1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "method_verifier-inl.h"
18 
19 #include <ostream>
20 
21 #include "android-base/stringprintf.h"
22 
23 #include "art_field-inl.h"
24 #include "art_method-inl.h"
25 #include "base/aborting.h"
26 #include "base/leb128.h"
27 #include "base/indenter.h"
28 #include "base/logging.h"  // For VLOG.
29 #include "base/mutex-inl.h"
30 #include "base/pointer_size.h"
31 #include "base/sdk_version.h"
32 #include "base/stl_util.h"
33 #include "base/systrace.h"
34 #include "base/time_utils.h"
35 #include "base/utils.h"
36 #include "class_linker.h"
37 #include "class_root-inl.h"
38 #include "dex/class_accessor-inl.h"
39 #include "dex/descriptors_names.h"
40 #include "dex/dex_file-inl.h"
41 #include "dex/dex_file_exception_helpers.h"
42 #include "dex/dex_instruction-inl.h"
43 #include "dex/dex_instruction_utils.h"
44 #include "experimental_flags.h"
45 #include "gc/accounting/card_table-inl.h"
46 #include "handle_scope-inl.h"
47 #include "intern_table.h"
48 #include "mirror/class-inl.h"
49 #include "mirror/class.h"
50 #include "mirror/class_loader.h"
51 #include "mirror/dex_cache-inl.h"
52 #include "mirror/method_handle_impl.h"
53 #include "mirror/method_type.h"
54 #include "mirror/object-inl.h"
55 #include "mirror/object_array-inl.h"
56 #include "mirror/var_handle.h"
57 #include "obj_ptr-inl.h"
58 #include "reg_type-inl.h"
59 #include "register_line-inl.h"
60 #include "runtime.h"
61 #include "scoped_newline.h"
62 #include "scoped_thread_state_change-inl.h"
63 #include "stack.h"
64 #include "vdex_file.h"
65 #include "verifier/method_verifier.h"
66 #include "verifier_deps.h"
67 
68 namespace art HIDDEN {
69 namespace verifier {
70 
71 using android::base::StringPrintf;
72 
73 static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
74 
PcToRegisterLineTable(ScopedArenaAllocator & allocator)75 PcToRegisterLineTable::PcToRegisterLineTable(ScopedArenaAllocator& allocator)
76     : register_lines_(allocator.Adapter(kArenaAllocVerifier)) {}
77 
Init(InstructionFlags * flags,uint32_t insns_size,uint16_t registers_size,ScopedArenaAllocator & allocator,RegTypeCache * reg_types,uint32_t interesting_dex_pc)78 void PcToRegisterLineTable::Init(InstructionFlags* flags,
79                                  uint32_t insns_size,
80                                  uint16_t registers_size,
81                                  ScopedArenaAllocator& allocator,
82                                  RegTypeCache* reg_types,
83                                  uint32_t interesting_dex_pc) {
84   DCHECK_GT(insns_size, 0U);
85   register_lines_.resize(insns_size);
86   for (uint32_t i = 0; i < insns_size; i++) {
87     if ((i == interesting_dex_pc) || flags[i].IsBranchTarget()) {
88       register_lines_[i].reset(RegisterLine::Create(registers_size, allocator, reg_types));
89     }
90   }
91 }
92 
~PcToRegisterLineTable()93 PcToRegisterLineTable::~PcToRegisterLineTable() {}
94 
95 namespace impl {
96 namespace {
97 
98 enum class CheckAccess {
99   kNo,
100   kOnResolvedClass,
101   kYes,
102 };
103 
104 enum class FieldAccessType {
105   kAccGet,
106   kAccPut
107 };
108 
109 // Instruction types that are not marked as throwing (because they normally would not), but for
110 // historical reasons may do so. These instructions cannot be marked kThrow as that would introduce
111 // a general flow that is unwanted.
112 //
113 // Note: Not implemented as Instruction::Flags value as that set is full and we'd need to increase
114 //       the struct size (making it a non-power-of-two) for a single element.
115 //
116 // Note: This should eventually be removed.
IsCompatThrow(Instruction::Code opcode)117 constexpr bool IsCompatThrow(Instruction::Code opcode) {
118   return opcode == Instruction::Code::RETURN_OBJECT || opcode == Instruction::Code::MOVE_EXCEPTION;
119 }
120 
121 template <bool kVerifierDebug>
122 class MethodVerifier final : public ::art::verifier::MethodVerifier {
123  public:
IsInstanceConstructor() const124   bool IsInstanceConstructor() const {
125     return IsConstructor() && !IsStatic();
126   }
127 
ResolveCheckedClass(dex::TypeIndex class_idx)128   const RegType& ResolveCheckedClass(dex::TypeIndex class_idx) override
129       REQUIRES_SHARED(Locks::mutator_lock_) {
130     DCHECK(!HasFailures());
131     const RegType& result = ResolveClass<CheckAccess::kYes>(class_idx);
132     DCHECK(!HasFailures());
133     return result;
134   }
135 
136   void FindLocksAtDexPc() REQUIRES_SHARED(Locks::mutator_lock_);
137 
138  private:
MethodVerifier(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,VerifierDeps * verifier_deps,const DexFile * dex_file,const dex::CodeItem * code_item,uint32_t method_idx,bool can_load_classes,bool allow_thread_suspension,bool aot_mode,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,uint32_t access_flags,bool verify_to_dump,uint32_t api_level)139   MethodVerifier(Thread* self,
140                  ClassLinker* class_linker,
141                  ArenaPool* arena_pool,
142                  VerifierDeps* verifier_deps,
143                  const DexFile* dex_file,
144                  const dex::CodeItem* code_item,
145                  uint32_t method_idx,
146                  bool can_load_classes,
147                  bool allow_thread_suspension,
148                  bool aot_mode,
149                  Handle<mirror::DexCache> dex_cache,
150                  Handle<mirror::ClassLoader> class_loader,
151                  const dex::ClassDef& class_def,
152                  uint32_t access_flags,
153                  bool verify_to_dump,
154                  uint32_t api_level) REQUIRES_SHARED(Locks::mutator_lock_)
155      : art::verifier::MethodVerifier(self,
156                                      class_linker,
157                                      arena_pool,
158                                      verifier_deps,
159                                      dex_file,
160                                      class_def,
161                                      code_item,
162                                      method_idx,
163                                      can_load_classes,
164                                      allow_thread_suspension,
165                                      aot_mode),
166        method_access_flags_(access_flags),
167        return_type_(nullptr),
168        dex_cache_(dex_cache),
169        class_loader_(class_loader),
170        declaring_class_(nullptr),
171        interesting_dex_pc_(-1),
172        monitor_enter_dex_pcs_(nullptr),
173        verify_to_dump_(verify_to_dump),
174        allow_thread_suspension_(allow_thread_suspension),
175        is_constructor_(false),
176        api_level_(api_level == 0 ? std::numeric_limits<uint32_t>::max() : api_level) {
177   }
178 
UninstantiableError(const char * descriptor)179   void UninstantiableError(const char* descriptor) {
180     Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
181                                              << "non-instantiable klass " << descriptor;
182   }
IsInstantiableOrPrimitive(ObjPtr<mirror::Class> klass)183   static bool IsInstantiableOrPrimitive(ObjPtr<mirror::Class> klass)
184       REQUIRES_SHARED(Locks::mutator_lock_) {
185     return klass->IsInstantiable() || klass->IsPrimitive();
186   }
187 
188   // Is the method being verified a constructor? See the comment on the field.
IsConstructor() const189   bool IsConstructor() const {
190     return is_constructor_;
191   }
192 
193   // Is the method verified static?
IsStatic() const194   bool IsStatic() const {
195     return (method_access_flags_ & kAccStatic) != 0;
196   }
197 
198   // Adds the given string to the beginning of the last failure message.
PrependToLastFailMessage(std::string prepend)199   void PrependToLastFailMessage(std::string prepend) {
200     size_t failure_num = failure_messages_.size();
201     DCHECK_NE(failure_num, 0U);
202     std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
203     prepend += last_fail_message->str();
204     failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
205     delete last_fail_message;
206   }
207 
208   // Adds the given string to the end of the last failure message.
AppendToLastFailMessage(const std::string & append)209   void AppendToLastFailMessage(const std::string& append) {
210     size_t failure_num = failure_messages_.size();
211     DCHECK_NE(failure_num, 0U);
212     std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
213     (*last_fail_message) << append;
214   }
215 
216   /*
217    * Compute the width of the instruction at each address in the instruction stream, and store it in
218    * insn_flags_. Addresses that are in the middle of an instruction, or that are part of switch
219    * table data, are not touched (so the caller should probably initialize "insn_flags" to zero).
220    *
221    * The "new_instance_count_" and "monitor_enter_count_" fields in vdata are also set.
222    *
223    * Performs some static checks, notably:
224    * - opcode of first instruction begins at index 0
225    * - only documented instructions may appear
226    * - each instruction follows the last
227    * - last byte of last instruction is at (code_length-1)
228    *
229    * Logs an error and returns "false" on failure.
230    */
231   bool ComputeWidthsAndCountOps();
232 
233   /*
234    * Set the "in try" flags for all instructions protected by "try" statements. Also sets the
235    * "branch target" flags for exception handlers.
236    *
237    * Call this after widths have been set in "insn_flags".
238    *
239    * Returns "false" if something in the exception table looks fishy, but we're expecting the
240    * exception table to be valid.
241    */
242   bool ScanTryCatchBlocks() REQUIRES_SHARED(Locks::mutator_lock_);
243 
244   /*
245    * Perform static verification on all instructions in a method.
246    *
247    * Walks through instructions in a method calling VerifyInstruction on each.
248    */
249   template <bool kAllowRuntimeOnlyInstructions>
250   bool VerifyInstructions();
251 
252   /*
253    * Perform static verification on an instruction.
254    *
255    * As a side effect, this sets the "branch target" flags in InsnFlags.
256    *
257    * "(CF)" items are handled during code-flow analysis.
258    *
259    * v3 4.10.1
260    * - target of each jump and branch instruction must be valid
261    * - targets of switch statements must be valid
262    * - operands referencing constant pool entries must be valid
263    * - (CF) operands of getfield, putfield, getstatic, putstatic must be valid
264    * - (CF) operands of method invocation instructions must be valid
265    * - (CF) only invoke-direct can call a method starting with '<'
266    * - (CF) <clinit> must never be called explicitly
267    * - operands of instanceof, checkcast, new (and variants) must be valid
268    * - new-array[-type] limited to 255 dimensions
269    * - can't use "new" on an array class
270    * - (?) limit dimensions in multi-array creation
271    * - local variable load/store register values must be in valid range
272    *
273    * v3 4.11.1.2
274    * - branches must be within the bounds of the code array
275    * - targets of all control-flow instructions are the start of an instruction
276    * - register accesses fall within range of allocated registers
277    * - (N/A) access to constant pool must be of appropriate type
278    * - code does not end in the middle of an instruction
279    * - execution cannot fall off the end of the code
280    * - (earlier) for each exception handler, the "try" area must begin and
281    *   end at the start of an instruction (end can be at the end of the code)
282    * - (earlier) for each exception handler, the handler must start at a valid
283    *   instruction
284    */
285   template <bool kAllowRuntimeOnlyInstructions>
286   bool VerifyInstruction(const Instruction* inst, uint32_t code_offset);
287 
288   /* Ensure that the register index is valid for this code item. */
CheckRegisterIndex(uint32_t idx)289   bool CheckRegisterIndex(uint32_t idx) {
290     if (UNLIKELY(idx >= code_item_accessor_.RegistersSize())) {
291       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
292                                         << code_item_accessor_.RegistersSize() << ")";
293       return false;
294     }
295     return true;
296   }
297 
298   /* Ensure that the wide register index is valid for this code item. */
CheckWideRegisterIndex(uint32_t idx)299   bool CheckWideRegisterIndex(uint32_t idx) {
300     if (UNLIKELY(idx + 1 >= code_item_accessor_.RegistersSize())) {
301       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
302                                         << "+1 >= " << code_item_accessor_.RegistersSize() << ")";
303       return false;
304     }
305     return true;
306   }
307 
308   // Perform static checks on an instruction referencing a CallSite. All we do here is ensure that
309   // the call site index is in the valid range.
CheckCallSiteIndex(uint32_t idx)310   bool CheckCallSiteIndex(uint32_t idx) {
311     uint32_t limit = dex_file_->NumCallSiteIds();
312     if (UNLIKELY(idx >= limit)) {
313       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad call site index " << idx << " (max "
314                                         << limit << ")";
315       return false;
316     }
317     return true;
318   }
319 
320   // Perform static checks on a field Get or set instruction. All we do here is ensure that the
321   // field index is in the valid range.
CheckFieldIndex(uint32_t idx)322   bool CheckFieldIndex(uint32_t idx) {
323     if (UNLIKELY(idx >= dex_file_->GetHeader().field_ids_size_)) {
324       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
325                                         << dex_file_->GetHeader().field_ids_size_ << ")";
326       return false;
327     }
328     return true;
329   }
330 
331   // Perform static checks on a method invocation instruction. All we do here is ensure that the
332   // method index is in the valid range.
CheckMethodIndex(uint32_t idx)333   bool CheckMethodIndex(uint32_t idx) {
334     if (UNLIKELY(idx >= dex_file_->GetHeader().method_ids_size_)) {
335       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
336                                         << dex_file_->GetHeader().method_ids_size_ << ")";
337       return false;
338     }
339     return true;
340   }
341 
342   // Perform static checks on an instruction referencing a constant method handle. All we do here
343   // is ensure that the method index is in the valid range.
CheckMethodHandleIndex(uint32_t idx)344   bool CheckMethodHandleIndex(uint32_t idx) {
345     uint32_t limit = dex_file_->NumMethodHandles();
346     if (UNLIKELY(idx >= limit)) {
347       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method handle index " << idx << " (max "
348                                         << limit << ")";
349       return false;
350     }
351     return true;
352   }
353 
354   // Perform static checks on a "new-instance" instruction. Specifically, make sure the class
355   // reference isn't for an array class.
356   bool CheckNewInstance(dex::TypeIndex idx);
357 
358   // Perform static checks on a prototype indexing instruction. All we do here is ensure that the
359   // prototype index is in the valid range.
CheckPrototypeIndex(uint32_t idx)360   bool CheckPrototypeIndex(uint32_t idx) {
361     if (UNLIKELY(idx >= dex_file_->GetHeader().proto_ids_size_)) {
362       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad prototype index " << idx << " (max "
363                                         << dex_file_->GetHeader().proto_ids_size_ << ")";
364       return false;
365     }
366     return true;
367   }
368 
369   /* Ensure that the string index is in the valid range. */
CheckStringIndex(uint32_t idx)370   bool CheckStringIndex(uint32_t idx) {
371     if (UNLIKELY(idx >= dex_file_->GetHeader().string_ids_size_)) {
372       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
373                                         << dex_file_->GetHeader().string_ids_size_ << ")";
374       return false;
375     }
376     return true;
377   }
378 
379   // Perform static checks on an instruction that takes a class constant. Ensure that the class
380   // index is in the valid range.
CheckTypeIndex(dex::TypeIndex idx)381   bool CheckTypeIndex(dex::TypeIndex idx) {
382     if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
383       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
384                                         << dex_file_->GetHeader().type_ids_size_ << ")";
385       return false;
386     }
387     return true;
388   }
389 
390   // Perform static checks on a "new-array" instruction. Specifically, make sure they aren't
391   // creating an array of arrays that causes the number of dimensions to exceed 255.
392   bool CheckNewArray(dex::TypeIndex idx);
393 
394   // Verify an array data table. "cur_offset" is the offset of the fill-array-data instruction.
395   bool CheckArrayData(uint32_t cur_offset);
396 
397   // Verify that the target of a branch instruction is valid. We don't expect code to jump directly
398   // into an exception handler, but it's valid to do so as long as the target isn't a
399   // "move-exception" instruction. We verify that in a later stage.
400   // The dex format forbids certain instructions from branching to themselves.
401   // Updates "insn_flags_", setting the "branch target" flag.
402   bool CheckBranchTarget(uint32_t cur_offset);
403 
404   // Verify a switch table. "cur_offset" is the offset of the switch instruction.
405   // Updates "insn_flags_", setting the "branch target" flag.
406   bool CheckSwitchTargets(uint32_t cur_offset);
407 
408   // Check the register indices used in a "vararg" instruction, such as invoke-virtual or
409   // filled-new-array.
410   // - vA holds word count (0-5), args[] have values.
411   // There are some tests we don't do here, e.g. we don't try to verify that invoking a method that
412   // takes a double is done with consecutive registers. This requires parsing the target method
413   // signature, which we will be doing later on during the code flow analysis.
CheckVarArgRegs(uint32_t vA,uint32_t arg[])414   bool CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
415     uint16_t registers_size = code_item_accessor_.RegistersSize();
416     for (uint32_t idx = 0; idx < vA; idx++) {
417       if (UNLIKELY(arg[idx] >= registers_size)) {
418         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
419                                           << ") in non-range invoke (>= " << registers_size << ")";
420         return false;
421       }
422     }
423 
424     return true;
425   }
426 
427   // Check the register indices used in a "vararg/range" instruction, such as invoke-virtual/range
428   // or filled-new-array/range.
429   // - vA holds word count, vC holds index of first reg.
CheckVarArgRangeRegs(uint32_t vA,uint32_t vC)430   bool CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
431     uint16_t registers_size = code_item_accessor_.RegistersSize();
432     // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
433     // integer overflow when adding them here.
434     if (UNLIKELY(vA + vC > registers_size)) {
435       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
436                                         << " in range invoke (> " << registers_size << ")";
437       return false;
438     }
439     return true;
440   }
441 
442   // Checks the method matches the expectations required to be signature polymorphic.
443   bool CheckSignaturePolymorphicMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_);
444 
445   // Checks the invoked receiver matches the expectations for signature polymorphic methods.
446   bool CheckSignaturePolymorphicReceiver(const Instruction* inst) REQUIRES_SHARED(Locks::mutator_lock_);
447 
448   // Extract the relative offset from a branch instruction.
449   // Returns "false" on failure (e.g. this isn't a branch instruction).
450   bool GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
451                        bool* selfOkay);
452 
453   /* Perform detailed code-flow analysis on a single method. */
454   bool VerifyCodeFlow() REQUIRES_SHARED(Locks::mutator_lock_);
455 
456   // Set the register types for the first instruction in the method based on the method signature.
457   // This has the side-effect of validating the signature.
458   bool SetTypesFromSignature() REQUIRES_SHARED(Locks::mutator_lock_);
459 
460   /*
461    * Perform code flow on a method.
462    *
463    * The basic strategy is as outlined in v3 4.11.1.2: set the "changed" bit on the first
464    * instruction, process it (setting additional "changed" bits), and repeat until there are no
465    * more.
466    *
467    * v3 4.11.1.1
468    * - (N/A) operand stack is always the same size
469    * - operand stack [registers] contain the correct types of values
470    * - local variables [registers] contain the correct types of values
471    * - methods are invoked with the appropriate arguments
472    * - fields are assigned using values of appropriate types
473    * - opcodes have the correct type values in operand registers
474    * - there is never an uninitialized class instance in a local variable in code protected by an
475    *   exception handler (operand stack is okay, because the operand stack is discarded when an
476    *   exception is thrown) [can't know what's a local var w/o the debug info -- should fall out of
477    *   register typing]
478    *
479    * v3 4.11.1.2
480    * - execution cannot fall off the end of the code
481    *
482    * (We also do many of the items described in the "static checks" sections, because it's easier to
483    * do them here.)
