2002     /**
2003      * Returns whether or not the given package has been dynamically assigned.
2004      * If the package can't be found, returns 'false'.
2005      */
2006     bool isPackageDynamic(uint8_t packageID) const;
2007 
2008     /**
2009      * Retrieve the value of a resource.  If the resource is found, returns a
2010      * value >= 0 indicating the table it is in (for use with
2011      * getTableStringBlock() and getTableCookie()) and fills in 'outValue'.  If
2012      * not found, returns a negative error code.
2013      *
2014      * Note that this function does not do reference traversal.  If you want
2015      * to follow references to other resources to get the "real" value to
2016      * use, you need to call resolveReference() after this function.
2017      *
2018      * @param resID The desired resoruce identifier.
2019      * @param outValue Filled in with the resource data that was found.
2020      *
2021      * @return ssize_t Either a >= 0 table index or a negative error code.
2022      */
2023     ssize_t getResource(uint32_t resID, Res_value* outValue, bool mayBeBag = false,
2024                     uint16_t density = 0,
2025                     uint32_t* outSpecFlags = NULL,
2026                     ResTable_config* outConfig = NULL) const;
2027 
2028     inline ssize_t getResource(const ResTable_ref& res, Res_value* outValue,
2029             uint32_t* outSpecFlags=NULL) const {
2030         return getResource(res.ident, outValue, false, 0, outSpecFlags, NULL);
2031     }
2032 
2033     ssize_t resolveReference(Res_value* inOutValue,
2034                              ssize_t blockIndex,
2035                              uint32_t* outLastRef = NULL,
2036                              uint32_t* inoutTypeSpecFlags = NULL,
2037                              ResTable_config* outConfig = NULL) const;
2038 
2039     enum {
2040         TMP_BUFFER_SIZE = 16
2041     };
2042     const char16_t* valueToString(const Res_value* value, size_t stringBlock,
2043                                   char16_t tmpBuffer[TMP_BUFFER_SIZE],
2044                                   size_t* outLen) const;
2045 
2046     struct bag_entry {
2047         ssize_t stringBlock;
2048         ResTable_map map;
2049     };
2050 
2051     /**
2052      * Retrieve the bag of a resource.  If the resoruce is found, returns the
2053      * number of bags it contains and 'outBag' points to an array of their
2054      * values.  If not found, a negative error code is returned.
2055      *
2056      * Note that this function -does- do reference traversal of the bag data.
2057      *
2058      * @param resID The desired resource identifier.
2059      * @param outBag Filled inm with a pointer to the bag mappings.
2060      *
2061      * @return ssize_t Either a >= 0 bag count of negative error code.
2062      */
2063     ssize_t lockBag(uint32_t resID, const bag_entry** outBag) const;
2064 
2065     void unlockBag(const bag_entry* bag) const;
2066 
2067     void lock() const;
2068 
2069     ssize_t getBagLocked(uint32_t resID, const bag_entry** outBag,
2070             uint32_t* outTypeSpecFlags=NULL) const;
2071 
2072     void unlock() const;
2073 
2074     class Theme {
2075     public:
2076         explicit Theme(const ResTable& table);
2077         ~Theme();
2078 
getResTable()2079         inline const ResTable& getResTable() const { return mTable; }
2080 
2081         status_t applyStyle(uint32_t resID, bool force=false);
2082         status_t setTo(const Theme& other);
2083         status_t clear();
2084 
2085         /**
2086          * Retrieve a value in the theme.  If the theme defines this
2087          * value, returns a value >= 0 indicating the table it is in
2088          * (for use with getTableStringBlock() and getTableCookie) and
2089          * fills in 'outValue'.  If not found, returns a negative error
2090          * code.
2091          *
2092          * Note that this function does not do reference traversal.  If you want
2093          * to follow references to other resources to get the "real" value to
2094          * use, you need to call resolveReference() after this function.
2095          *
2096          * @param resID A resource identifier naming the desired theme
2097          *              attribute.