484    *
485    * We need an array of RegType values, one per register, for every instruction. If the method uses
486    * monitor-enter, we need extra data for every register, and a stack for every "interesting"
487    * instruction. In theory this could become quite large -- up to several megabytes for a monster
488    * function.
489    *
490    * NOTE:
491    * The spec forbids backward branches when there's an uninitialized reference in a register. The
492    * idea is to prevent something like this:
493    *   loop:
494    *     move r1, r0
495    *     new-instance r0, MyClass
496    *     ...
497    *     if-eq rN, loop  // once
498    *   initialize r0
499    *
500    * This leaves us with two different instances, both allocated by the same instruction, but only
501    * one is initialized. The scheme outlined in v3 4.11.1.4 wouldn't catch this, so they work around
502    * it by preventing backward branches. We achieve identical results without restricting code
503    * reordering by specifying that you can't execute the new-instance instruction if a register
504    * contains an uninitialized instance created by that same instruction.
505    */
506   template <bool kMonitorDexPCs>
507   bool CodeFlowVerifyMethod() REQUIRES_SHARED(Locks::mutator_lock_);
508 
509   /*
510    * Perform verification for a single instruction.
511    *
512    * This requires fully decoding the instruction to determine the effect it has on registers.
513    *
514    * Finds zero or more following instructions and sets the "changed" flag if execution at that
515    * point needs to be (re-)evaluated. Register changes are merged into "reg_types_" at the target
516    * addresses. Does not set or clear any other flags in "insn_flags_".
517    */
518   bool CodeFlowVerifyInstruction(uint32_t* start_guess)
519       REQUIRES_SHARED(Locks::mutator_lock_);
520 
521   // Perform verification of a new array instruction
522   void VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range)
523       REQUIRES_SHARED(Locks::mutator_lock_);
524 
525   // Helper to perform verification on puts of primitive type.
526   void VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
527                           const uint32_t vregA) REQUIRES_SHARED(Locks::mutator_lock_);
528 
529   // Perform verification of an aget instruction. The destination register's type will be set to
530   // be that of component type of the array unless the array type is unknown, in which case a
531   // bottom type inferred from the type of instruction is used. is_primitive is false for an
532   // aget-object.
533   void VerifyAGet(const Instruction* inst, const RegType& insn_type,
534                   bool is_primitive) REQUIRES_SHARED(Locks::mutator_lock_);
535 
536   // Perform verification of an aput instruction.
537   void VerifyAPut(const Instruction* inst, const RegType& insn_type,
538                   bool is_primitive) REQUIRES_SHARED(Locks::mutator_lock_);
539 
540   // Lookup instance field and fail for resolution violations
541   ArtField* GetInstanceField(const RegType& obj_type, int field_idx)
542       REQUIRES_SHARED(Locks::mutator_lock_);
543 
544   // Lookup static field and fail for resolution violations
545   ArtField* GetStaticField(int field_idx) REQUIRES_SHARED(Locks::mutator_lock_);
546 
547   // Perform verification of an iget/sget/iput/sput instruction.
548   template <FieldAccessType kAccType>
549   void VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
550                            bool is_primitive, bool is_static)
551       REQUIRES_SHARED(Locks::mutator_lock_);
552 
553   // Resolves a class based on an index and, if C is kYes, performs access checks to ensure
554   // the referrer can access the resolved class.
555   template <CheckAccess C>
556   const RegType& ResolveClass(dex::TypeIndex class_idx)
557       REQUIRES_SHARED(Locks::mutator_lock_);
558 
559   /*
560    * For the "move-exception" instruction at "work_insn_idx_", which must be at an exception handler
561    * address, determine the Join of all exceptions that can land here. Fails if no matching
562    * exception handler can be found or if the Join of exception types fails.
563    */
564   const RegType& GetCaughtExceptionType()
565       REQUIRES_SHARED(Locks::mutator_lock_);
566 
567   /*
568    * Resolves a method based on an index and performs access checks to ensure
569    * the referrer can access the resolved method.
570    * Does not throw exceptions.
571    */
572   ArtMethod* ResolveMethodAndCheckAccess(uint32_t method_idx, MethodType method_type)
573       REQUIRES_SHARED(Locks::mutator_lock_);
574 
575   /*
576    * Verify the arguments to a method. We're executing in "method", making
577    * a call to the method reference in vB.
578    *
579    * If this is a "direct" invoke, we allow calls to <init>. For calls to
580    * <init>, the first argument may be an uninitialized reference. Otherwise,
581    * calls to anything starting with '<' will be rejected, as will any
582    * uninitialized reference arguments.
583    *
584    * For non-static method calls, this will verify that the method call is
585    * appropriate for the "this" argument.
586    *
587    * The method reference is in vBBBB. The "is_range" parameter determines
588    * whether we use 0-4 "args" values or a range of registers defined by
589    * vAA and vCCCC.
590    *
591    * Widening conversions on integers and references are allowed, but
592    * narrowing conversions are not.
593    *
594    * Returns the resolved method on success, null on failure (with *failure
595    * set appropriately).
596    */
597   ArtMethod* VerifyInvocationArgs(const Instruction* inst, MethodType method_type, bool is_range)
598       REQUIRES_SHARED(Locks::mutator_lock_);
599 
600   // Similar checks to the above, but on the proto. Will be used when the method cannot be
601   // resolved.
602   void VerifyInvocationArgsUnresolvedMethod(const Instruction* inst, MethodType method_type,
603                                             bool is_range)
604       REQUIRES_SHARED(Locks::mutator_lock_);
605 
606   template <class T>
607   ArtMethod* VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
608                                                       MethodType method_type, bool is_range,
609                                                       ArtMethod* res_method)
610       REQUIRES_SHARED(Locks::mutator_lock_);
611 
612   /*
613    * Verify the arguments present for a call site. Returns "true" if all is well, "false" otherwise.
614    */
615   bool CheckCallSite(uint32_t call_site_idx);
616 
617   /*
618    * Verify that the target instruction is not "move-exception". It's important that the only way
619    * to execute a move-exception is as the first instruction of an exception handler.
620    * Returns "true" if all is well, "false" if the target instruction is move-exception.
621    */
CheckNotMoveException(const uint16_t * insns,int insn_idx)622   bool CheckNotMoveException(const uint16_t* insns, int insn_idx) {
623     if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
624       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
625       return false;
626     }
627     return true;
628   }
629 
630   /*
631    * Verify that the target instruction is not "move-result". It is important that we cannot
632    * branch to move-result instructions, but we have to make this a distinct check instead of
633    * adding it to CheckNotMoveException, because it is legal to continue into "move-result"
634    * instructions - as long as the previous instruction was an invoke, which is checked elsewhere.
635    */
CheckNotMoveResult(const uint16_t * insns,int insn_idx)636   bool CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
637     if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
638         ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
639       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
640       return false;
641     }
642     return true;
643   }
644 
645   /*
646    * Verify that the target instruction is not "move-result" or "move-exception". This is to
647    * be used when checking branch and switch instructions, but not instructions that can
648    * continue.
649    */
CheckNotMoveExceptionOrMoveResult(const uint16_t * insns,int insn_idx)650   bool CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
651     return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
652   }
653 
654   /*
655   * Control can transfer to "next_insn". Merge the registers from merge_line into the table at
656   * next_insn, and set the changed flag on the target address if any of the registers were changed.
657   * In the case of fall-through, update the merge line on a change as its the working line for the
658   * next instruction.
659   * Returns "false" if an error is encountered.
660   */
661   bool UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line, bool update_merge_line)
662       REQUIRES_SHARED(Locks::mutator_lock_);
663 
664   // Return the register type for the method.
665   const RegType& GetMethodReturnType() REQUIRES_SHARED(Locks::mutator_lock_);
666 
667   // Get a type representing the declaring class of the method.
GetDeclaringClass()668   const RegType& GetDeclaringClass() REQUIRES_SHARED(Locks::mutator_lock_) {
669     if (declaring_class_ == nullptr) {
670       const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
671       const char* descriptor
672           = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
673       declaring_class_ = &reg_types_.FromDescriptor(class_loader_, descriptor);
674     }
675     return *declaring_class_;
676   }
677 
CurrentInsnFlags()678   InstructionFlags* CurrentInsnFlags() {
679     return &GetModifiableInstructionFlags(work_insn_idx_);
680   }
681 
682   const RegType& DetermineCat1Constant(int32_t value)
683       REQUIRES_SHARED(Locks::mutator_lock_);
684 
685   // Try to create a register type from the given class. In case a precise type is requested, but
686   // the class is not instantiable, a soft error (of type NO_CLASS) will be enqueued and a
687   // non-precise reference will be returned.
688   // Note: we reuse NO_CLASS as this will throw an exception at runtime, when the failing class is
689   //       actually touched.
FromClass(const char * descriptor,ObjPtr<mirror::Class> klass,bool precise)690   const RegType& FromClass(const char* descriptor, ObjPtr<mirror::Class> klass, bool precise)
691       REQUIRES_SHARED(Locks::mutator_lock_) {
692     DCHECK(klass != nullptr);
693     if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
694       Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
695           << "non-instantiable klass " << descriptor;
696       precise = false;
697     }
698     return reg_types_.FromClass(descriptor, klass, precise);
699   }
700 
701   ALWAYS_INLINE bool FailOrAbort(bool condition, const char* error_msg, uint32_t work_insn_idx);
702 
GetModifiableInstructionFlags(size_t index)703   ALWAYS_INLINE InstructionFlags& GetModifiableInstructionFlags(size_t index) {
704     return insn_flags_[index];
705   }
706 
707   // Returns the method index of an invoke instruction.
GetMethodIdxOfInvoke(const Instruction * inst)708   uint16_t GetMethodIdxOfInvoke(const Instruction* inst)
709       REQUIRES_SHARED(Locks::mutator_lock_) {
710     return inst->VRegB();
711   }
712   // Returns the field index of a field access instruction.
GetFieldIdxOfFieldAccess(const Instruction * inst,bool is_static)713   uint16_t GetFieldIdxOfFieldAccess(const Instruction* inst, bool is_static)
714       REQUIRES_SHARED(Locks::mutator_lock_) {
715     if (is_static) {
716       return inst->VRegB_21c();
717     } else {
718       return inst->VRegC_22c();
719     }
720   }
721 
722   // Run verification on the method. Returns true if verification completes and false if the input
723   // has an irrecoverable corruption.
724   bool Verify() override REQUIRES_SHARED(Locks::mutator_lock_);
725 
726   // For app-compatibility, code after a runtime throw is treated as dead code
727   // for apps targeting <= S.
728   // Returns whether the current instruction was marked as throwing.
729   bool PotentiallyMarkRuntimeThrow() override;
730 
731   // Dump the failures encountered by the verifier.
DumpFailures(std::ostream & os)732   std::ostream& DumpFailures(std::ostream& os) {
733     DCHECK_EQ(failures_.size(), failure_messages_.size());
734     for (const auto* stream : failure_messages_) {
735         os << stream->str() << "\n";
736     }
737     return os;
738   }
739 
740   // Dump the state of the verifier, namely each instruction, what flags are set on it, register
741   // information
Dump(std::ostream & os)742   void Dump(std::ostream& os) REQUIRES_SHARED(Locks::mutator_lock_) {
743     VariableIndentationOutputStream vios(&os);
744     Dump(&vios);
745   }
746   void Dump(VariableIndentationOutputStream* vios) REQUIRES_SHARED(Locks::mutator_lock_);
747 
748   bool HandleMoveException(const Instruction* inst) REQUIRES_SHARED(Locks::mutator_lock_);
749 
750   const uint32_t method_access_flags_;  // Method's access flags.
751   const RegType* return_type_;  // Lazily computed return type of the method.
752   // The dex_cache for the declaring class of the method.
753   Handle<mirror::DexCache> dex_cache_ GUARDED_BY(Locks::mutator_lock_);
754   // The class loader for the declaring class of the method.
755   Handle<mirror::ClassLoader> class_loader_ GUARDED_BY(Locks::mutator_lock_);
756   const RegType* declaring_class_;  // Lazily computed reg type of the method's declaring class.
757 
758   // The dex PC of a FindLocksAtDexPc request, -1 otherwise.
759   uint32_t interesting_dex_pc_;
760   // The container into which FindLocksAtDexPc should write the registers containing held locks,
761   // null if we're not doing FindLocksAtDexPc.
762   std::vector<DexLockInfo>* monitor_enter_dex_pcs_;
763 
764   // Indicates whether we verify to dump the info. In that case we accept quickened instructions
765   // even though we might detect to be a compiler. Should only be set when running
766   // VerifyMethodAndDump.
767   const bool verify_to_dump_;
768 
769   // Whether or not we call AllowThreadSuspension periodically, we want a way to disable this for
770   // thread dumping checkpoints since we may get thread suspension at an inopportune time due to
771   // FindLocksAtDexPC, resulting in deadlocks.
772   const bool allow_thread_suspension_;
773 
774   // Whether the method seems to be a constructor. Note that this field exists as we can't trust
775   // the flags in the dex file. Some older code does not mark methods named "<init>" and "<clinit>"
776   // correctly.
777   //
778   // Note: this flag is only valid once Verify() has started.
779   bool is_constructor_;
780 
781   // API level, for dependent checks. Note: we do not use '0' for unset here, to simplify checks.
782   // Instead, unset level should correspond to max().
783   const uint32_t api_level_;
784 
785   friend class ::art::verifier::MethodVerifier;
786 
787   DISALLOW_COPY_AND_ASSIGN(MethodVerifier);
788 };
789 
790 // Note: returns true on failure.
791 template <bool kVerifierDebug>
FailOrAbort(bool condition,const char * error_msg,uint32_t work_insn_idx)792 inline bool MethodVerifier<kVerifierDebug>::FailOrAbort(bool condition,
793                                                         const char* error_msg,
794                                                         uint32_t work_insn_idx) {
795   if (kIsDebugBuild) {
796     // In a debug build, abort if the error condition is wrong. Only warn if
797     // we are already aborting (as this verification is likely run to print
798     // lock information).
799     if (LIKELY(gAborting == 0)) {
800       DCHECK(condition) << error_msg << work_insn_idx << " "
801                         << dex_file_->PrettyMethod(dex_method_idx_);
802     } else {
803       if (!condition) {
804         LOG(ERROR) << error_msg << work_insn_idx;
805         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
806         return true;
807       }
808     }
809   } else {
810     // In a non-debug build, just fail the class.
811     if (!condition) {
812       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
813       return true;
814     }
815   }
816 
817   return false;
818 }
819 
IsLargeMethod(const CodeItemDataAccessor & accessor)820 static bool IsLargeMethod(const CodeItemDataAccessor& accessor) {
821   if (!accessor.HasCodeItem()) {
822     return false;
823   }
824 
825   uint16_t registers_size = accessor.RegistersSize();
826   uint32_t insns_size = accessor.InsnsSizeInCodeUnits();
827 
828   return registers_size * insns_size > 4*1024*1024;
829 }
830 
831 template <bool kVerifierDebug>
FindLocksAtDexPc()832 void MethodVerifier<kVerifierDebug>::FindLocksAtDexPc() {
833   CHECK(monitor_enter_dex_pcs_ != nullptr);
834   CHECK(code_item_accessor_.HasCodeItem());  // This only makes sense for methods with code.
835 
836   // Quick check whether there are any monitor_enter instructions before verifying.
837   for (const DexInstructionPcPair& inst : code_item_accessor_) {
838     if (inst->Opcode() == Instruction::MONITOR_ENTER) {
839       // Strictly speaking, we ought to be able to get away with doing a subset of the full method
840       // verification. In practice, the phase we want relies on data structures set up by all the
841       // earlier passes, so we just run the full method verification and bail out early when we've
842       // got what we wanted.
843       Verify();
844       return;
845     }
846   }
847 }
848 
849 template <bool kVerifierDebug>
Verify()850 bool MethodVerifier<kVerifierDebug>::Verify() {
851   // Some older code doesn't correctly mark constructors as such. Test for this case by looking at
852   // the name.
853   const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
854   const std::string_view method_name = dex_file_->GetStringView(method_id.name_idx_);
855   bool instance_constructor_by_name = method_name == "<init>";
856   bool static_constructor_by_name = method_name == "<clinit>";
857   bool constructor_by_name = instance_constructor_by_name || static_constructor_by_name;
858   // Check that only constructors are tagged, and check for bad code that doesn't tag constructors.
859   if ((method_access_flags_ & kAccConstructor) != 0) {
860     if (!constructor_by_name) {
861       Fail(VERIFY_ERROR_BAD_CLASS_HARD)
862             << "method is marked as constructor, but not named accordingly";
863       return false;
864     }
865     is_constructor_ = true;
866   } else if (constructor_by_name) {
867     LOG(WARNING) << "Method " << dex_file_->PrettyMethod(dex_method_idx_)
868                  << " not marked as constructor.";
869     is_constructor_ = true;
870   }
871   // If it's a constructor, check whether IsStatic() matches the name.
872   // This should have been rejected by the dex file verifier. Only do in debug build.
873   if (kIsDebugBuild) {
874     if (IsConstructor()) {
875       if (IsStatic() ^ static_constructor_by_name) {
876         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
877               << "constructor name doesn't match static flag";
878         return false;
879       }
880     }
881   }
882 
883   // Methods may only have one of public/protected/private.
884   // This should have been rejected by the dex file verifier. Only do in debug build.
885   if (kIsDebugBuild) {
886     size_t access_mod_count =
887         (((method_access_flags_ & kAccPublic) == 0) ? 0 : 1) +
888         (((method_access_flags_ & kAccProtected) == 0) ? 0 : 1) +
889         (((method_access_flags_ & kAccPrivate) == 0) ? 0 : 1);
890     if (access_mod_count > 1) {
891       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "method has more than one of public/protected/private";
892       return false;
893     }
894   }
895 
896   // If there aren't any instructions, make sure that's expected, then exit successfully.
897   if (!code_item_accessor_.HasCodeItem()) {
898     // Only native or abstract methods may not have code.
899     if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
900       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
901       return false;
902     }
903 
904     // Test FastNative and CriticalNative annotations. We do this in the
905     // verifier for convenience.
906     if ((method_access_flags_ & kAccNative) != 0) {
907       // Fetch the flags from the annotations: the class linker hasn't processed
908       // them yet.
909       uint32_t native_access_flags = annotations::GetNativeMethodAnnotationAccessFlags(
910           *dex_file_, class_def_, dex_method_idx_);
911       if ((native_access_flags & kAccFastNative) != 0) {
912         if ((method_access_flags_ & kAccSynchronized) != 0) {
913           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "fast native methods cannot be synchronized";
914           return false;
915         }
916       }
917       if ((native_access_flags & kAccCriticalNative) != 0) {
918         if ((method_access_flags_ & kAccSynchronized) != 0) {
919           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "critical native methods cannot be synchronized";
920           return false;
921         }
922         if ((method_access_flags_ & kAccStatic) == 0) {
923           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "critical native methods must be static";
924           return false;
925         }
926         const char* shorty = dex_file_->GetMethodShorty(method_id);
927         for (size_t i = 0, len = strlen(shorty); i < len; ++i) {
928           if (Primitive::GetType(shorty[i]) == Primitive::kPrimNot) {
929             Fail(VERIFY_ERROR_BAD_CLASS_HARD) <<
930                 "critical native methods must not have references as arguments or return type";
931             return false;
932           }
933         }
934       }
935     }
936 
937     // This should have been rejected by the dex file verifier. Only do in debug build.