2098          * @param outValue Filled in with the theme value that was
2099          *                 found.
2100          *
2101          * @return ssize_t Either a >= 0 table index or a negative error code.
2102          */
2103         ssize_t getAttribute(uint32_t resID, Res_value* outValue,
2104                 uint32_t* outTypeSpecFlags = NULL) const;
2105 
2106         /**
2107          * This is like ResTable::resolveReference(), but also takes
2108          * care of resolving attribute references to the theme.
2109          */
2110         ssize_t resolveAttributeReference(Res_value* inOutValue,
2111                 ssize_t blockIndex, uint32_t* outLastRef = NULL,
2112                 uint32_t* inoutTypeSpecFlags = NULL,
2113                 ResTable_config* inoutConfig = NULL) const;
2114 
2115         /**
2116          * Returns a bit mask of configuration changes that will impact this
2117          * theme (and thus require completely reloading it).
2118          */
2119         uint32_t getChangingConfigurations() const;
2120 
2121         void dumpToLog() const;
2122 
2123     private:
2124         Theme(const Theme&);
2125         Theme& operator=(const Theme&);
2126 
2127         struct theme_entry {
2128             ssize_t stringBlock;
2129             uint32_t typeSpecFlags;
2130             Res_value value;
2131         };
2132 
2133         struct type_info {
2134             size_t numEntries;
2135             theme_entry* entries;
2136         };
2137 
2138         struct package_info {
2139             type_info types[Res_MAXTYPE + 1];
2140         };
2141 
2142         void free_package(package_info* pi);
2143         package_info* copy_package(package_info* pi);
2144 
2145         const ResTable& mTable;
2146         package_info*   mPackages[Res_MAXPACKAGE];
2147         uint32_t        mTypeSpecFlags;
2148     };
2149 
2150     void setParameters(const ResTable_config* params);
2151     void getParameters(ResTable_config* params) const;
2152 
2153     // Retrieve an identifier (which can be passed to getResource)
2154     // for a given resource name.  The 'name' can be fully qualified
2155     // (<package>:<type>.<basename>) or the package or type components
2156     // can be dropped if default values are supplied here.
2157     //
2158     // Returns 0 if no such resource was found, else a valid resource ID.
2159     uint32_t identifierForName(const char16_t* name, size_t nameLen,
2160                                const char16_t* type = 0, size_t typeLen = 0,
2161                                const char16_t* defPackage = 0,
2162                                size_t defPackageLen = 0,
2163                                uint32_t* outTypeSpecFlags = NULL) const;
2164 
2165     static bool expandResourceRef(const char16_t* refStr, size_t refLen,
2166                                   String16* outPackage,
2167                                   String16* outType,
2168                                   String16* outName,
2169                                   const String16* defType = NULL,
2170                                   const String16* defPackage = NULL,
2171                                   const char** outErrorMsg = NULL,
2172                                   bool* outPublicOnly = NULL);
2173 
2174     static bool stringToInt(const char16_t* s, size_t len, Res_value* outValue);
2175     static bool stringToFloat(const char16_t* s, size_t len, Res_value* outValue);
2176     static bool stringToDouble(const char16_t* s, size_t len, double& outValue);
2177 
2178     // Used with stringToValue.