938     // Note: the above will also be rejected in the dex file verifier, starting in dex version 37.
939     if (kIsDebugBuild) {
940       if ((method_access_flags_ & kAccAbstract) != 0) {
941         // Abstract methods are not allowed to have the following flags.
942         static constexpr uint32_t kForbidden =
943             kAccPrivate |
944             kAccStatic |
945             kAccFinal |
946             kAccNative |
947             kAccStrict |
948             kAccSynchronized;
949         if ((method_access_flags_ & kForbidden) != 0) {
950           Fail(VERIFY_ERROR_BAD_CLASS_HARD)
951                 << "method can't be abstract and private/static/final/native/strict/synchronized";
952           return false;
953         }
954       }
955       if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
956         // Interface methods must be public and abstract (if default methods are disabled).
957         uint32_t kRequired = kAccPublic;
958         if ((method_access_flags_ & kRequired) != kRequired) {
959           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods must be public";
960           return false;
961         }
962         // In addition to the above, interface methods must not be protected.
963         static constexpr uint32_t kForbidden = kAccProtected;
964         if ((method_access_flags_ & kForbidden) != 0) {
965           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods can't be protected";
966           return false;
967         }
968       }
969       // We also don't allow constructors to be abstract or native.
970       if (IsConstructor()) {
971         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be abstract or native";
972         return false;
973       }
974     }
975     return true;
976   }
977 
978   // This should have been rejected by the dex file verifier. Only do in debug build.
979   if (kIsDebugBuild) {
980     // When there's code, the method must not be native or abstract.
981     if ((method_access_flags_ & (kAccNative | kAccAbstract)) != 0) {
982       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "non-zero-length code in abstract or native method";
983       return false;
984     }
985 
986     if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
987       // Interfaces may always have static initializers for their fields. If we are running with
988       // default methods enabled we also allow other public, static, non-final methods to have code.
989       // Otherwise that is the only type of method allowed.
990       if (!(IsConstructor() && IsStatic())) {
991         if (IsInstanceConstructor()) {
992           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have non-static constructor";
993           return false;
994         } else if (method_access_flags_ & kAccFinal) {
995           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have final methods";
996           return false;
997         } else {
998           uint32_t access_flag_options = kAccPublic;
999           if (dex_file_->SupportsDefaultMethods()) {
1000             access_flag_options |= kAccPrivate;
1001           }
1002           if (!(method_access_flags_ & access_flag_options)) {
1003             Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1004                 << "interfaces may not have protected or package-private members";
1005             return false;
1006           }
1007         }
1008       }
1009     }
1010 
1011     // Instance constructors must not be synchronized.
1012     if (IsInstanceConstructor()) {
1013       static constexpr uint32_t kForbidden = kAccSynchronized;
1014       if ((method_access_flags_ & kForbidden) != 0) {
1015         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be synchronized";
1016         return false;
1017       }
1018     }
1019   }
1020 
1021   // Consistency-check of the register counts.
1022   // ins + locals = registers, so make sure that ins <= registers.
1023   if (code_item_accessor_.InsSize() > code_item_accessor_.RegistersSize()) {
1024     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins="
1025                                       << code_item_accessor_.InsSize()
1026                                       << " regs=" << code_item_accessor_.RegistersSize();
1027     return false;
1028   }
1029 
1030   // Allocate and initialize an array to hold instruction data.
1031   insn_flags_.reset(allocator_.AllocArray<InstructionFlags>(
1032       code_item_accessor_.InsnsSizeInCodeUnits()));
1033   DCHECK(insn_flags_ != nullptr);
1034   std::uninitialized_fill_n(insn_flags_.get(),
1035                             code_item_accessor_.InsnsSizeInCodeUnits(),
1036                             InstructionFlags());
1037   // Run through the instructions and see if the width checks out.
1038   bool result = ComputeWidthsAndCountOps();
1039   bool allow_runtime_only_instructions = !IsAotMode() || verify_to_dump_;
1040   // Flag instructions guarded by a "try" block and check exception handlers.
1041   result = result && ScanTryCatchBlocks();
1042   // Perform static instruction verification.
1043   result = result && (allow_runtime_only_instructions
1044                           ? VerifyInstructions<true>()
1045                           : VerifyInstructions<false>());
1046   // Perform code-flow analysis and return.
1047   result = result && VerifyCodeFlow();
1048 
1049   return result;
1050 }
1051 
1052 template <bool kVerifierDebug>
ComputeWidthsAndCountOps()1053 bool MethodVerifier<kVerifierDebug>::ComputeWidthsAndCountOps() {
1054   // We can't assume the instruction is well formed, handle the case where calculating the size
1055   // goes past the end of the code item.
1056   SafeDexInstructionIterator it(code_item_accessor_.begin(), code_item_accessor_.end());
1057   if (it == code_item_accessor_.end()) {
1058     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code item has no opcode";
1059     return false;
1060   }
1061   for ( ; !it.IsErrorState() && it < code_item_accessor_.end(); ++it) {
1062     // In case the instruction goes past the end of the code item, make sure to not process it.
1063     SafeDexInstructionIterator next = it;
1064     ++next;
1065     if (next.IsErrorState()) {
1066       break;
1067     }
1068     GetModifiableInstructionFlags(it.DexPc()).SetIsOpcode();
1069   }
1070 
1071   if (it != code_item_accessor_.end()) {
1072     const size_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1073     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
1074                                       << it.DexPc() << " vs. " << insns_size << ")";
1075     return false;
1076   }
1077   DCHECK(GetInstructionFlags(0).IsOpcode());
1078 
1079   return true;
1080 }
1081 
1082 template <bool kVerifierDebug>
ScanTryCatchBlocks()1083 bool MethodVerifier<kVerifierDebug>::ScanTryCatchBlocks() {
1084   const uint32_t tries_size = code_item_accessor_.TriesSize();
1085   if (tries_size == 0) {
1086     return true;
1087   }
1088   const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1089   for (const dex::TryItem& try_item : code_item_accessor_.TryItems()) {
1090     const uint32_t start = try_item.start_addr_;
1091     const uint32_t end = start + try_item.insn_count_;
1092     if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
1093       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
1094                                         << " endAddr=" << end << " (size=" << insns_size << ")";
1095       return false;
1096     }
1097     if (!GetInstructionFlags(start).IsOpcode()) {
1098       Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1099           << "'try' block starts inside an instruction (" << start << ")";
1100       return false;
1101     }
1102     DexInstructionIterator end_it(code_item_accessor_.Insns(), end);
1103     for (DexInstructionIterator it(code_item_accessor_.Insns(), start); it < end_it; ++it) {
1104       GetModifiableInstructionFlags(it.DexPc()).SetInTry();
1105     }
1106   }
1107   // Iterate over each of the handlers to verify target addresses.
1108   const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
1109   const uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
1110   ClassLinker* linker = GetClassLinker();
1111   for (uint32_t idx = 0; idx < handlers_size; idx++) {
1112     CatchHandlerIterator iterator(handlers_ptr);
1113     for (; iterator.HasNext(); iterator.Next()) {
1114       uint32_t dex_pc = iterator.GetHandlerAddress();
1115       if (!GetInstructionFlags(dex_pc).IsOpcode()) {
1116         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1117             << "exception handler starts at bad address (" << dex_pc << ")";
1118         return false;
1119       }
1120       if (!CheckNotMoveResult(code_item_accessor_.Insns(), dex_pc)) {
1121         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1122             << "exception handler begins with move-result* (" << dex_pc << ")";
1123         return false;
1124       }
1125       GetModifiableInstructionFlags(dex_pc).SetBranchTarget();
1126       // Ensure exception types are resolved so that they don't need resolution to be delivered,
1127       // unresolved exception types will be ignored by exception delivery
1128       if (iterator.GetHandlerTypeIndex().IsValid()) {
1129         ObjPtr<mirror::Class> exception_type =
1130             linker->ResolveType(iterator.GetHandlerTypeIndex(), dex_cache_, class_loader_);
1131         if (exception_type == nullptr) {
1132           DCHECK(self_->IsExceptionPending());
1133           self_->ClearException();
1134         }
1135       }
1136     }
1137     handlers_ptr = iterator.EndDataPointer();
1138   }
1139   return true;
1140 }
1141 
1142 template <bool kVerifierDebug>
1143 template <bool kAllowRuntimeOnlyInstructions>
VerifyInstructions()1144 bool MethodVerifier<kVerifierDebug>::VerifyInstructions() {
1145   // Flag the start of the method as a branch target.
1146   GetModifiableInstructionFlags(0).SetBranchTarget();
1147   for (const DexInstructionPcPair& inst : code_item_accessor_) {
1148     const uint32_t dex_pc = inst.DexPc();
1149     if (!VerifyInstruction<kAllowRuntimeOnlyInstructions>(&inst.Inst(), dex_pc)) {
1150       DCHECK_NE(failures_.size(), 0U);
1151       return false;
1152     }
1153     // Flag some interesting instructions.
1154     if (inst->IsReturn()) {
1155       GetModifiableInstructionFlags(dex_pc).SetReturn();
1156     } else if (inst->Opcode() == Instruction::CHECK_CAST) {
1157       // The dex-to-dex compiler wants type information to elide check-casts.
1158       GetModifiableInstructionFlags(dex_pc).SetCompileTimeInfoPoint();
1159     }
1160   }
1161   return true;
1162 }
1163 
1164 template <bool kVerifierDebug>
1165 template <bool kAllowRuntimeOnlyInstructions>
VerifyInstruction(const Instruction * inst,uint32_t code_offset)1166 bool MethodVerifier<kVerifierDebug>::VerifyInstruction(const Instruction* inst,
1167                                                        uint32_t code_offset) {
1168   bool result = true;
1169   switch (inst->GetVerifyTypeArgumentA()) {
1170     case Instruction::kVerifyRegA:
1171       result = result && CheckRegisterIndex(inst->VRegA());
1172       break;
1173     case Instruction::kVerifyRegAWide:
1174       result = result && CheckWideRegisterIndex(inst->VRegA());
1175       break;
1176   }
1177   switch (inst->GetVerifyTypeArgumentB()) {
1178     case Instruction::kVerifyRegB:
1179       result = result && CheckRegisterIndex(inst->VRegB());
1180       break;
1181     case Instruction::kVerifyRegBField:
1182       result = result && CheckFieldIndex(inst->VRegB());
1183       break;
1184     case Instruction::kVerifyRegBMethod:
1185       result = result && CheckMethodIndex(inst->VRegB());
1186       break;
1187     case Instruction::kVerifyRegBNewInstance:
1188       result = result && CheckNewInstance(dex::TypeIndex(inst->VRegB()));
1189       break;
1190     case Instruction::kVerifyRegBString:
1191       result = result && CheckStringIndex(inst->VRegB());
1192       break;
1193     case Instruction::kVerifyRegBType:
1194       result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegB()));
1195       break;
1196     case Instruction::kVerifyRegBWide:
1197       result = result && CheckWideRegisterIndex(inst->VRegB());
1198       break;
1199     case Instruction::kVerifyRegBCallSite:
1200       result = result && CheckCallSiteIndex(inst->VRegB());
1201       break;
1202     case Instruction::kVerifyRegBMethodHandle:
1203       result = result && CheckMethodHandleIndex(inst->VRegB());
1204       break;
1205     case Instruction::kVerifyRegBPrototype:
1206       result = result && CheckPrototypeIndex(inst->VRegB());
1207       break;
1208   }
1209   switch (inst->GetVerifyTypeArgumentC()) {
1210     case Instruction::kVerifyRegC:
1211       result = result && CheckRegisterIndex(inst->VRegC());
1212       break;
1213     case Instruction::kVerifyRegCField:
1214       result = result && CheckFieldIndex(inst->VRegC());
1215       break;
1216     case Instruction::kVerifyRegCNewArray:
1217       result = result && CheckNewArray(dex::TypeIndex(inst->VRegC()));
1218       break;
1219     case Instruction::kVerifyRegCType:
1220       result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegC()));
1221       break;
1222     case Instruction::kVerifyRegCWide:
1223       result = result && CheckWideRegisterIndex(inst->VRegC());
1224       break;
1225   }
1226   switch (inst->GetVerifyTypeArgumentH()) {
1227     case Instruction::kVerifyRegHPrototype:
1228       result = result && CheckPrototypeIndex(inst->VRegH());
1229       break;
1230   }
1231   switch (inst->GetVerifyExtraFlags()) {
1232     case Instruction::kVerifyArrayData:
1233       result = result && CheckArrayData(code_offset);
1234       break;
1235     case Instruction::kVerifyBranchTarget:
1236       result = result && CheckBranchTarget(code_offset);
1237       break;
1238     case Instruction::kVerifySwitchTargets:
1239       result = result && CheckSwitchTargets(code_offset);
1240       break;
1241     case Instruction::kVerifyVarArgNonZero:
1242       // Fall-through.
1243     case Instruction::kVerifyVarArg: {
1244       // Instructions that can actually return a negative value shouldn't have this flag.
1245       uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
1246       if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
1247           v_a > Instruction::kMaxVarArgRegs) {
1248         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
1249                                              "non-range invoke";
1250         return false;
1251       }
1252 
1253       uint32_t args[Instruction::kMaxVarArgRegs];
1254       inst->GetVarArgs(args);
1255       result = result && CheckVarArgRegs(v_a, args);
1256       break;
1257     }
1258     case Instruction::kVerifyVarArgRangeNonZero:
1259       // Fall-through.
1260     case Instruction::kVerifyVarArgRange:
1261       if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
1262           inst->VRegA() <= 0) {
1263         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
1264                                              "range invoke";
1265         return false;
1266       }
1267       result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
1268       break;
1269     case Instruction::kVerifyError:
1270       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
1271       result = false;
1272       break;
1273   }
1274   if (!kAllowRuntimeOnlyInstructions && inst->GetVerifyIsRuntimeOnly()) {
1275     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
1276     result = false;
1277   }
1278   return result;
1279 }
1280 
1281 template <bool kVerifierDebug>
CheckNewInstance(dex::TypeIndex idx)1282 inline bool MethodVerifier<kVerifierDebug>::CheckNewInstance(dex::TypeIndex idx) {
1283   if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
1284     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
1285                                       << dex_file_->GetHeader().type_ids_size_ << ")";
1286     return false;
1287   }
1288   // We don't need the actual class, just a pointer to the class name.
1289   const std::string_view descriptor = dex_file_->GetTypeDescriptorView(idx);
1290   if (UNLIKELY(descriptor[0] != 'L')) {
1291     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
1292     return false;
1293   } else if (UNLIKELY(descriptor == "Ljava/lang/Class;")) {
1294     // An unlikely new instance on Class is not allowed. Fall back to interpreter to ensure an
1295     // exception is thrown when this statement is executed (compiled code would not do that).
1296     Fail(VERIFY_ERROR_INSTANTIATION);
1297   }
1298   return true;
1299 }
1300 
1301 template <bool kVerifierDebug>
CheckNewArray(dex::TypeIndex idx)1302 bool MethodVerifier<kVerifierDebug>::CheckNewArray(dex::TypeIndex idx) {
1303   if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
1304     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
1305                                       << dex_file_->GetHeader().type_ids_size_ << ")";
1306     return false;
1307   }
1308   int bracket_count = 0;
1309   const char* descriptor = dex_file_->GetTypeDescriptor(idx);
1310   const char* cp = descriptor;
1311   while (*cp++ == '[') {
1312     bracket_count++;
1313   }
1314   if (UNLIKELY(bracket_count == 0)) {
1315     /* The given class must be an array type. */
1316     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1317         << "can't new-array class '" << descriptor << "' (not an array)";
1318     return false;
1319   } else if (UNLIKELY(bracket_count > 255)) {
1320     /* It is illegal to create an array of more than 255 dimensions. */
1321     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1322         << "can't new-array class '" << descriptor << "' (exceeds limit)";
1323     return false;
1324   }
1325   return true;
1326 }
1327 
1328 template <bool kVerifierDebug>
CheckArrayData(uint32_t cur_offset)1329 bool MethodVerifier<kVerifierDebug>::CheckArrayData(uint32_t cur_offset) {
1330   const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
1331   const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1332   const uint16_t* array_data;
1333   int32_t array_data_offset;
1334 
1335   DCHECK_LT(cur_offset, insn_count);
1336   /* make sure the start of the array data table is in range */
1337   array_data_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1338   if (UNLIKELY(static_cast<int32_t>(cur_offset) + array_data_offset < 0 ||
1339                cur_offset + array_data_offset + 2 >= insn_count)) {
1340     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
1341                                       << ", data offset " << array_data_offset
1342                                       << ", count " << insn_count;
1343     return false;
1344   }
1345   /* offset to array data table is a relative branch-style offset */
1346   array_data = insns + array_data_offset;
1347   // Make sure the table is at an even dex pc, that is, 32-bit aligned.
1348   if (UNLIKELY(!IsAligned<4>(array_data))) {
1349     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
1350                                       << ", data offset " << array_data_offset;
1351     return false;
1352   }
1353   // Make sure the array-data is marked as an opcode. This ensures that it was reached when
1354   // traversing the code item linearly. It is an approximation for a by-spec padding value.
1355   if (UNLIKELY(!GetInstructionFlags(cur_offset + array_data_offset).IsOpcode())) {
1356     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array data table at " << cur_offset
1357                                       << ", data offset " << array_data_offset
1358                                       << " not correctly visited, probably bad padding.";
1359     return false;
1360   }
1361 
1362   uint32_t value_width = array_data[1];
1363   uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1364   uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1365   /* make sure the end of the switch is in range */
1366   if (UNLIKELY(cur_offset + array_data_offset + table_size > insn_count)) {
1367     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1368                                       << ", data offset " << array_data_offset << ", end "
1369                                       << cur_offset + array_data_offset + table_size
1370                                       << ", count " << insn_count;
1371     return false;
1372   }
1373   return true;
1374 }
1375 
1376 template <bool kVerifierDebug>
CheckBranchTarget(uint32_t cur_offset)1377 bool MethodVerifier<kVerifierDebug>::CheckBranchTarget(uint32_t cur_offset) {
1378   int32_t offset;
1379   bool isConditional, selfOkay;
1380   if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1381     return false;
1382   }
1383   if (UNLIKELY(!selfOkay && offset == 0)) {
1384     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1385                                       << reinterpret_cast<void*>(cur_offset);
1386     return false;
1387   }
1388   // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1389   // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1390   if (UNLIKELY(((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset))) {
1391     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1392                                       << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1393     return false;
1394   }
1395   int32_t abs_offset = cur_offset + offset;
1396   if (UNLIKELY(abs_offset < 0 ||
1397                (uint32_t) abs_offset >= code_item_accessor_.InsnsSizeInCodeUnits()  ||
1398                !GetInstructionFlags(abs_offset).IsOpcode())) {
1399     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1400                                       << reinterpret_cast<void*>(abs_offset) << ") at "
1401                                       << reinterpret_cast<void*>(cur_offset);
1402     return false;
1403   }
1404   GetModifiableInstructionFlags(abs_offset).SetBranchTarget();
1405   return true;
1406 }
1407 
1408 template <bool kVerifierDebug>
GetBranchOffset(uint32_t cur_offset,int32_t * pOffset,bool * pConditional,bool * selfOkay)1409 bool MethodVerifier<kVerifierDebug>::GetBranchOffset(uint32_t cur_offset,
1410                                                      int32_t* pOffset,
1411                                                      bool* pConditional,
1412                                                      bool* selfOkay) {
1413   const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1414   *pConditional = false;
1415   *selfOkay = false;
1416   switch (*insns & 0xff) {
1417     case Instruction::GOTO:
1418       *pOffset = ((int16_t) *insns) >> 8;
1419       break;
1420     case Instruction::GOTO_32:
1421       *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1422       *selfOkay = true;
1423       break;
1424     case Instruction::GOTO_16:
1425       *pOffset = (int16_t) insns[1];
1426       break;
1427     case Instruction::IF_EQ:
1428     case Instruction::IF_NE:
1429     case Instruction::IF_LT:
1430     case Instruction::IF_GE:
1431     case Instruction::IF_GT:
1432     case Instruction::IF_LE:
1433     case Instruction::IF_EQZ:
1434     case Instruction::IF_NEZ:
1435     case Instruction::IF_LTZ:
1436     case Instruction::IF_GEZ:
1437     case Instruction::IF_GTZ:
1438     case Instruction::IF_LEZ:
1439       *pOffset = (int16_t) insns[1];
1440       *pConditional = true;
1441       break;
1442     default:
1443       return false;
1444   }
1445   return true;
1446 }
1447 
1448 template <bool kVerifierDebug>
CheckSwitchTargets(uint32_t cur_offset)1449 bool MethodVerifier<kVerifierDebug>::CheckSwitchTargets(uint32_t cur_offset) {
1450   const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
1451   DCHECK_LT(cur_offset, insn_count);
1452   const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1453   /* make sure the start of the switch is in range */
1454   int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1455   if (UNLIKELY(static_cast<int32_t>(cur_offset) + switch_offset < 0 ||
1456                cur_offset + switch_offset + 2 > insn_count)) {
1457     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1458                                       << ", switch offset " << switch_offset
1459                                       << ", count " << insn_count;
1460     return false;
1461   }
1462   /* offset to switch table is a relative branch-style offset */
1463   const uint16_t* switch_insns = insns + switch_offset;
1464   // Make sure the table is at an even dex pc, that is, 32-bit aligned.
1465   if (UNLIKELY(!IsAligned<4>(switch_insns))) {
1466     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1467                                       << ", switch offset " << switch_offset;
1468     return false;
1469   }
1470   // Make sure the switch data is marked as an opcode. This ensures that it was reached when
1471   // traversing the code item linearly. It is an approximation for a by-spec padding value.
1472   if (UNLIKELY(!GetInstructionFlags(cur_offset + switch_offset).IsOpcode())) {
1473     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "switch table at " << cur_offset
1474                                       << ", switch offset " << switch_offset
1475                                       << " not correctly visited, probably bad padding.";
1476     return false;
1477   }
1478 
1479   bool is_packed_switch = (*insns & 0xff) == Instruction::PACKED_SWITCH;
1480 
1481   uint32_t switch_count = switch_insns[1];
1482   int32_t targets_offset;
1483   uint16_t expected_signature;
1484   if (is_packed_switch) {
1485     /* 0=sig, 1=count, 2/3=firstKey */
1486     targets_offset = 4;
1487     expected_signature = Instruction::kPackedSwitchSignature;
1488   } else {
1489     /* 0=sig, 1=count, 2..count*2 = keys */
1490     targets_offset = 2 + 2 * switch_count;
1491     expected_signature = Instruction::kSparseSwitchSignature;
1492   }
1493   uint32_t table_size = targets_offset + switch_count * 2;
1494   if (UNLIKELY(switch_insns[0] != expected_signature)) {
1495     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1496         << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1497                         switch_insns[0], expected_signature);
1498     return false;
1499   }
1500   /* make sure the end of the switch is in range */
1501   if (UNLIKELY(cur_offset + switch_offset + table_size > (uint32_t) insn_count)) {
1502     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1503                                       << ", switch offset " << switch_offset
1504                                       << ", end " << (cur_offset + switch_offset + table_size)
1505                                       << ", count " << insn_count;
1506     return false;
1507   }
1508 
1509   constexpr int32_t keys_offset = 2;
1510   if (switch_count > 1) {
1511     if (is_packed_switch) {
1512       /* for a packed switch, verify that keys do not overflow int32 */
1513       int32_t first_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1514       int32_t max_first_key =
1515           std::numeric_limits<int32_t>::max() - (static_cast<int32_t>(switch_count) - 1);
1516       if (UNLIKELY(first_key > max_first_key)) {
1517         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: first_key=" << first_key
1518                                           << ", switch_count=" << switch_count;
1519         return false;
1520       }
1521     } else {
1522       /* for a sparse switch, verify the keys are in ascending order */
1523       int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1524       for (uint32_t targ = 1; targ < switch_count; targ++) {
1525         int32_t key =
1526             static_cast<int32_t>(switch_insns[keys_offset + targ * 2]) |
1527             static_cast<int32_t>(switch_insns[keys_offset + targ * 2 + 1] << 16);
1528         if (UNLIKELY(key <= last_key)) {
1529           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid sparse switch: last key=" << last_key
1530                                             << ", this=" << key;
1531           return false;
1532         }
1533         last_key = key;
1534       }
1535     }
1536   }
1537   /* verify each switch target */
1538   for (uint32_t targ = 0; targ < switch_count; targ++) {
1539     int32_t offset = static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) |
1540                      static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16);
1541     int32_t abs_offset = cur_offset + offset;
1542     if (UNLIKELY(abs_offset < 0 ||
1543                  abs_offset >= static_cast<int32_t>(insn_count) ||
1544                  !GetInstructionFlags(abs_offset).IsOpcode())) {
1545       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1546                                         << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1547                                         << reinterpret_cast<void*>(cur_offset)
1548                                         << "[" << targ << "]";
1549       return false;
1550     }
1551     GetModifiableInstructionFlags(abs_offset).SetBranchTarget();
1552   }
1553   return true;
1554 }
1555 
1556 template <bool kVerifierDebug>
VerifyCodeFlow()1557 bool MethodVerifier<kVerifierDebug>::VerifyCodeFlow() {
1558   const uint16_t registers_size = code_item_accessor_.RegistersSize();
1559 
1560   /* Create and initialize table holding register status */
1561   reg_table_.Init(insn_flags_.get(),
1562                   code_item_accessor_.InsnsSizeInCodeUnits(),
1563                   registers_size,
1564                   allocator_,
1565                   GetRegTypeCache(),
1566                   interesting_dex_pc_);
1567 
1568   work_line_.reset(RegisterLine::Create(registers_size, allocator_, GetRegTypeCache()));
1569   saved_line_.reset(RegisterLine::Create(registers_size, allocator_, GetRegTypeCache()));
1570 
1571   /* Initialize register types of method arguments. */
1572   if (!SetTypesFromSignature()) {
1573     DCHECK_NE(failures_.size(), 0U);
1574     std::string prepend("Bad signature in ");
1575     prepend += dex_file_->PrettyMethod(dex_method_idx_);
1576     PrependToLastFailMessage(prepend);
1577     return false;
1578   }
1579   // We may have a runtime failure here, clear.
1580   flags_.have_pending_runtime_throw_failure_ = false;
1581 
1582   /* Perform code flow verification. */
1583   bool res = LIKELY(monitor_enter_dex_pcs_ == nullptr)
1584                  ? CodeFlowVerifyMethod</*kMonitorDexPCs=*/ false>()
1585                  : CodeFlowVerifyMethod</*kMonitorDexPCs=*/ true>();
1586   if (UNLIKELY(!res)) {
1587     DCHECK_NE(failures_.size(), 0U);
1588     return false;
1589   }
1590   return true;
1591 }
1592 
1593 template <bool kVerifierDebug>
Dump(VariableIndentationOutputStream * vios)1594 void MethodVerifier<kVerifierDebug>::Dump(VariableIndentationOutputStream* vios) {
1595   if (!code_item_accessor_.HasCodeItem()) {
1596     vios->Stream() << "Native method\n";
1597     return;
1598   }
1599   {
1600     vios->Stream() << "Register Types:\n";
1601     ScopedIndentation indent1(vios);
1602     reg_types_.Dump(vios->Stream());
1603   }
1604   vios->Stream() << "Dumping instructions and register lines:\n";
1605   ScopedIndentation indent1(vios);
1606 
1607   for (const DexInstructionPcPair& inst : code_item_accessor_) {
1608     const size_t dex_pc = inst.DexPc();
1609 
1610     // Might be asked to dump before the table is initialized.
1611     if (reg_table_.IsInitialized()) {
1612       RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1613       if (reg_line != nullptr) {
1614         vios->Stream() << reg_line->Dump(this) << "\n";
1615       }
1616     }
1617 
1618     vios->Stream()
1619         << StringPrintf("0x%04zx", dex_pc) << ": " << GetInstructionFlags(dex_pc).ToString() << " ";
1620     const bool kDumpHexOfInstruction = false;
1621     if (kDumpHexOfInstruction) {
1622       vios->Stream() << inst->DumpHex(5) << " ";
1623     }
1624     vios->Stream() << inst->DumpString(dex_file_) << "\n";
1625   }
1626 }
1627 
IsPrimitiveDescriptor(char descriptor)1628 static bool IsPrimitiveDescriptor(char descriptor) {
1629   switch (descriptor) {
1630     case 'I':
1631     case 'C':
1632     case 'S':
1633     case 'B':
1634     case 'Z':
1635     case 'F':
1636     case 'D':
1637     case 'J':
1638       return true;
1639     default:
1640       return false;
1641   }
1642 }
1643 
1644 template <bool kVerifierDebug>
SetTypesFromSignature()1645 bool MethodVerifier<kVerifierDebug>::SetTypesFromSignature() {
1646   RegisterLine* reg_line = reg_table_.GetLine(0);
1647 
1648   // Should have been verified earlier.
1649   DCHECK_GE(code_item_accessor_.RegistersSize(), code_item_accessor_.InsSize());
1650 
1651   uint32_t arg_start = code_item_accessor_.RegistersSize() - code_item_accessor_.InsSize();
1652   size_t expected_args = code_item_accessor_.InsSize();   /* long/double count as two */
1653 
1654   // Include the "this" pointer.
1655   size_t cur_arg = 0;
1656   if (!IsStatic()) {
1657     if (expected_args == 0) {
1658       // Expect at least a receiver.
1659       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
1660       return false;
1661     }
1662 
1663     // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1664     // argument as uninitialized. This restricts field access until the superclass constructor is
1665     // called.
1666     const RegType& declaring_class = GetDeclaringClass();
1667     if (IsConstructor()) {
1668       if (declaring_class.IsJavaLangObject()) {
1669         // "this" is implicitly initialized.
1670         reg_line->SetThisInitialized();
1671         reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, declaring_class);
1672       } else {
1673         reg_line->SetRegisterType<LockOp::kClear>(
1674             arg_start + cur_arg,
1675             reg_types_.UninitializedThisArgument(declaring_class));
1676       }
1677     } else {
1678       reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, declaring_class);
1679     }
1680     cur_arg++;
1681   }
1682 
1683   const dex::ProtoId& proto_id =
1684       dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1685   DexFileParameterIterator iterator(*dex_file_, proto_id);
1686 
1687   for (; iterator.HasNext(); iterator.Next()) {
1688     const char* descriptor = iterator.GetDescriptor();
1689     if (descriptor == nullptr) {
1690       LOG(FATAL) << "Null descriptor";
1691     }
1692     if (cur_arg >= expected_args) {
1693       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1694                                         << " args, found more (" << descriptor << ")";
1695       return false;
1696     }
1697     switch (descriptor[0]) {
1698       case 'L':
1699       case '[':
1700         // We assume that reference arguments are initialized. The only way it could be otherwise
1701         // (assuming the caller was verified) is if the current method is <init>, but in that case
1702         // it's effectively considered initialized the instant we reach here (in the sense that we
1703         // can return without doing anything or call virtual methods).
1704         {
1705           // Note: don't check access. No error would be thrown for declaring or passing an
1706           //       inaccessible class. Only actual accesses to fields or methods will.
1707           const RegType& reg_type = ResolveClass<CheckAccess::kNo>(iterator.GetTypeIdx());
1708           if (!reg_type.IsNonZeroReferenceTypes()) {
1709             DCHECK(HasFailures());
1710             return false;
1711           }
1712           reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_type);
1713         }
1714         break;
1715       case 'Z':
1716         reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Boolean());
1717         break;
1718       case 'C':
1719         reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Char());
1720         break;
1721       case 'B':
1722         reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Byte());
1723         break;
1724       case 'I':
1725         reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Integer());
1726         break;
1727       case 'S':
1728         reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Short());
1729         break;
1730       case 'F':
1731         reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Float());
1732         break;
1733       case 'J':
1734       case 'D': {
1735         if (cur_arg + 1 >= expected_args) {
1736           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1737               << " args, found more (" << descriptor << ")";
1738           return false;
1739         }
1740 
1741         const RegType* lo_half;
1742         const RegType* hi_half;
1743         if (descriptor[0] == 'J') {
1744           lo_half = &reg_types_.LongLo();
1745           hi_half = &reg_types_.LongHi();
1746         } else {
1747           lo_half = &reg_types_.DoubleLo();
1748           hi_half = &reg_types_.DoubleHi();
1749         }
1750         reg_line->SetRegisterTypeWide(arg_start + cur_arg, *lo_half, *hi_half);
1751         cur_arg++;
1752         break;
1753       }
1754       default:
1755         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1756                                           << descriptor << "'";
1757         return false;
1758     }
1759     cur_arg++;
1760   }
1761   if (cur_arg != expected_args) {
1762     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1763                                       << " arguments, found " << cur_arg;
1764     return false;
1765   }
1766   const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1767   // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1768   // format. Only major difference from the method argument format is that 'V' is supported.
1769   bool result;
1770   if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1771     result = descriptor[1] == '\0';
1772   } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1773     size_t i = 0;
1774     do {
1775       i++;
1776     } while (descriptor[i] == '[');  // process leading [
1777     if (descriptor[i] == 'L') {  // object array
1778       do {
1779         i++;  // find closing ;
1780       } while (descriptor[i] != ';' && descriptor[i] != '\0');
1781       result = descriptor[i] == ';';
1782     } else {  // primitive array
1783       result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1784     }
1785   } else if (descriptor[0] == 'L') {
1786     // could be more thorough here, but shouldn't be required
1787     size_t i = 0;
1788     do {
1789       i++;
1790     } while (descriptor[i] != ';' && descriptor[i] != '\0');
1791     result = descriptor[i] == ';';
1792   } else {
1793     result = false;
1794   }
1795   if (!result) {
1796     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1797                                       << descriptor << "'";
1798   }
1799   return result;
1800 }
1801 
1802 COLD_ATTR
HandleMonitorDexPcsWorkLine(std::vector<::art::verifier::MethodVerifier::DexLockInfo> * monitor_enter_dex_pcs,RegisterLine * work_line)1803 void HandleMonitorDexPcsWorkLine(
1804     std::vector<::art::verifier::MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs,
1805     RegisterLine* work_line) {
1806   monitor_enter_dex_pcs->clear();  // The new work line is more accurate than the previous one.
1807 
1808   std::map<uint32_t, ::art::verifier::MethodVerifier::DexLockInfo> depth_to_lock_info;
1809   auto collector = [&](uint32_t dex_reg, uint32_t depth) {
1810     auto insert_pair = depth_to_lock_info.emplace(
1811         depth, ::art::verifier::MethodVerifier::DexLockInfo(depth));
1812     auto it = insert_pair.first;
1813     auto set_insert_pair = it->second.dex_registers.insert(dex_reg);
1814     DCHECK(set_insert_pair.second);
1815   };
1816   work_line->IterateRegToLockDepths(collector);
1817   for (auto& pair : depth_to_lock_info) {
1818     monitor_enter_dex_pcs->push_back(pair.second);
1819     // Map depth to dex PC.
1820     monitor_enter_dex_pcs->back().dex_pc = work_line->GetMonitorEnterDexPc(pair.second.dex_pc);
1821   }
1822 }
1823 
1824 template <bool kVerifierDebug>
1825 template <bool kMonitorDexPCs>
CodeFlowVerifyMethod()1826 bool MethodVerifier<kVerifierDebug>::CodeFlowVerifyMethod() {
1827   const uint16_t* insns = code_item_accessor_.Insns();
1828   const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1829 
1830   /* Begin by marking the first instruction as "changed". */
1831   GetModifiableInstructionFlags(0).SetChanged();
1832   uint32_t start_guess = 0;
1833 
1834   /* Continue until no instructions are marked "changed". */
1835   while (true) {
1836     if (allow_thread_suspension_) {
1837       self_->AllowThreadSuspension();
1838     }
1839     // Find the first marked one. Use "start_guess" as a way to find one quickly.
1840     uint32_t insn_idx = start_guess;
1841     for (; insn_idx < insns_size; insn_idx++) {
1842       if (GetInstructionFlags(insn_idx).IsChanged())
1843         break;
1844     }
1845     if (insn_idx == insns_size) {
1846       if (start_guess != 0) {
1847         /* try again, starting from the top */
1848         start_guess = 0;
1849         continue;
1850       } else {
1851         /* all flags are clear */
1852         break;
1853       }
1854     }
1855     // We carry the working set of registers from instruction to instruction. If this address can
1856     // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1857     // "changed" flags, we need to load the set of registers from the table.
1858     // Because we always prefer to continue on to the next instruction, we should never have a
1859     // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1860     // target.
1861     work_insn_idx_ = insn_idx;
1862     if (GetInstructionFlags(insn_idx).IsBranchTarget()) {
1863       work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1864     } else if (kIsDebugBuild) {
1865       /*
1866        * Consistency check: retrieve the stored register line (assuming
1867        * a full table) and make sure it actually matches.
1868        */
1869       RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1870       if (register_line != nullptr) {
1871         if (work_line_->CompareLine(register_line) != 0) {
1872           Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
1873           LOG(FATAL_WITHOUT_ABORT) << info_messages_.str();
1874           LOG(FATAL) << "work_line diverged in " << dex_file_->PrettyMethod(dex_method_idx_)
1875                      << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1876                      << " work_line=" << work_line_->Dump(this) << "\n"
1877                      << "  expected=" << register_line->Dump(this);
1878         }
1879       }
1880     }
1881 
1882     // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1883     // We want the state _before_ the instruction, for the case where the dex pc we're
1884     // interested in is itself a monitor-enter instruction (which is a likely place
1885     // for a thread to be suspended).
1886     if (kMonitorDexPCs && UNLIKELY(work_insn_idx_ == interesting_dex_pc_)) {
1887       HandleMonitorDexPcsWorkLine(monitor_enter_dex_pcs_, work_line_.get());
1888     }
1889 
1890     if (!CodeFlowVerifyInstruction(&start_guess)) {
1891       std::string prepend(dex_file_->PrettyMethod(dex_method_idx_));
1892       prepend += " failed to verify: ";
1893       PrependToLastFailMessage(prepend);
1894       return false;
1895     }
1896     /* Clear "changed" and mark as visited. */
1897     GetModifiableInstructionFlags(insn_idx).SetVisited();
1898     GetModifiableInstructionFlags(insn_idx).ClearChanged();
1899   }
1900 
1901   if (kVerifierDebug) {
1902     /*
1903      * Scan for dead code. There's nothing "evil" about dead code
1904      * (besides the wasted space), but it indicates a flaw somewhere
1905      * down the line, possibly in the verifier.
1906      *
1907      * If we've substituted "always throw" instructions into the stream,
1908      * we are almost certainly going to have some dead code.
1909      */
1910     int dead_start = -1;
1911 
1912     for (const DexInstructionPcPair& inst : code_item_accessor_) {
1913       const uint32_t insn_idx = inst.DexPc();
1914       /*
1915        * Switch-statement data doesn't get "visited" by scanner. It
1916        * may or may not be preceded by a padding NOP (for alignment).