2179     class Accessor
2180     {
2181     public:
~Accessor()2182         inline virtual ~Accessor() { }
2183 
2184         virtual const String16& getAssetsPackage() const = 0;
2185 
2186         virtual uint32_t getCustomResource(const String16& package,
2187                                            const String16& type,
2188                                            const String16& name) const = 0;
2189         virtual uint32_t getCustomResourceWithCreation(const String16& package,
2190                                                        const String16& type,
2191                                                        const String16& name,
2192                                                        const bool createIfNeeded = false) = 0;
2193         virtual uint32_t getRemappedPackage(uint32_t origPackage) const = 0;
2194         virtual bool getAttributeType(uint32_t attrID, uint32_t* outType) = 0;
2195         virtual bool getAttributeMin(uint32_t attrID, uint32_t* outMin) = 0;
2196         virtual bool getAttributeMax(uint32_t attrID, uint32_t* outMax) = 0;
2197         virtual bool getAttributeEnum(uint32_t attrID,
2198                                       const char16_t* name, size_t nameLen,
2199                                       Res_value* outValue) = 0;
2200         virtual bool getAttributeFlags(uint32_t attrID,
2201                                        const char16_t* name, size_t nameLen,
2202                                        Res_value* outValue) = 0;
2203         virtual uint32_t getAttributeL10N(uint32_t attrID) = 0;
2204         virtual bool getLocalizationSetting() = 0;
2205         virtual void reportError(void* accessorCookie, const char* fmt, ...) = 0;
2206     };
2207 
2208     // Convert a string to a resource value.  Handles standard "@res",
2209     // "#color", "123", and "0x1bd" types; performs escaping of strings.
2210     // The resulting value is placed in 'outValue'; if it is a string type,
2211     // 'outString' receives the string.  If 'attrID' is supplied, the value is
2212     // type checked against this attribute and it is used to perform enum
2213     // evaluation.  If 'acccessor' is supplied, it will be used to attempt to
2214     // resolve resources that do not exist in this ResTable.  If 'attrType' is
2215     // supplied, the value will be type checked for this format if 'attrID'
2216     // is not supplied or found.
2217     bool stringToValue(Res_value* outValue, String16* outString,
2218                        const char16_t* s, size_t len,
2219                        bool preserveSpaces, bool coerceType,
2220                        uint32_t attrID = 0,
2221                        const String16* defType = NULL,
2222                        const String16* defPackage = NULL,
2223                        Accessor* accessor = NULL,
2224                        void* accessorCookie = NULL,
2225                        uint32_t attrType = ResTable_map::TYPE_ANY,
2226                        bool enforcePrivate = true) const;
2227 
2228     // Perform processing of escapes and quotes in a string.
2229     static bool collectString(String16* outString,
2230                               const char16_t* s, size_t len,
2231                               bool preserveSpaces,
2232                               const char** outErrorMsg = NULL,
2233                               bool append = false);
2234 
2235     size_t getBasePackageCount() const;
2236     const String16 getBasePackageName(size_t idx) const;
2237     uint32_t getBasePackageId(size_t idx) const;
2238     uint32_t getLastTypeIdForPackage(size_t idx) const;
2239 
2240     // Return the number of resource tables that the object contains.
2241     size_t getTableCount() const;
2242     // Return the values string pool for the resource table at the given
2243     // index.  This string pool contains all of the strings for values
2244     // contained in the resource table -- that is the item values themselves,
2245     // but not the names their entries or types.
2246     const ResStringPool* getTableStringBlock(size_t index) const;
2247     // Return unique cookie identifier for the given resource table.
2248     int32_t getTableCookie(size_t index) const;
2249 
2250     const DynamicRefTable* getDynamicRefTableForCookie(int32_t cookie) const;
2251 
2252     // Return the configurations (ResTable_config) that we know about
2253     void getConfigurations(Vector<ResTable_config>* configs, bool ignoreMipmap=false,
2254             bool ignoreAndroidPackage=false, bool includeSystemConfigs=true) const;
2255 
2256     void getLocales(Vector<String8>* locales, bool includeSystemLocales=true,
2257             bool mergeEquivalentLangs=false) const;
2258 
2259     // Generate an idmap.
2260     //
2261     // Return value: on success: NO_ERROR; caller is responsible for free-ing
2262     // outData (using free(3)). On failure, any status_t value other than
2263     // NO_ERROR; the caller should not free outData.
2264     status_t createIdmap(const ResTable& targetResTable,
2265             uint32_t targetCrc, uint32_t overlayCrc,
2266             const char* targetPath, const char* overlayPath,
2267             void** outData, size_t* outSize) const;
2268 
2269     static const size_t IDMAP_HEADER_SIZE_BYTES = 4 * sizeof(uint32_t) + 2 * 256;
2270     static const uint32_t IDMAP_CURRENT_VERSION = 0x00000001;
2271 
2272     // Retrieve idmap meta-data.