1917        */
1918       if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1919           insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1920           insns[insn_idx] == Instruction::kArrayDataSignature ||
1921           (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1922            (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1923             insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1924             insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1925         GetModifiableInstructionFlags(insn_idx).SetVisited();
1926       }
1927 
1928       if (!GetInstructionFlags(insn_idx).IsVisited()) {
1929         if (dead_start < 0) {
1930           dead_start = insn_idx;
1931         }
1932       } else if (dead_start >= 0) {
1933         LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1934                         << "-" << reinterpret_cast<void*>(insn_idx - 1);
1935         dead_start = -1;
1936       }
1937     }
1938     if (dead_start >= 0) {
1939       LogVerifyInfo()
1940           << "dead code " << reinterpret_cast<void*>(dead_start)
1941           << "-" << reinterpret_cast<void*>(code_item_accessor_.InsnsSizeInCodeUnits() - 1);
1942     }
1943     // To dump the state of the verify after a method, do something like:
1944     // if (dex_file_->PrettyMethod(dex_method_idx_) ==
1945     //     "boolean java.lang.String.equals(java.lang.Object)") {
1946     //   LOG(INFO) << info_messages_.str();
1947     // }
1948   }
1949   return true;
1950 }
1951 
1952 // Setup a register line for the given return instruction.
1953 template <bool kVerifierDebug>
AdjustReturnLine(MethodVerifier<kVerifierDebug> * verifier,const Instruction * ret_inst,RegisterLine * line)1954 static void AdjustReturnLine(MethodVerifier<kVerifierDebug>* verifier,
1955                              const Instruction* ret_inst,
1956                              RegisterLine* line) {
1957   Instruction::Code opcode = ret_inst->Opcode();
1958 
1959   switch (opcode) {
1960     case Instruction::RETURN_VOID:
1961       if (verifier->IsInstanceConstructor()) {
1962         // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
1963         line->CheckConstructorReturn(verifier);
1964       }
1965       line->MarkAllRegistersAsConflicts(verifier);
1966       break;
1967 
1968     case Instruction::RETURN:
1969     case Instruction::RETURN_OBJECT:
1970       line->MarkAllRegistersAsConflictsExcept(verifier, ret_inst->VRegA_11x());
1971       break;
1972 
1973     case Instruction::RETURN_WIDE:
1974       line->MarkAllRegistersAsConflictsExceptWide(verifier, ret_inst->VRegA_11x());
1975       break;
1976 
1977     default:
1978       LOG(FATAL) << "Unknown return opcode " << opcode;
1979       UNREACHABLE();
1980   }
1981 }
1982 
1983 template <bool kVerifierDebug>
CodeFlowVerifyInstruction(uint32_t * start_guess)1984 bool MethodVerifier<kVerifierDebug>::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1985   /*
1986    * Once we finish decoding the instruction, we need to figure out where
1987    * we can go from here. There are three possible ways to transfer
1988    * control to another statement:
1989    *
1990    * (1) Continue to the next instruction. Applies to all but
1991    *     unconditional branches, method returns, and exception throws.
1992    * (2) Branch to one or more possible locations. Applies to branches
1993    *     and switch statements.
1994    * (3) Exception handlers. Applies to any instruction that can
1995    *     throw an exception that is handled by an encompassing "try"
1996    *     block.
1997    *
1998    * We can also return, in which case there is no successor instruction
1999    * from this point.
2000    *
2001    * The behavior can be determined from the opcode flags.
2002    */
2003   const uint16_t* insns = code_item_accessor_.Insns() + work_insn_idx_;
2004   const Instruction* inst = Instruction::At(insns);
2005   int opcode_flags = Instruction::FlagsOf(inst->Opcode());
2006 
2007   int32_t branch_target = 0;
2008   bool just_set_result = false;
2009   if (kVerifierDebug) {
2010     // Generate processing back trace to debug verifier
2011     LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << std::endl
2012                     << work_line_->Dump(this);
2013   }
2014 
2015   /*
2016    * Make a copy of the previous register state. If the instruction
2017    * can throw an exception, we will copy/merge this into the "catch"
2018    * address rather than work_line, because we don't want the result
2019    * from the "successful" code path (e.g. a check-cast that "improves"
2020    * a type) to be visible to the exception handler.
2021    */
2022   if (((opcode_flags & Instruction::kThrow) != 0 || IsCompatThrow(inst->Opcode())) &&
2023       CurrentInsnFlags()->IsInTry()) {
2024     saved_line_->CopyFromLine(work_line_.get());
2025   } else if (kIsDebugBuild) {
2026     saved_line_->FillWithGarbage();
2027   }
2028   // Per-instruction flag, should not be set here.
2029   DCHECK(!flags_.have_pending_runtime_throw_failure_);
2030   bool exc_handler_unreachable = false;
2031 
2032 
2033   // We need to ensure the work line is consistent while performing validation. When we spot a
2034   // peephole pattern we compute a new line for either the fallthrough instruction or the
2035   // branch target.
2036   RegisterLineArenaUniquePtr branch_line;
2037   RegisterLineArenaUniquePtr fallthrough_line;
2038 
2039   switch (inst->Opcode()) {
2040     case Instruction::NOP:
2041       /*
2042        * A "pure" NOP has no effect on anything. Data tables start with
2043        * a signature that looks like a NOP; if we see one of these in
2044        * the course of executing code then we have a problem.
2045        */
2046       if (inst->VRegA_10x() != 0) {
2047         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
2048       }
2049       break;
2050 
2051     case Instruction::MOVE:
2052       work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
2053       break;
2054     case Instruction::MOVE_FROM16:
2055       work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
2056       break;
2057     case Instruction::MOVE_16:
2058       work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
2059       break;
2060     case Instruction::MOVE_WIDE:
2061       work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
2062       break;
2063     case Instruction::MOVE_WIDE_FROM16:
2064       work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
2065       break;
2066     case Instruction::MOVE_WIDE_16:
2067       work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
2068       break;
2069     case Instruction::MOVE_OBJECT:
2070       work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
2071       break;
2072     case Instruction::MOVE_OBJECT_FROM16:
2073       work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
2074       break;
2075     case Instruction::MOVE_OBJECT_16:
2076       work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
2077       break;
2078 
2079     /*
2080      * The move-result instructions copy data out of a "pseudo-register"
2081      * with the results from the last method invocation. In practice we
2082      * might want to hold the result in an actual CPU register, so the
2083      * Dalvik spec requires that these only appear immediately after an
2084      * invoke or filled-new-array.
2085      *
2086      * These calls invalidate the "result" register. (This is now
2087      * redundant with the reset done below, but it can make the debug info
2088      * easier to read in some cases.)
2089      */
2090     case Instruction::MOVE_RESULT:
2091       work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
2092       break;
2093     case Instruction::MOVE_RESULT_WIDE:
2094       work_line_->CopyResultRegister2(this, inst->VRegA_11x());
2095       break;
2096     case Instruction::MOVE_RESULT_OBJECT:
2097       work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
2098       break;
2099 
2100     case Instruction::MOVE_EXCEPTION:
2101       if (!HandleMoveException(inst)) {
2102         exc_handler_unreachable = true;
2103       }
2104       break;
2105 
2106     case Instruction::RETURN_VOID:
2107       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2108         if (!GetMethodReturnType().IsConflict()) {
2109           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
2110         }
2111       }
2112       break;
2113     case Instruction::RETURN:
2114       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2115         /* check the method signature */
2116         const RegType& return_type = GetMethodReturnType();
2117         if (!return_type.IsCategory1Types()) {
2118           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
2119                                             << return_type;
2120         } else {
2121           // Compilers may generate synthetic functions that write byte values into boolean fields.
2122           // Also, it may use integer values for boolean, byte, short, and character return types.
2123           const uint32_t vregA = inst->VRegA_11x();
2124           const RegType& src_type = work_line_->GetRegisterType(this, vregA);
2125           bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
2126                           ((return_type.IsBoolean() || return_type.IsByte() ||
2127                            return_type.IsShort() || return_type.IsChar()) &&
2128                            src_type.IsInteger()));
2129           /* check the register contents */
2130           bool success =
2131               work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
2132           if (!success) {
2133             AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
2134           }
2135         }
2136       }
2137       break;
2138     case Instruction::RETURN_WIDE:
2139       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2140         /* check the method signature */
2141         const RegType& return_type = GetMethodReturnType();
2142         if (!return_type.IsCategory2Types()) {
2143           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
2144         } else {
2145           /* check the register contents */
2146           const uint32_t vregA = inst->VRegA_11x();
2147           bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
2148           if (!success) {
2149             AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
2150           }
2151         }
2152       }
2153       break;
2154     case Instruction::RETURN_OBJECT:
2155       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2156         const RegType& return_type = GetMethodReturnType();
2157         if (!return_type.IsReferenceTypes()) {
2158           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
2159         } else {
2160           /* return_type is the *expected* return type, not register value */
2161           DCHECK(!return_type.IsZeroOrNull());
2162           DCHECK(!return_type.IsUninitializedReference());
2163           const uint32_t vregA = inst->VRegA_11x();
2164           const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
2165           // Disallow returning undefined, conflict & uninitialized values and verify that the
2166           // reference in vAA is an instance of the "return_type."
2167           if (reg_type.IsUndefined()) {
2168             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning undefined register";
2169           } else if (reg_type.IsConflict()) {
2170             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning register with conflict";
2171           } else if (reg_type.IsUninitializedTypes()) {
2172             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning uninitialized object '"
2173                                               << reg_type << "'";
2174           } else if (!reg_type.IsReferenceTypes()) {
2175             // We really do expect a reference here.
2176             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object returns a non-reference type "
2177                                               << reg_type;
2178           } else if (!return_type.IsAssignableFrom(reg_type, this)) {
2179             if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
2180               Fail(VERIFY_ERROR_UNRESOLVED_TYPE_CHECK)
2181                   << " can't resolve returned type '" << return_type << "' or '" << reg_type << "'";
2182             } else {
2183               Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
2184                   << "', but expected from declaration '" << return_type << "'";
2185             }
2186           }
2187         }
2188       }
2189       break;
2190 
2191       /* could be boolean, int, float, or a null reference */
2192     case Instruction::CONST_4: {
2193       int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
2194       work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_11n(), DetermineCat1Constant(val));
2195       break;
2196     }
2197     case Instruction::CONST_16: {
2198       int16_t val = static_cast<int16_t>(inst->VRegB_21s());
2199       work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_21s(), DetermineCat1Constant(val));
2200       break;
2201     }
2202     case Instruction::CONST: {
2203       int32_t val = inst->VRegB_31i();
2204       work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_31i(), DetermineCat1Constant(val));
2205       break;
2206     }
2207     case Instruction::CONST_HIGH16: {
2208       int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
2209       work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_21h(), DetermineCat1Constant(val));
2210       break;
2211     }
2212       /* could be long or double; resolved upon use */
2213     case Instruction::CONST_WIDE_16: {
2214       int64_t val = static_cast<int16_t>(inst->VRegB_21s());
2215       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2216       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2217       work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
2218       break;
2219     }
2220     case Instruction::CONST_WIDE_32: {
2221       int64_t val = static_cast<int32_t>(inst->VRegB_31i());
2222       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2223       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2224       work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
2225       break;
2226     }
2227     case Instruction::CONST_WIDE: {
2228       int64_t val = inst->VRegB_51l();
2229       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2230       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2231       work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
2232       break;
2233     }
2234     case Instruction::CONST_WIDE_HIGH16: {
2235       int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
2236       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2237       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2238       work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
2239       break;
2240     }
2241     case Instruction::CONST_STRING:
2242       work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_21c(), reg_types_.JavaLangString());
2243       break;
2244     case Instruction::CONST_STRING_JUMBO:
2245       work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_31c(), reg_types_.JavaLangString());
2246       break;
2247     case Instruction::CONST_CLASS: {
2248       // Get type from instruction if unresolved then we need an access check
2249       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2250       const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
2251       // Register holds class, ie its type is class, on error it will hold Conflict.
2252       work_line_->SetRegisterType<LockOp::kClear>(
2253           inst->VRegA_21c(),
2254           res_type.IsConflict() ? res_type : reg_types_.JavaLangClass());
2255       break;
2256     }
2257     case Instruction::CONST_METHOD_HANDLE:
2258       work_line_->SetRegisterType<LockOp::kClear>(
2259           inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodHandle());
2260       break;
2261     case Instruction::CONST_METHOD_TYPE:
2262       work_line_->SetRegisterType<LockOp::kClear>(
2263           inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodType());
2264       break;
2265     case Instruction::MONITOR_ENTER:
2266       work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
2267       // Check whether the previous instruction is a move-object with vAA as a source, creating
2268       // untracked lock aliasing.
2269       if (0 != work_insn_idx_ && !GetInstructionFlags(work_insn_idx_).IsBranchTarget()) {
2270         uint32_t prev_idx = work_insn_idx_ - 1;
2271         while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
2272           prev_idx--;
2273         }
2274         const Instruction& prev_inst = code_item_accessor_.InstructionAt(prev_idx);
2275         switch (prev_inst.Opcode()) {
2276           case Instruction::MOVE_OBJECT:
2277           case Instruction::MOVE_OBJECT_16:
2278           case Instruction::MOVE_OBJECT_FROM16:
2279             if (prev_inst.VRegB() == inst->VRegA_11x()) {
2280               // Redo the copy. This won't change the register types, but update the lock status
2281               // for the aliased register.
2282               work_line_->CopyRegister1(this,
2283                                         prev_inst.VRegA(),
2284                                         prev_inst.VRegB(),
2285                                         kTypeCategoryRef);
2286             }
2287             break;
2288 
2289           // Catch a case of register aliasing when two registers are linked to the same
2290           // java.lang.Class object via two consequent const-class instructions immediately
2291           // preceding monitor-enter called on one of those registers.
2292           case Instruction::CONST_CLASS: {
2293             // Get the second previous instruction.
2294             if (prev_idx == 0 || GetInstructionFlags(prev_idx).IsBranchTarget()) {
2295               break;
2296             }
2297             prev_idx--;
2298             while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
2299               prev_idx--;
2300             }
2301             const Instruction& prev2_inst = code_item_accessor_.InstructionAt(prev_idx);
2302 
2303             // Match the pattern "const-class; const-class; monitor-enter;"
2304             if (prev2_inst.Opcode() != Instruction::CONST_CLASS) {
2305               break;
2306             }
2307 
2308             // Ensure both const-classes are called for the same type_idx.
2309             if (prev_inst.VRegB_21c() != prev2_inst.VRegB_21c()) {
2310               break;
2311             }
2312 
2313             // Update the lock status for the aliased register.
2314             if (prev_inst.VRegA() == inst->VRegA_11x()) {
2315               work_line_->CopyRegister1(this,
2316                                         prev2_inst.VRegA(),
2317                                         inst->VRegA_11x(),
2318                                         kTypeCategoryRef);
2319             } else if (prev2_inst.VRegA() == inst->VRegA_11x()) {
2320               work_line_->CopyRegister1(this,
2321                                         prev_inst.VRegA(),
2322                                         inst->VRegA_11x(),
2323                                         kTypeCategoryRef);
2324             }
2325             break;
2326           }
2327 
2328           default:  // Other instruction types ignored.
2329             break;
2330         }
2331       }
2332       break;
2333     case Instruction::MONITOR_EXIT:
2334       /*
2335        * monitor-exit instructions are odd. They can throw exceptions,
2336        * but when they do they act as if they succeeded and the PC is
2337        * pointing to the following instruction. (This behavior goes back
2338        * to the need to handle asynchronous exceptions, a now-deprecated
2339        * feature that Dalvik doesn't support.)
2340        *
2341        * In practice we don't need to worry about this. The only
2342        * exceptions that can be thrown from monitor-exit are for a
2343        * null reference and -exit without a matching -enter. If the
2344        * structured locking checks are working, the former would have
2345        * failed on the -enter instruction, and the latter is impossible.
2346        *
2347        * This is fortunate, because issue 3221411 prevents us from
2348        * chasing the "can throw" path when monitor verification is
2349        * enabled. If we can fully verify the locking we can ignore
2350        * some catch blocks (which will show up as "dead" code when
2351        * we skip them here); if we can't, then the code path could be
2352        * "live" so we still need to check it.
2353        */
2354       opcode_flags &= ~Instruction::kThrow;
2355       work_line_->PopMonitor(this, inst->VRegA_11x());
2356       break;
2357     case Instruction::CHECK_CAST:
2358     case Instruction::INSTANCE_OF: {
2359       /*
2360        * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
2361        * could be a "upcast" -- not expected, so we don't try to address it.)
2362        *
2363        * If it fails, an exception is thrown, which we deal with later by ignoring the update to
2364        * dec_insn.vA when branching to a handler.
2365        */
2366       const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
2367       const dex::TypeIndex type_idx((is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c());
2368       const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
2369       if (res_type.IsConflict()) {
2370         // If this is a primitive type, fail HARD.
2371         ObjPtr<mirror::Class> klass = GetClassLinker()->LookupResolvedType(
2372             type_idx, dex_cache_.Get(), class_loader_.Get());
2373         if (klass != nullptr && klass->IsPrimitive()) {
2374           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
2375               << dex_file_->GetTypeDescriptorView(type_idx) << " in instanceof in "
2376               << GetDeclaringClass();
2377           break;
2378         }
2379 
2380         DCHECK_NE(failures_.size(), 0U);
2381         if (!is_checkcast) {
2382           work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_22c(), reg_types_.Boolean());
2383         }
2384         break;  // bad class
2385       }
2386       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2387       uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
2388       const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
2389       if (!res_type.IsNonZeroReferenceTypes()) {
2390         if (is_checkcast) {
2391           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
2392         } else {
2393           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
2394         }
2395       } else if (!orig_type.IsReferenceTypes()) {
2396         if (is_checkcast) {
2397           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
2398         } else {
2399           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
2400         }
2401       } else if (orig_type.IsUninitializedTypes()) {
2402         if (is_checkcast) {
2403           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on uninitialized reference in v"
2404                                             << orig_type_reg;
2405         } else {
2406           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on uninitialized reference in v"
2407                                             << orig_type_reg;
2408         }
2409       } else {
2410         if (is_checkcast) {
2411           work_line_->SetRegisterType<LockOp::kKeep>(inst->VRegA_21c(), res_type);
2412         } else {
2413           work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_22c(), reg_types_.Boolean());
2414         }
2415       }
2416       break;
2417     }
2418     case Instruction::ARRAY_LENGTH: {
2419       const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
2420       if (res_type.IsReferenceTypes()) {
2421         if (!res_type.IsArrayTypes() && !res_type.IsZeroOrNull()) {
2422           // ie not an array or null
2423           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
2424         } else {
2425           work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_12x(), reg_types_.Integer());
2426         }
2427       } else {
2428         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
2429       }
2430       break;
2431     }
2432     case Instruction::NEW_INSTANCE: {
2433       const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
2434       if (res_type.IsConflict()) {
2435         DCHECK_NE(failures_.size(), 0U);
2436         break;  // bad class
2437       }
2438       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2439       // can't create an instance of an interface or abstract class */
2440       if (!res_type.IsInstantiableTypes()) {
2441         Fail(VERIFY_ERROR_INSTANTIATION)
2442             << "new-instance on primitive, interface or abstract class" << res_type;
2443         // Soft failure so carry on to set register type.