2273     //
2274     // This function only requires the idmap header (the first
2275     // IDMAP_HEADER_SIZE_BYTES) bytes of an idmap file.
2276     static bool getIdmapInfo(const void* idmap, size_t size,
2277             uint32_t* pVersion,
2278             uint32_t* pTargetCrc, uint32_t* pOverlayCrc,
2279             String8* pTargetPath, String8* pOverlayPath);
2280 
2281     void print(bool inclValues) const;
2282     static String8 normalizeForOutput(const char* input);
2283 
2284 private:
2285     struct Header;
2286     struct Type;
2287     struct Entry;
2288     struct Package;
2289     struct PackageGroup;
2290     typedef Vector<Type*> TypeList;
2291 
2292     struct bag_set {
2293         size_t numAttrs;    // number in array
2294         size_t availAttrs;  // total space in array
2295         uint32_t typeSpecFlags;
2296         // Followed by 'numAttr' bag_entry structures.
2297     };
2298 
2299     /**
2300      * Configuration dependent cached data. This must be cleared when the configuration is
2301      * changed (setParameters).
2302      */
2303     struct TypeCacheEntry {
TypeCacheEntryTypeCacheEntry2304         TypeCacheEntry() : cachedBags(NULL) {}
2305 
2306         // Computed attribute bags for this type.
2307         bag_set** cachedBags;
2308 
2309         // Pre-filtered list of configurations (per asset path) that match the parameters set on this
2310         // ResTable.
2311         Vector<std::shared_ptr<Vector<const ResTable_type*>>> filteredConfigs;
2312     };
2313 
2314     status_t addInternal(const void* data, size_t size, const void* idmapData, size_t idmapDataSize,
2315             bool appAsLib, const int32_t cookie, bool copyData, bool isSystemAsset=false);
2316 
2317     ssize_t getResourcePackageIndex(uint32_t resID) const;
2318     ssize_t getResourcePackageIndexFromPackage(uint8_t packageID) const;
2319 
2320     status_t getEntry(
2321         const PackageGroup* packageGroup, int typeIndex, int entryIndex,
2322         const ResTable_config* config,
2323         Entry* outEntry) const;
2324 
2325     uint32_t findEntry(const PackageGroup* group, ssize_t typeIndex, const char16_t* name,
2326             size_t nameLen, uint32_t* outTypeSpecFlags) const;
2327 
2328     status_t parsePackage(
2329         const ResTable_package* const pkg, const Header* const header,
2330         bool appAsLib, bool isSystemAsset);
2331 
2332     void print_value(const Package* pkg, const Res_value& value) const;
2333 
2334     template <typename Func>
2335     void forEachConfiguration(bool ignoreMipmap, bool ignoreAndroidPackage,
2336                               bool includeSystemConfigs, const Func& f) const;
2337 
2338     mutable Mutex               mLock;
2339 
2340     // Mutex that controls access to the list of pre-filtered configurations
2341     // to check when looking up entries.
2342     // When iterating over a bag, the mLock mutex is locked. While mLock is locked,
2343     // we do resource lookups.
2344     // Mutex is not reentrant, so we must use a different lock than mLock.
2345     mutable Mutex               mFilteredConfigLock;
2346 
2347     status_t                    mError;
2348 
2349     ResTable_config             mParams;
2350 
2351     // Array of all resource tables.
2352     Vector<Header*>             mHeaders;
2353 
2354     // Array of packages in all resource tables.
2355     Vector<PackageGroup*>       mPackageGroups;
2356 
2357     // Mapping from resource package IDs to indices into the internal
2358     // package array.
2359     uint8_t                     mPackageMap[256];
2360 
2361     uint8_t                     mNextPackageId;
2362 };
2363 
2364 }   // namespace android
2365 
2366 #endif // _LIBS_UTILS_RESOURCE_TYPES_H
2367