2444       }
2445       const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
2446       // Any registers holding previous allocations from this address that have not yet been
2447       // initialized must be marked invalid.
2448       work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
2449       // add the new uninitialized reference to the register state
2450       work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_21c(), uninit_type);
2451       break;
2452     }
2453     case Instruction::NEW_ARRAY:
2454       VerifyNewArray(inst, false, false);
2455       break;
2456     case Instruction::FILLED_NEW_ARRAY:
2457       VerifyNewArray(inst, true, false);
2458       just_set_result = true;  // Filled new array sets result register
2459       break;
2460     case Instruction::FILLED_NEW_ARRAY_RANGE:
2461       VerifyNewArray(inst, true, true);
2462       just_set_result = true;  // Filled new array range sets result register
2463       break;
2464     case Instruction::CMPL_FLOAT:
2465     case Instruction::CMPG_FLOAT:
2466       if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
2467         break;
2468       }
2469       if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
2470         break;
2471       }
2472       work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), reg_types_.Integer());
2473       break;
2474     case Instruction::CMPL_DOUBLE:
2475     case Instruction::CMPG_DOUBLE:
2476       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
2477                                               reg_types_.DoubleHi())) {
2478         break;
2479       }
2480       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
2481                                               reg_types_.DoubleHi())) {
2482         break;
2483       }
2484       work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), reg_types_.Integer());
2485       break;
2486     case Instruction::CMP_LONG:
2487       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
2488                                               reg_types_.LongHi())) {
2489         break;
2490       }
2491       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
2492                                               reg_types_.LongHi())) {
2493         break;
2494       }
2495       work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), reg_types_.Integer());
2496       break;
2497     case Instruction::THROW: {
2498       const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
2499       if (!reg_types_.JavaLangThrowable().IsAssignableFrom(res_type, this)) {
2500         if (res_type.IsUninitializedTypes()) {
2501           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown exception not initialized";
2502         } else if (!res_type.IsReferenceTypes()) {
2503           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown value of non-reference type " << res_type;
2504         } else {
2505           Fail(res_type.IsUnresolvedTypes()
2506                   ? VERIFY_ERROR_UNRESOLVED_TYPE_CHECK : VERIFY_ERROR_BAD_CLASS_HARD)
2507                 << "thrown class " << res_type << " not instanceof Throwable";
2508         }
2509       }
2510       break;
2511     }
2512     case Instruction::GOTO:
2513     case Instruction::GOTO_16:
2514     case Instruction::GOTO_32:
2515       /* no effect on or use of registers */
2516       break;
2517 
2518     case Instruction::PACKED_SWITCH:
2519     case Instruction::SPARSE_SWITCH:
2520       /* verify that vAA is an integer, or can be converted to one */
2521       work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2522       break;
2523 
2524     case Instruction::FILL_ARRAY_DATA: {
2525       /* Similar to the verification done for APUT */
2526       const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2527       /* array_type can be null if the reg type is Zero */
2528       if (!array_type.IsZeroOrNull()) {
2529         if (!array_type.IsArrayTypes()) {
2530           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2531                                             << array_type;
2532         } else if (array_type.IsUnresolvedTypes()) {
2533           // If it's an unresolved array type, it must be non-primitive.
2534           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data for array of type "
2535                                             << array_type;
2536         } else {
2537           const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
2538           DCHECK(!component_type.IsConflict());
2539           if (component_type.IsNonZeroReferenceTypes()) {
2540             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2541                                               << component_type;
2542           } else {
2543             // Now verify if the element width in the table matches the element width declared in
2544             // the array
2545             const uint16_t* array_data =
2546                 insns + (insns[1] | (static_cast<int32_t>(insns[2]) << 16));
2547             if (array_data[0] != Instruction::kArrayDataSignature) {
2548               Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2549             } else {
2550               size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2551               // Since we don't compress the data in Dex, expect to see equal width of data stored
2552               // in the table and expected from the array class.
2553               if (array_data[1] != elem_width) {
2554                 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2555                                                   << " vs " << elem_width << ")";
2556               }
2557             }
2558           }
2559         }
2560       }
2561       break;
2562     }
2563     case Instruction::IF_EQ:
2564     case Instruction::IF_NE: {
2565       const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2566       const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2567       bool mismatch = false;
2568       if (reg_type1.IsZeroOrNull()) {  // zero then integral or reference expected
2569         mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2570       } else if (reg_type1.IsReferenceTypes()) {  // both references?
2571         mismatch = !reg_type2.IsReferenceTypes();
2572       } else {  // both integral?
2573         mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2574       }
2575       if (mismatch) {
2576         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2577                                           << reg_type2 << ") must both be references or integral";
2578       }
2579       break;
2580     }
2581     case Instruction::IF_LT:
2582     case Instruction::IF_GE:
2583     case Instruction::IF_GT:
2584     case Instruction::IF_LE: {
2585       const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2586       const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2587       if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2588         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2589                                           << reg_type2 << ") must be integral";
2590       }
2591       break;
2592     }
2593     case Instruction::IF_EQZ:
2594     case Instruction::IF_NEZ: {
2595       const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2596       if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2597         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2598                                           << " unexpected as arg to if-eqz/if-nez";
2599       }
2600 
2601       // Find previous instruction - its existence is a precondition to peephole optimization.
2602       if (UNLIKELY(0 == work_insn_idx_)) {
2603         break;
2604       }
2605       uint32_t instance_of_idx = work_insn_idx_ - 1;
2606       while (0 != instance_of_idx && !GetInstructionFlags(instance_of_idx).IsOpcode()) {
2607         instance_of_idx--;
2608       }
2609       // Dex index 0 must be an opcode.
2610       DCHECK(GetInstructionFlags(instance_of_idx).IsOpcode());
2611 
2612       const Instruction& instance_of_inst = code_item_accessor_.InstructionAt(instance_of_idx);
2613 
2614       /* Check for peep-hole pattern of:
2615        *    ...;
2616        *    instance-of vX, vY, T;
2617        *    ifXXX vX, label ;
2618        *    ...;
2619        * label:
2620        *    ...;
2621        * and sharpen the type of vY to be type T.
2622        * Note, this pattern can't be if:
2623        *  - if there are other branches to this branch,
2624        *  - when vX == vY.
2625        */
2626       if (!CurrentInsnFlags()->IsBranchTarget() &&
2627           (Instruction::INSTANCE_OF == instance_of_inst.Opcode()) &&
2628           (inst->VRegA_21t() == instance_of_inst.VRegA_22c()) &&
2629           (instance_of_inst.VRegA_22c() != instance_of_inst.VRegB_22c())) {
2630         // Check the type of the instance-of is different than that of registers type, as if they
2631         // are the same there is no work to be done here. Check that the conversion is not to or
2632         // from an unresolved type as type information is imprecise. If the instance-of is to an
2633         // interface then ignore the type information as interfaces can only be treated as Objects
2634         // and we don't want to disallow field and other operations on the object. If the value
2635         // being instance-of checked against is known null (zero) then allow the optimization as
2636         // we didn't have type information. If the merge of the instance-of type with the original
2637         // type is assignable to the original then allow optimization. This check is performed to
2638         // ensure that subsequent merges don't lose type information - such as becoming an
2639         // interface from a class that would lose information relevant to field checks.
2640         //
2641         // Note: do not do an access check. This may mark this with a runtime throw that actually
2642         //       happens at the instanceof, not the branch (and branches aren't flagged to throw).
2643         const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst.VRegB_22c());
2644         const RegType& cast_type = ResolveClass<CheckAccess::kNo>(
2645             dex::TypeIndex(instance_of_inst.VRegC_22c()));
2646 
2647         if (!orig_type.Equals(cast_type) &&
2648             !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2649             cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2650             !cast_type.GetClass()->IsInterface() &&
2651             !orig_type.IsZeroOrNull() &&
2652             orig_type.IsStrictlyAssignableFrom(
2653                 cast_type.Merge(orig_type, &reg_types_, this), this)) {
2654           RegisterLine* update_line = RegisterLine::Create(code_item_accessor_.RegistersSize(),
2655                                                            allocator_,
2656                                                            GetRegTypeCache());
2657           if (inst->Opcode() == Instruction::IF_EQZ) {
2658             fallthrough_line.reset(update_line);
2659           } else {
2660             branch_line.reset(update_line);
2661           }
2662           update_line->CopyFromLine(work_line_.get());
2663           update_line->SetRegisterType<LockOp::kKeep>(instance_of_inst.VRegB_22c(), cast_type);
2664           if (!GetInstructionFlags(instance_of_idx).IsBranchTarget() && 0 != instance_of_idx) {
2665             // See if instance-of was preceded by a move-object operation, common due to the small
2666             // register encoding space of instance-of, and propagate type information to the source
2667             // of the move-object.
2668             // Note: this is only valid if the move source was not clobbered.
2669             uint32_t move_idx = instance_of_idx - 1;
2670             while (0 != move_idx && !GetInstructionFlags(move_idx).IsOpcode()) {
2671               move_idx--;
2672             }
2673             DCHECK(GetInstructionFlags(move_idx).IsOpcode());
2674             auto maybe_update_fn = [&instance_of_inst, update_line, &cast_type](
2675                 uint16_t move_src,
2676                 uint16_t move_trg)
2677                 REQUIRES_SHARED(Locks::mutator_lock_) {
2678               if (move_trg == instance_of_inst.VRegB_22c() &&
2679                   move_src != instance_of_inst.VRegA_22c()) {
2680                 update_line->SetRegisterType<LockOp::kKeep>(move_src, cast_type);
2681               }
2682             };
2683             const Instruction& move_inst = code_item_accessor_.InstructionAt(move_idx);
2684             switch (move_inst.Opcode()) {
2685               case Instruction::MOVE_OBJECT:
2686                 maybe_update_fn(move_inst.VRegB_12x(), move_inst.VRegA_12x());
2687                 break;
2688               case Instruction::MOVE_OBJECT_FROM16:
2689                 maybe_update_fn(move_inst.VRegB_22x(), move_inst.VRegA_22x());
2690                 break;
2691               case Instruction::MOVE_OBJECT_16:
2692                 maybe_update_fn(move_inst.VRegB_32x(), move_inst.VRegA_32x());
2693                 break;
2694               default:
2695                 break;
2696             }
2697           }
2698         }
2699       }
2700 
2701       break;
2702     }
2703     case Instruction::IF_LTZ:
2704     case Instruction::IF_GEZ:
2705     case Instruction::IF_GTZ:
2706     case Instruction::IF_LEZ: {
2707       const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2708       if (!reg_type.IsIntegralTypes()) {
2709         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2710                                           << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2711       }
2712       break;
2713     }
2714     case Instruction::AGET_BOOLEAN:
2715       VerifyAGet(inst, reg_types_.Boolean(), true);
2716       break;
2717     case Instruction::AGET_BYTE:
2718       VerifyAGet(inst, reg_types_.Byte(), true);
2719       break;
2720     case Instruction::AGET_CHAR:
2721       VerifyAGet(inst, reg_types_.Char(), true);
2722       break;
2723     case Instruction::AGET_SHORT:
2724       VerifyAGet(inst, reg_types_.Short(), true);
2725       break;
2726     case Instruction::AGET:
2727       VerifyAGet(inst, reg_types_.Integer(), true);
2728       break;
2729     case Instruction::AGET_WIDE:
2730       VerifyAGet(inst, reg_types_.LongLo(), true);
2731       break;
2732     case Instruction::AGET_OBJECT:
2733       VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2734       break;
2735 
2736     case Instruction::APUT_BOOLEAN:
2737       VerifyAPut(inst, reg_types_.Boolean(), true);
2738       break;
2739     case Instruction::APUT_BYTE:
2740       VerifyAPut(inst, reg_types_.Byte(), true);
2741       break;
2742     case Instruction::APUT_CHAR:
2743       VerifyAPut(inst, reg_types_.Char(), true);
2744       break;
2745     case Instruction::APUT_SHORT:
2746       VerifyAPut(inst, reg_types_.Short(), true);
2747       break;
2748     case Instruction::APUT:
2749       VerifyAPut(inst, reg_types_.Integer(), true);
2750       break;
2751     case Instruction::APUT_WIDE:
2752       VerifyAPut(inst, reg_types_.LongLo(), true);
2753       break;
2754     case Instruction::APUT_OBJECT:
2755       VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2756       break;
2757 
2758     case Instruction::IGET_BOOLEAN:
2759       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2760       break;
2761     case Instruction::IGET_BYTE:
2762       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2763       break;
2764     case Instruction::IGET_CHAR:
2765       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2766       break;
2767     case Instruction::IGET_SHORT:
2768       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2769       break;
2770     case Instruction::IGET:
2771       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2772       break;
2773     case Instruction::IGET_WIDE:
2774       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2775       break;
2776     case Instruction::IGET_OBJECT:
2777       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2778                                                     false);
2779       break;
2780 
2781     case Instruction::IPUT_BOOLEAN:
2782       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2783       break;
2784     case Instruction::IPUT_BYTE:
2785       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2786       break;
2787     case Instruction::IPUT_CHAR:
2788       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2789       break;
2790     case Instruction::IPUT_SHORT:
2791       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2792       break;
2793     case Instruction::IPUT:
2794       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2795       break;
2796     case Instruction::IPUT_WIDE:
2797       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2798       break;
2799     case Instruction::IPUT_OBJECT:
2800       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2801                                                     false);
2802       break;
2803 
2804     case Instruction::SGET_BOOLEAN:
2805       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2806       break;
2807     case Instruction::SGET_BYTE:
2808       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2809       break;
2810     case Instruction::SGET_CHAR:
2811       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2812       break;
2813     case Instruction::SGET_SHORT:
2814       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2815       break;
2816     case Instruction::SGET:
2817       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2818       break;
2819     case Instruction::SGET_WIDE:
2820       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2821       break;
2822     case Instruction::SGET_OBJECT:
2823       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2824                                                     true);
2825       break;
2826 
2827     case Instruction::SPUT_BOOLEAN:
2828       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2829       break;
2830     case Instruction::SPUT_BYTE:
2831       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2832       break;
2833     case Instruction::SPUT_CHAR:
2834       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2835       break;
2836     case Instruction::SPUT_SHORT:
2837       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2838       break;
2839     case Instruction::SPUT:
2840       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2841       break;
2842     case Instruction::SPUT_WIDE:
2843       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2844       break;
2845     case Instruction::SPUT_OBJECT:
2846       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2847                                                     true);
2848       break;
2849 
2850     case Instruction::INVOKE_VIRTUAL:
2851     case Instruction::INVOKE_VIRTUAL_RANGE:
2852     case Instruction::INVOKE_SUPER:
2853     case Instruction::INVOKE_SUPER_RANGE: {
2854       bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2855                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2856       bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2857                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2858       MethodType type = is_super ? METHOD_SUPER : METHOD_VIRTUAL;
2859       ArtMethod* called_method = VerifyInvocationArgs(inst, type, is_range);
2860       const RegType* return_type = nullptr;
2861       if (called_method != nullptr) {
2862         ObjPtr<mirror::Class> return_type_class = CanLoadClasses()
2863             ? called_method->ResolveReturnType()
2864             : called_method->LookupResolvedReturnType();
2865         if (return_type_class != nullptr) {
2866           return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
2867                                    return_type_class,
2868                                    return_type_class->CannotBeAssignedFromOtherTypes());
2869         } else {
2870           DCHECK_IMPLIES(CanLoadClasses(), self_->IsExceptionPending());
2871           self_->ClearException();
2872         }
2873       }
2874       if (return_type == nullptr) {
2875         uint32_t method_idx = GetMethodIdxOfInvoke(inst);
2876         const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2877         dex::TypeIndex return_type_idx =
2878             dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2879         const char* descriptor = dex_file_->GetTypeDescriptor(return_type_idx);
2880         return_type = &reg_types_.FromDescriptor(class_loader_, descriptor);
2881       }
2882       if (!return_type->IsLowHalf()) {
2883         work_line_->SetResultRegisterType(this, *return_type);
2884       } else {
2885         work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2886       }
2887       just_set_result = true;
2888       break;
2889     }
2890     case Instruction::INVOKE_DIRECT:
2891     case Instruction::INVOKE_DIRECT_RANGE: {
2892       bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2893       ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT, is_range);
2894       const char* return_type_descriptor;
2895       bool is_constructor;
2896       const RegType* return_type = nullptr;
2897       if (called_method == nullptr) {
2898         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2899         const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2900         is_constructor = dex_file_->GetStringView(method_id.name_idx_) == "<init>";
2901         dex::TypeIndex return_type_idx =
2902             dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2903         return_type_descriptor =  dex_file_->GetTypeDescriptor(return_type_idx);
2904       } else {
2905         is_constructor = called_method->IsConstructor();
2906         return_type_descriptor = called_method->GetReturnTypeDescriptor();
2907         ObjPtr<mirror::Class> return_type_class = CanLoadClasses()
2908             ? called_method->ResolveReturnType()
2909             : called_method->LookupResolvedReturnType();
2910         if (return_type_class != nullptr) {
2911           return_type = &FromClass(return_type_descriptor,
2912                                    return_type_class,
2913                                    return_type_class->CannotBeAssignedFromOtherTypes());
2914         } else {
2915           DCHECK_IMPLIES(CanLoadClasses(), self_->IsExceptionPending());
2916           self_->ClearException();
2917         }
2918       }
2919       if (is_constructor) {
2920         /*
2921          * Some additional checks when calling a constructor. We know from the invocation arg check
2922          * that the "this" argument is an instance of called_method->klass. Now we further restrict
2923          * that to require that called_method->klass is the same as this->klass or this->super,
2924          * allowing the latter only if the "this" argument is the same as the "this" argument to
2925          * this method (which implies that we're in a constructor ourselves).
2926          */
2927         const RegType& this_type = work_line_->GetInvocationThis(this, inst);
2928         if (this_type.IsConflict())  // failure.
2929           break;
2930 
2931         /* no null refs allowed (?) */
2932         if (this_type.IsZeroOrNull()) {
2933           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2934           break;
2935         }
2936 
2937         /* must be in same class or in superclass */
2938         // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2939         // TODO: re-enable constructor type verification
2940         // if (this_super_klass.IsConflict()) {
2941           // Unknown super class, fail so we re-check at runtime.
2942           // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2943           // break;
2944         // }
2945 
2946         /* arg must be an uninitialized reference */
2947         if (!this_type.IsUninitializedTypes()) {
2948           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2949               << this_type;
2950           break;
2951         }
2952 
2953         /*
2954          * Replace the uninitialized reference with an initialized one. We need to do this for all
2955          * registers that have the same object instance in them, not just the "this" register.
2956          */
2957         work_line_->MarkRefsAsInitialized(this, this_type);
2958       }
2959       if (return_type == nullptr) {
2960         return_type = &reg_types_.FromDescriptor(class_loader_, return_type_descriptor);
2961       }
2962       if (!return_type->IsLowHalf()) {
2963         work_line_->SetResultRegisterType(this, *return_type);
2964       } else {
2965         work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2966       }
2967       just_set_result = true;
2968       break;
2969     }
2970     case Instruction::INVOKE_STATIC:
2971     case Instruction::INVOKE_STATIC_RANGE: {
2972         bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2973         ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_STATIC, is_range);
2974         const char* descriptor;
2975         if (called_method == nullptr) {
2976           uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2977           const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2978           dex::TypeIndex return_type_idx =
2979               dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2980           descriptor = dex_file_->GetTypeDescriptor(return_type_idx);
2981         } else {
2982           descriptor = called_method->GetReturnTypeDescriptor();
2983         }
2984         const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor);
2985         if (!return_type.IsLowHalf()) {
2986           work_line_->SetResultRegisterType(this, return_type);
2987         } else {
2988           work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2989         }
2990         just_set_result = true;
2991       }
2992       break;
2993     case Instruction::INVOKE_INTERFACE:
2994     case Instruction::INVOKE_INTERFACE_RANGE: {
2995       bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2996       ArtMethod* abs_method = VerifyInvocationArgs(inst, METHOD_INTERFACE, is_range);
2997       if (abs_method != nullptr) {
2998         ObjPtr<mirror::Class> called_interface = abs_method->GetDeclaringClass();
2999         if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
3000           Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
3001               << abs_method->PrettyMethod() << "'";
3002           break;
3003         }
3004       }
3005       /* Get the type of the "this" arg, which should either be a sub-interface of called
3006        * interface or Object (see comments in RegType::JoinClass).
3007        */
3008       const RegType& this_type = work_line_->GetInvocationThis(this, inst);
3009       if (this_type.IsZeroOrNull()) {
3010         /* null pointer always passes (and always fails at runtime) */
3011       } else {
3012         if (this_type.IsUninitializedTypes()) {
3013           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
3014               << this_type;
3015           break;
3016         }
3017         // In the past we have tried to assert that "called_interface" is assignable
3018         // from "this_type.GetClass()", however, as we do an imprecise Join
3019         // (RegType::JoinClass) we don't have full information on what interfaces are
3020         // implemented by "this_type". For example, two classes may implement the same
3021         // interfaces and have a common parent that doesn't implement the interface. The
3022         // join will set "this_type" to the parent class and a test that this implements
3023         // the interface will incorrectly fail.
3024       }
3025       /*
3026        * We don't have an object instance, so we can't find the concrete method. However, all of
3027        * the type information is in the abstract method, so we're good.
3028        */
3029       const char* descriptor;
3030       if (abs_method == nullptr) {
3031         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3032         const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
3033         dex::TypeIndex return_type_idx =
3034             dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
3035         descriptor = dex_file_->GetTypeDescriptor(return_type_idx);
3036       } else {
3037         descriptor = abs_method->GetReturnTypeDescriptor();
3038       }
3039       const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor);
3040       if (!return_type.IsLowHalf()) {
3041         work_line_->SetResultRegisterType(this, return_type);
3042       } else {
3043         work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
3044       }
3045       just_set_result = true;
3046       break;
3047     }
3048     case Instruction::INVOKE_POLYMORPHIC:
3049     case Instruction::INVOKE_POLYMORPHIC_RANGE: {
3050       bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
3051       ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_POLYMORPHIC, is_range);
3052       if (called_method == nullptr) {
3053         // Convert potential soft failures in VerifyInvocationArgs() to hard errors.
3054         if (failure_messages_.size() > 0) {
3055           std::string message = failure_messages_.back()->str();
3056           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << message;
3057         } else {
3058           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-polymorphic verification failure.";
3059         }
3060         break;
3061       }
3062       if (!CheckSignaturePolymorphicMethod(called_method) ||
3063           !CheckSignaturePolymorphicReceiver(inst)) {
3064         DCHECK(HasFailures());
3065         break;
3066       }
3067       const uint16_t vRegH = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc();
3068       const dex::ProtoIndex proto_idx(vRegH);
3069       const char* return_descriptor =
3070           dex_file_->GetReturnTypeDescriptor(dex_file_->GetProtoId(proto_idx));
3071       const RegType& return_type =
3072           reg_types_.FromDescriptor(class_loader_, return_descriptor);
3073       if (!return_type.IsLowHalf()) {
3074         work_line_->SetResultRegisterType(this, return_type);
3075       } else {
3076         work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
3077       }
3078       just_set_result = true;
3079       break;
3080     }
3081     case Instruction::INVOKE_CUSTOM:
3082     case Instruction::INVOKE_CUSTOM_RANGE: {
3083       // Verify registers based on method_type in the call site.
3084       bool is_range = (inst->Opcode() == Instruction::INVOKE_CUSTOM_RANGE);
3085 
3086       // Step 1. Check the call site that produces the method handle for invocation
3087       const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3088       if (!CheckCallSite(call_site_idx)) {
3089         DCHECK(HasFailures());
3090         break;
3091       }
3092 
3093       // Step 2. Check the register arguments correspond to the expected arguments for the
3094       // method handle produced by step 1. The dex file verifier has checked ranges for
3095       // the first three arguments and CheckCallSite has checked the method handle type.
3096       const dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx);
3097       const dex::ProtoId& proto_id = dex_file_->GetProtoId(proto_idx);
3098       DexFileParameterIterator param_it(*dex_file_, proto_id);
3099       // Treat method as static as it has yet to be determined.
3100       VerifyInvocationArgsFromIterator(&param_it, inst, METHOD_STATIC, is_range, nullptr);
3101       const char* return_descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
3102 
3103       // Step 3. Propagate return type information
3104       const RegType& return_type =
3105           reg_types_.FromDescriptor(class_loader_, return_descriptor);
3106       if (!return_type.IsLowHalf()) {
3107         work_line_->SetResultRegisterType(this, return_type);
3108       } else {
3109         work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
3110       }
3111       just_set_result = true;
3112       break;
3113     }
3114     case Instruction::NEG_INT:
3115     case Instruction::NOT_INT:
3116       work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
3117       break;
3118     case Instruction::NEG_LONG:
3119     case Instruction::NOT_LONG:
3120       work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3121                                    reg_types_.LongLo(), reg_types_.LongHi());
3122       break;
3123     case Instruction::NEG_FLOAT:
3124       work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
3125       break;
3126     case Instruction::NEG_DOUBLE:
3127       work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3128                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
3129       break;
3130     case Instruction::INT_TO_LONG:
3131       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3132                                      reg_types_.Integer());
3133       break;
3134     case Instruction::INT_TO_FLOAT:
3135       work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
3136       break;
3137     case Instruction::INT_TO_DOUBLE:
3138       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3139                                      reg_types_.Integer());
3140       break;
3141     case Instruction::LONG_TO_INT:
3142       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
3143                                        reg_types_.LongLo(), reg_types_.LongHi());
3144       break;
3145     case Instruction::LONG_TO_FLOAT:
3146       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
3147                                        reg_types_.LongLo(), reg_types_.LongHi());
3148       break;
3149     case Instruction::LONG_TO_DOUBLE:
3150       work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3151                                    reg_types_.LongLo(), reg_types_.LongHi());
3152       break;
3153     case Instruction::FLOAT_TO_INT:
3154       work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
3155       break;
3156     case Instruction::FLOAT_TO_LONG:
3157       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3158                                      reg_types_.Float());
3159       break;
3160     case Instruction::FLOAT_TO_DOUBLE:
3161       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3162                                      reg_types_.Float());
3163       break;
3164     case Instruction::DOUBLE_TO_INT:
3165       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
3166                                        reg_types_.DoubleLo(), reg_types_.DoubleHi());
3167       break;
3168     case Instruction::DOUBLE_TO_LONG:
3169       work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3170                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
3171       break;
3172     case Instruction::DOUBLE_TO_FLOAT:
3173       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
3174                                        reg_types_.DoubleLo(), reg_types_.DoubleHi());
3175       break;
3176     case Instruction::INT_TO_BYTE:
3177       work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
3178       break;
3179     case Instruction::INT_TO_CHAR:
3180       work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
3181       break;
3182     case Instruction::INT_TO_SHORT:
3183       work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
3184       break;
3185 
3186     case Instruction::ADD_INT:
3187     case Instruction::SUB_INT:
3188     case Instruction::MUL_INT:
3189     case Instruction::REM_INT:
3190     case Instruction::DIV_INT:
3191     case Instruction::SHL_INT:
3192     case Instruction::SHR_INT:
3193     case Instruction::USHR_INT:
3194       work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3195                                 reg_types_.Integer(), false);
3196       break;
3197     case Instruction::AND_INT:
3198     case Instruction::OR_INT:
3199     case Instruction::XOR_INT:
3200       work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3201                                 reg_types_.Integer(), true);
3202       break;
3203     case Instruction::ADD_LONG:
3204     case Instruction::SUB_LONG:
3205     case Instruction::MUL_LONG:
3206     case Instruction::DIV_LONG:
3207     case Instruction::REM_LONG:
3208     case Instruction::AND_LONG:
3209     case Instruction::OR_LONG:
3210     case Instruction::XOR_LONG:
3211       work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3212                                     reg_types_.LongLo(), reg_types_.LongHi(),
3213                                     reg_types_.LongLo(), reg_types_.LongHi());
3214       break;
3215     case Instruction::SHL_LONG:
3216     case Instruction::SHR_LONG:
3217     case Instruction::USHR_LONG:
3218       /* shift distance is Int, making these different from other binary operations */
3219       work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3220                                          reg_types_.Integer());
3221       break;
3222     case Instruction::ADD_FLOAT:
3223     case Instruction::SUB_FLOAT:
3224     case Instruction::MUL_FLOAT:
3225     case Instruction::DIV_FLOAT:
3226     case Instruction::REM_FLOAT:
3227       work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
3228                                 reg_types_.Float(), false);
3229       break;
3230     case Instruction::ADD_DOUBLE:
3231     case Instruction::SUB_DOUBLE:
3232     case Instruction::MUL_DOUBLE:
3233     case Instruction::DIV_DOUBLE:
3234     case Instruction::REM_DOUBLE:
3235       work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3236                                     reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3237                                     reg_types_.DoubleLo(), reg_types_.DoubleHi());
3238       break;
3239     case Instruction::ADD_INT_2ADDR:
3240     case Instruction::SUB_INT_2ADDR:
3241     case Instruction::MUL_INT_2ADDR:
3242     case Instruction::REM_INT_2ADDR:
3243     case Instruction::SHL_INT_2ADDR:
3244     case Instruction::SHR_INT_2ADDR:
3245     case Instruction::USHR_INT_2ADDR:
3246       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3247                                      reg_types_.Integer(), false);
3248       break;
3249     case Instruction::AND_INT_2ADDR:
3250     case Instruction::OR_INT_2ADDR:
3251     case Instruction::XOR_INT_2ADDR:
3252       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3253                                      reg_types_.Integer(), true);
3254       break;
3255     case Instruction::DIV_INT_2ADDR:
3256       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3257                                      reg_types_.Integer(), false);
3258       break;
3259     case Instruction::ADD_LONG_2ADDR:
3260     case Instruction::SUB_LONG_2ADDR:
3261     case Instruction::MUL_LONG_2ADDR:
3262     case Instruction::DIV_LONG_2ADDR:
3263     case Instruction::REM_LONG_2ADDR:
3264     case Instruction::AND_LONG_2ADDR:
3265     case Instruction::OR_LONG_2ADDR:
3266     case Instruction::XOR_LONG_2ADDR:
3267       work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3268                                          reg_types_.LongLo(), reg_types_.LongHi(),
3269                                          reg_types_.LongLo(), reg_types_.LongHi());
3270       break;
3271     case Instruction::SHL_LONG_2ADDR:
3272     case Instruction::SHR_LONG_2ADDR:
3273     case Instruction::USHR_LONG_2ADDR:
3274       work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3275                                               reg_types_.Integer());
3276       break;
3277     case Instruction::ADD_FLOAT_2ADDR:
3278     case Instruction::SUB_FLOAT_2ADDR:
3279     case Instruction::MUL_FLOAT_2ADDR:
3280     case Instruction::DIV_FLOAT_2ADDR:
3281     case Instruction::REM_FLOAT_2ADDR:
3282       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
3283                                      reg_types_.Float(), false);
3284       break;
3285     case Instruction::ADD_DOUBLE_2ADDR:
3286     case Instruction::SUB_DOUBLE_2ADDR:
3287     case Instruction::MUL_DOUBLE_2ADDR:
3288     case Instruction::DIV_DOUBLE_2ADDR:
3289     case Instruction::REM_DOUBLE_2ADDR:
3290       work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3291                                          reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
3292                                          reg_types_.DoubleLo(), reg_types_.DoubleHi());
3293       break;
3294     case Instruction::ADD_INT_LIT16:
3295     case Instruction::RSUB_INT_LIT16:
3296     case Instruction::MUL_INT_LIT16:
3297     case Instruction::DIV_INT_LIT16:
3298     case Instruction::REM_INT_LIT16:
3299       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
3300                                  true);
3301       break;
3302     case Instruction::AND_INT_LIT16:
3303     case Instruction::OR_INT_LIT16:
3304     case Instruction::XOR_INT_LIT16:
3305       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
3306                                  true);
3307       break;
3308     case Instruction::ADD_INT_LIT8:
3309     case Instruction::RSUB_INT_LIT8:
3310     case Instruction::MUL_INT_LIT8:
3311     case Instruction::DIV_INT_LIT8:
3312     case Instruction::REM_INT_LIT8:
3313     case Instruction::SHL_INT_LIT8:
3314     case Instruction::SHR_INT_LIT8:
3315     case Instruction::USHR_INT_LIT8:
3316       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
3317                                  false);
3318       break;
3319     case Instruction::AND_INT_LIT8:
3320     case Instruction::OR_INT_LIT8:
3321     case Instruction::XOR_INT_LIT8:
3322       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
3323                                  false);
3324       break;
3325 
3326     /* These should never appear during verification. */
3327     case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
3328     case Instruction::UNUSED_E3 ... Instruction::UNUSED_F9:
3329     case Instruction::UNUSED_73:
3330     case Instruction::UNUSED_79:
3331     case Instruction::UNUSED_7A:
3332       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
3333       break;
3334 
3335     /*
3336      * DO NOT add a "default" clause here. Without it the compiler will
3337      * complain if an instruction is missing (which is desirable).
3338      */
3339   }  // end - switch (dec_insn.opcode)
3340 
3341   if (flags_.have_pending_hard_failure_) {
3342     if (IsAotMode()) {
3343       /* When AOT compiling, check that the last failure is a hard failure */
3344       if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
3345         LOG(ERROR) << "Pending failures:";
3346         for (auto& error : failures_) {
3347           LOG(ERROR) << error;
3348         }
3349         for (auto& error_msg : failure_messages_) {
3350           LOG(ERROR) << error_msg->str();
3351         }
3352         LOG(FATAL) << "Pending hard failure, but last failure not hard.";
3353       }
3354     }
3355     /* immediate failure, reject class */
3356     info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
3357     return false;
3358   } else if (flags_.have_pending_runtime_throw_failure_) {
3359     LogVerifyInfo() << "Elevating opcode flags from " << opcode_flags << " to Throw";
3360     /* checking interpreter will throw, mark following code as unreachable */
3361     opcode_flags = Instruction::kThrow;
3362     // Note: the flag must be reset as it is only global to decouple Fail and is semantically per
3363     //       instruction. However, RETURN checking may throw LOCKING errors, so we clear at the
3364     //       very end.
3365   }
3366   /*
3367    * If we didn't just set the result register, clear it out. This ensures that you can only use
3368    * "move-result" immediately after the result is set. (We could check this statically, but it's
3369    * not expensive and it makes our debugging output cleaner.)
3370    */
3371   if (!just_set_result) {
3372     work_line_->SetResultTypeToUnknown(GetRegTypeCache());
3373   }
3374 
3375   /*
3376    * Handle "branch". Tag the branch target.
3377    *
3378    * NOTE: instructions like Instruction::EQZ provide information about the
3379    * state of the register when the branch is taken or not taken. For example,
3380    * somebody could get a reference field, check it for zero, and if the
3381    * branch is taken immediately store that register in a boolean field
3382    * since the value is known to be zero. We do not currently account for
3383    * that, and will reject the code.
3384    *
3385    * TODO: avoid re-fetching the branch target
3386    */
3387   if ((opcode_flags & Instruction::kBranch) != 0) {
3388     bool isConditional, selfOkay;
3389     if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
3390       /* should never happen after static verification */
3391       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
3392       return false;
3393     }
3394     DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
3395     if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(),
3396                                            work_insn_idx_ + branch_target)) {
3397       return false;
3398     }
3399     /* update branch target, set "changed" if appropriate */
3400     if (nullptr != branch_line) {
3401       if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
3402         return false;
3403       }
3404     } else {
3405       if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
3406         return false;
3407       }
3408     }
3409   }
3410 
3411   /*
3412    * Handle "switch". Tag all possible branch targets.
3413    *
3414    * We've already verified that the table is structurally sound, so we
3415    * just need to walk through and tag the targets.
3416    */
3417   if ((opcode_flags & Instruction::kSwitch) != 0) {
3418     int offset_to_switch = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
3419     const uint16_t* switch_insns = insns + offset_to_switch;
3420     int switch_count = switch_insns[1];
3421     int offset_to_targets, targ;
3422 
3423     if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
3424       /* 0 = sig, 1 = count, 2/3 = first key */
3425       offset_to_targets = 4;
3426     } else {
3427       /* 0 = sig, 1 = count, 2..count * 2 = keys */
3428       DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
3429       offset_to_targets = 2 + 2 * switch_count;
3430     }
3431 
3432     /* verify each switch target */
3433     for (targ = 0; targ < switch_count; targ++) {
3434       int offset;
3435       uint32_t abs_offset;
3436 
3437       /* offsets are 32-bit, and only partly endian-swapped */
3438       offset = switch_insns[offset_to_targets + targ * 2] |
3439          (static_cast<int32_t>(switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
3440       abs_offset = work_insn_idx_ + offset;
3441       DCHECK_LT(abs_offset, code_item_accessor_.InsnsSizeInCodeUnits());
3442       if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(), abs_offset)) {
3443         return false;
3444       }
3445       if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
3446         return false;
3447       }
3448     }
3449   }
3450 
3451   /*
3452    * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
3453    * "try" block when they throw, control transfers out of the method.)
3454    */
3455   if ((opcode_flags & Instruction::kThrow) != 0 && GetInstructionFlags(work_insn_idx_).IsInTry()) {
3456     bool has_catch_all_handler = false;
3457     const dex::TryItem* try_item = code_item_accessor_.FindTryItem(work_insn_idx_);
3458     CHECK(try_item != nullptr);
3459     CatchHandlerIterator iterator(code_item_accessor_, *try_item);
3460 
3461     // Need the linker to try and resolve the handled class to check if it's Throwable.
3462     ClassLinker* linker = GetClassLinker();
3463 
3464     for (; iterator.HasNext(); iterator.Next()) {
3465       dex::TypeIndex handler_type_idx = iterator.GetHandlerTypeIndex();
3466       if (!handler_type_idx.IsValid()) {
3467         has_catch_all_handler = true;
3468       } else {
3469         // It is also a catch-all if it is java.lang.Throwable.
3470         ObjPtr<mirror::Class> klass =
3471             linker->ResolveType(handler_type_idx, dex_cache_, class_loader_);
3472         if (klass != nullptr) {
3473           if (klass == GetClassRoot<mirror::Throwable>()) {
3474             has_catch_all_handler = true;
3475           }
3476         } else {
3477           // Clear exception.
3478           DCHECK(self_->IsExceptionPending());
3479           self_->ClearException();
3480         }
3481       }
3482       /*
3483        * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
3484        * "work_regs", because at runtime the exception will be thrown before the instruction
3485        * modifies any registers.
3486        */
3487       if (kVerifierDebug) {
3488         LogVerifyInfo() << "Updating exception handler 0x"
3489                         << std::hex << iterator.GetHandlerAddress();
3490       }
3491       if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
3492         return false;
3493       }
3494     }
3495 
3496     /*
3497      * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
3498      * instruction. This does apply to monitor-exit because of async exception handling.
3499      */
3500     if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
3501       /*
3502        * The state in work_line reflects the post-execution state. If the current instruction is a
3503        * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
3504        * it will do so before grabbing the lock).
3505        */
3506       if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
3507         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
3508             << "expected to be within a catch-all for an instruction where a monitor is held";
3509         return false;
3510       }
3511     }
3512   }
3513 
3514   /* Handle "continue". Tag the next consecutive instruction.
3515    *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3516    *        because it changes work_line_ when performing peephole optimization
3517    *        and this change should not be used in those cases.
3518    */
3519   if ((opcode_flags & Instruction::kContinue) != 0 && !exc_handler_unreachable) {
3520     DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
3521     uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3522     if (next_insn_idx >= code_item_accessor_.InsnsSizeInCodeUnits()) {
3523       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3524       return false;
3525     }
3526     // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3527     // next instruction isn't one.
3528     if (!CheckNotMoveException(code_item_accessor_.Insns(), next_insn_idx)) {
3529       return false;
3530     }
3531     if (nullptr != fallthrough_line) {
3532       // Make workline consistent with fallthrough computed from peephole optimization.
3533       work_line_->CopyFromLine(fallthrough_line.get());
3534     }
3535     if (GetInstructionFlags(next_insn_idx).IsReturn()) {
3536       // For returns we only care about the operand to the return, all other registers are dead.
3537       const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn_idx);
3538       AdjustReturnLine(this, ret_inst, work_line_.get());
3539     }
3540     RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3541     if (next_line != nullptr) {
3542       // Merge registers into what we have for the next instruction, and set the "changed" flag if
3543       // needed. If the merge changes the state of the registers then the work line will be
3544       // updated.
3545       if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3546         return false;
3547       }
3548     } else {
3549       /*
3550        * We're not recording register data for the next instruction, so we don't know what the
3551        * prior state was. We have to assume that something has changed and re-evaluate it.
3552        */
3553       GetModifiableInstructionFlags(next_insn_idx).SetChanged();
3554     }
3555   }
3556 
3557   /* If we're returning from the method, make sure monitor stack is empty. */
3558   if ((opcode_flags & Instruction::kReturn) != 0) {
3559     work_line_->VerifyMonitorStackEmpty(this);
3560   }
3561 
3562   /*
3563    * Update start_guess. Advance to the next instruction of that's
3564    * possible, otherwise use the branch target if one was found. If
3565    * neither of those exists we're in a return or throw; leave start_guess
3566    * alone and let the caller sort it out.
3567    */
3568   if ((opcode_flags & Instruction::kContinue) != 0) {
3569     DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
3570     *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3571   } else if ((opcode_flags & Instruction::kBranch) != 0) {
3572     /* we're still okay if branch_target is zero */
3573     *start_guess = work_insn_idx_ + branch_target;
3574   }
3575 
3576   DCHECK_LT(*start_guess, code_item_accessor_.InsnsSizeInCodeUnits());
3577   DCHECK(GetInstructionFlags(*start_guess).IsOpcode());
3578 
3579   if (flags_.have_pending_runtime_throw_failure_) {
3580     Fail(VERIFY_ERROR_RUNTIME_THROW, /* pending_exc= */ false);
3581     // Reset the pending_runtime_throw flag now.
3582     flags_.have_pending_runtime_throw_failure_ = false;
3583   }
3584 
3585   return true;
3586 }  // NOLINT(readability/fn_size)
3587 
3588 template <bool kVerifierDebug>
3589 template <CheckAccess C>
ResolveClass(dex::TypeIndex class_idx)3590 const RegType& MethodVerifier<kVerifierDebug>::ResolveClass(dex::TypeIndex class_idx) {
3591   ClassLinker* linker = GetClassLinker();
3592   ObjPtr<mirror::Class> klass = CanLoadClasses()
3593       ? linker->ResolveType(class_idx, dex_cache_, class_loader_)
3594       : linker->LookupResolvedType(class_idx, dex_cache_.Get(), class_loader_.Get());
3595   if (CanLoadClasses() && klass == nullptr) {
3596     DCHECK(self_->IsExceptionPending());
3597     self_->ClearException();
3598   }
3599   const RegType* result = nullptr;
3600   if (klass != nullptr) {
3601     bool precise = klass->CannotBeAssignedFromOtherTypes();
3602     if (precise && !IsInstantiableOrPrimitive(klass)) {
3603       const char* descriptor = dex_file_->GetTypeDescriptor(class_idx);
3604       UninstantiableError(descriptor);
3605       precise = false;
3606     }
3607     result = reg_types_.FindClass(klass, precise);
3608     if (result == nullptr) {
3609       const char* descriptor = dex_file_->GetTypeDescriptor(class_idx);
3610       result = reg_types_.InsertClass(descriptor, klass, precise);
3611     }
3612   } else {
3613     const char* descriptor = dex_file_->GetTypeDescriptor(class_idx);
3614     result = &reg_types_.FromDescriptor(class_loader_, descriptor);
3615   }
3616   DCHECK(result != nullptr);
3617   if (result->IsConflict()) {
3618     const char* descriptor = dex_file_->GetTypeDescriptor(class_idx);
3619     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "accessing broken descriptor '" << descriptor
3620         << "' in " << GetDeclaringClass();
3621     return *result;
3622   }
3623 
3624   // If requested, check if access is allowed. Unresolved types are included in this check, as the
3625   // interpreter only tests whether access is allowed when a class is not pre-verified and runs in
3626   // the access-checks interpreter. If result is primitive, skip the access check.
3627   //
3628   // Note: we do this for unresolved classes to trigger re-verification at runtime.
3629   if (C != CheckAccess::kNo &&
3630       result->IsNonZeroReferenceTypes() &&
3631       ((C == CheckAccess::kYes && IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP))
3632           || !result->IsUnresolvedTypes())) {
3633     const RegType& referrer = GetDeclaringClass();
3634     if ((IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP) || !referrer.IsUnresolvedTypes()) &&
3635         !referrer.CanAccess(*result)) {
3636       if (IsAotMode()) {
3637         Fail(VERIFY_ERROR_ACCESS_CLASS);
3638         VLOG(verifier)
3639             << "(possibly) illegal class access: '" << referrer << "' -> '" << *result << "'";
3640       } else {
3641         Fail(VERIFY_ERROR_ACCESS_CLASS)
3642             << "(possibly) illegal class access: '" << referrer << "' -> '" << *result << "'";
3643       }
3644     }
3645   }
3646   return *result;
3647 }
3648 
3649 template <bool kVerifierDebug>
HandleMoveException(const Instruction * inst)3650 bool MethodVerifier<kVerifierDebug>::HandleMoveException(const Instruction* inst)  {
3651   // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
3652   // where one entrypoint to the catch block is not actually an exception path.
3653   if (work_insn_idx_ == 0) {
3654     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
3655     return true;
3656   }
3657   /*
3658    * This statement can only appear as the first instruction in an exception handler. We verify
3659    * that as part of extracting the exception type from the catch block list.
3660    */
3661   auto caught_exc_type_fn = [&]() REQUIRES_SHARED(Locks::mutator_lock_) ->
3662       std::pair<bool, const RegType*> {
3663     const RegType* common_super = nullptr;
3664     if (code_item_accessor_.TriesSize() != 0) {
3665       const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
3666       uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3667       const RegType* unresolved = nullptr;
3668       for (uint32_t i = 0; i < handlers_size; i++) {
3669         CatchHandlerIterator iterator(handlers_ptr);
3670         for (; iterator.HasNext(); iterator.Next()) {
3671           if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3672             if (!iterator.GetHandlerTypeIndex().IsValid()) {
3673               common_super = &reg_types_.JavaLangThrowable();
3674             } else {
3675               // Do access checks only on resolved exception classes.
3676               const RegType& exception =
3677                   ResolveClass<CheckAccess::kOnResolvedClass>(iterator.GetHandlerTypeIndex());
3678               if (!reg_types_.JavaLangThrowable().IsAssignableFrom(exception, this)) {
3679                 DCHECK(!exception.IsUninitializedTypes());  // Comes from dex, shouldn't be uninit.
3680                 if (exception.IsUnresolvedTypes()) {
3681                   if (unresolved == nullptr) {
3682                     unresolved = &exception;
3683                   } else {
3684                     unresolved = &unresolved->SafeMerge(exception, &reg_types_, this);
3685                   }
3686                 } else {
3687                   Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-throwable class "
3688                                                     << exception;
3689                   return std::make_pair(true, &reg_types_.Conflict());
3690                 }
3691               } else if (common_super == nullptr) {
3692                 common_super = &exception;
3693               } else if (common_super->Equals(exception)) {
3694                 // odd case, but nothing to do
3695               } else {
3696                 common_super = &common_super->Merge(exception, &reg_types_, this);
3697                 if (FailOrAbort(reg_types_.JavaLangThrowable().IsAssignableFrom(
3698                     *common_super, this),
3699                     "java.lang.Throwable is not assignable-from common_super at ",
3700                     work_insn_idx_)) {
3701                   break;
3702                 }
3703               }
3704             }
3705           }
3706         }
3707         handlers_ptr = iterator.EndDataPointer();
3708       }
3709       if (unresolved != nullptr) {
3710         // Soft-fail, but do not handle this with a synthetic throw.
3711         Fail(VERIFY_ERROR_UNRESOLVED_TYPE_CHECK, /*pending_exc=*/ false)
3712             << "Unresolved catch handler";
3713         bool should_continue = true;
3714         if (common_super != nullptr) {
3715           unresolved = &unresolved->Merge(*common_super, &reg_types_, this);
3716         } else {
3717           should_continue = !PotentiallyMarkRuntimeThrow();
3718         }
3719         return std::make_pair(should_continue, unresolved);
3720       }
3721     }
3722     if (common_super == nullptr) {
3723       /* No catch block */
3724       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to find exception handler";
3725       return std::make_pair(true, &reg_types_.Conflict());
3726     }
3727     return std::make_pair(true, common_super);
3728   };
3729   auto result = caught_exc_type_fn();
3730   work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_11x(), *result.second);
3731   return result.first;
3732 }
3733 
3734 template <bool kVerifierDebug>
ResolveMethodAndCheckAccess(uint32_t dex_method_idx,MethodType method_type)3735 ArtMethod* MethodVerifier<kVerifierDebug>::ResolveMethodAndCheckAccess(
3736     uint32_t dex_method_idx, MethodType method_type) {
3737   const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3738   const RegType& klass_type = ResolveClass<CheckAccess::kYes>(method_id.class_idx_);
3739   if (klass_type.IsConflict()) {
3740     std::string append(" in attempt to access method ");
3741     append += dex_file_->GetMethodName(method_id);
3742     AppendToLastFailMessage(append);
3743     return nullptr;
3744   }
3745   if (klass_type.IsUnresolvedTypes()) {
3746     return nullptr;  // Can't resolve Class so no more to do here
3747   }
3748   ObjPtr<mirror::Class> klass = klass_type.GetClass();
3749   const RegType& referrer = GetDeclaringClass();
3750   ClassLinker* class_linker = GetClassLinker();
3751 
3752   ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
3753   if (res_method == nullptr) {
3754     res_method = class_linker->FindResolvedMethod(
3755         klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
3756   }
3757 
3758   bool must_fail = false;
3759   // This is traditional and helps with screwy bytecode. It will tell you that, yes, a method
3760   // exists, but that it's called incorrectly. This significantly helps debugging, as locally it's
3761   // hard to see the differences.
3762   // If we don't have res_method here we must fail. Just use this bool to make sure of that with a
3763   // DCHECK.
3764   if (res_method == nullptr) {
3765     must_fail = true;
3766     // Try to find the method also with the other type for better error reporting below
3767     // but do not store such bogus lookup result in the DexCache or VerifierDeps.
3768     res_method = class_linker->FindIncompatibleMethod(
3769         klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
3770   }
3771 
3772   if (res_method == nullptr) {
3773     Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3774                                  << klass->PrettyDescriptor() << "."
3775                                  << dex_file_->GetMethodName(method_id) << " "
3776                                  << dex_file_->GetMethodSignature(method_id);
3777     return nullptr;
3778   }
3779 
3780   // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3781   // enforce them here.
3782   if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3783     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3784                                       << res_method->PrettyMethod();
3785     return nullptr;
3786   }
3787   // Disallow any calls to class initializers.
3788   if (res_method->IsClassInitializer()) {
3789     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3790                                       << res_method->PrettyMethod();
3791     return nullptr;
3792   }
3793 
3794   // Check that interface methods are static or match interface classes.
3795   // We only allow statics if we don't have default methods enabled.
3796   //
3797   // Note: this check must be after the initializer check, as those are required to fail a class,
3798   //       while this check implies an IncompatibleClassChangeError.
3799   if (klass->IsInterface()) {
3800     // methods called on interfaces should be invoke-interface, invoke-super, invoke-direct (if
3801     // default methods are supported for the dex file), or invoke-static.
3802     if (method_type != METHOD_INTERFACE &&
3803         method_type != METHOD_STATIC &&
3804         (!dex_file_->SupportsDefaultMethods() ||
3805          method_type != METHOD_DIRECT) &&
3806         method_type != METHOD_SUPER) {
3807       Fail(VERIFY_ERROR_CLASS_CHANGE)
3808           << "non-interface method " << dex_file_->PrettyMethod(dex_method_idx)
3809           << " is in an interface class " << klass->PrettyClass();
3810       return nullptr;
3811     }
3812   } else {
3813     if (method_type == METHOD_INTERFACE) {
3814       Fail(VERIFY_ERROR_CLASS_CHANGE)
3815           << "interface method " << dex_file_->PrettyMethod(dex_method_idx)
3816           << " is in a non-interface class " << klass->PrettyClass();
3817       return nullptr;
3818     }
3819   }
3820 
3821   // Check specifically for non-public object methods being provided for interface dispatch. This
3822   // can occur if we failed to find a method with FindInterfaceMethod but later find one with
3823   // FindClassMethod for error message use.
3824   if (method_type == METHOD_INTERFACE &&
3825       res_method->GetDeclaringClass()->IsObjectClass() &&
3826       !res_method->IsPublic()) {
3827     Fail(VERIFY_ERROR_NO_METHOD) << "invoke-interface " << klass->PrettyDescriptor() << "."
3828                                  << dex_file_->GetMethodName(method_id) << " "
3829                                  << dex_file_->GetMethodSignature(method_id) << " resolved to "
3830                                  << "non-public object method " << res_method->PrettyMethod() << " "
3831                                  << "but non-public Object methods are excluded from interface "
3832                                  << "method resolution.";
3833     return nullptr;
3834   }
3835   // Check if access is allowed.
3836   if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3837     Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call "
3838                                      << res_method->PrettyMethod()
3839                                      << " from " << referrer << ")";
3840     return res_method;
3841   }
3842   // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3843   if (res_method->IsPrivate() && (method_type == METHOD_VIRTUAL || method_type == METHOD_SUPER)) {
3844     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3845                                       << res_method->PrettyMethod();
3846     return nullptr;
3847   }
3848   // See if the method type implied by the invoke instruction matches the access flags for the
3849   // target method. The flags for METHOD_POLYMORPHIC are based on there being precisely two
3850   // signature polymorphic methods supported by the run-time which are native methods with variable
3851   // arguments.
3852   if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3853       (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3854       ((method_type == METHOD_SUPER ||
3855         method_type == METHOD_VIRTUAL ||
3856         method_type == METHOD_INTERFACE) && res_method->IsDirect()) ||
3857       ((method_type == METHOD_POLYMORPHIC) &&
3858        (!res_method->IsNative() || !res_method->IsVarargs()))) {
3859     Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3860                                        "type of " << res_method->PrettyMethod();
3861     return nullptr;
3862   }
3863   // Make sure we weren't expecting to fail.
3864   DCHECK(!must_fail) << "invoke type (" << method_type << ")"
3865                      << klass->PrettyDescriptor() << "."
3866                      << dex_file_->GetMethodName(method_id) << " "
3867                      << dex_file_->GetMethodSignature(method_id) << " unexpectedly resolved to "
3868                      << res_method->PrettyMethod() << " without error. Initially this method was "
3869                      << "not found so we were expecting to fail for some reason.";
3870   return res_method;
3871 }
3872 
3873 template <bool kVerifierDebug>
3874 template <class T>
VerifyInvocationArgsFromIterator(T * it,const Instruction * inst,MethodType method_type,bool is_range,ArtMethod * res_method)3875 ArtMethod* MethodVerifier<kVerifierDebug>::VerifyInvocationArgsFromIterator(
3876     T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
3877   DCHECK_EQ(!is_range, inst->HasVarArgs());
3878 
3879   // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3880   // match the call to the signature. Also, we might be calling through an abstract method
3881   // definition (which doesn't have register count values).
3882   const size_t expected_args = inst->VRegA();
3883   /* caught by static verifier */
3884   DCHECK(is_range || expected_args <= 5);
3885 
3886   if (expected_args > code_item_accessor_.OutsSize()) {
3887     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3888                                       << ") exceeds outsSize ("
3889                                       << code_item_accessor_.OutsSize() << ")";
3890     return nullptr;
3891   }
3892 
3893   /*
3894    * Check the "this" argument, which must be an instance of the class that declared the method.
3895    * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3896    * rigorous check here (which is okay since we have to do it at runtime).
3897    */
3898   if (method_type != METHOD_STATIC) {
3899     const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst);
3900     if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3901       CHECK(flags_.have_pending_hard_failure_);
3902       return nullptr;
3903     }
3904     bool is_init = false;
3905     if (actual_arg_type.IsUninitializedTypes()) {
3906       if (res_method != nullptr) {
3907         if (!res_method->IsConstructor()) {
3908           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3909           return nullptr;
3910         }
3911       } else {
3912         // Check whether the name of the called method is "<init>"
3913         const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
3914         if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3915           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3916           return nullptr;
3917         }
3918       }
3919       is_init = true;
3920     }
3921     const RegType& adjusted_type = is_init
3922                                        ? GetRegTypeCache()->FromUninitialized(actual_arg_type)
3923                                        : actual_arg_type;
3924     if (method_type != METHOD_INTERFACE && !adjusted_type.IsZeroOrNull()) {
3925       const RegType* res_method_class;
3926       // Miranda methods have the declaring interface as their declaring class, not the abstract
3927       // class. It would be wrong to use this for the type check (interface type checks are
3928       // postponed to runtime).
3929       if (res_method != nullptr && !res_method->IsMiranda()) {
3930         ObjPtr<mirror::Class> klass = res_method->GetDeclaringClass();
3931         std::string temp;
3932         res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
3933                                       klass->CannotBeAssignedFromOtherTypes());
3934       } else {
3935         const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
3936         const dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3937         res_method_class =
3938             &reg_types_.FromDescriptor(class_loader_, dex_file_->GetTypeDescriptor(class_idx));
3939       }
3940       if (!res_method_class->IsAssignableFrom(adjusted_type, this)) {
3941         Fail(adjusted_type.IsUnresolvedTypes()
3942                  ? VERIFY_ERROR_UNRESOLVED_TYPE_CHECK
3943                  : VERIFY_ERROR_BAD_CLASS_HARD)
3944             << "'this' argument '" << actual_arg_type << "' not instance of '"
3945             << *res_method_class << "'";
3946         // Continue on soft failures. We need to find possible hard failures to avoid problems in
3947         // the compiler.
3948         if (flags_.have_pending_hard_failure_) {
3949           return nullptr;
3950         }
3951       }
3952     }
3953   }
3954 
3955   uint32_t arg[5];
3956   if (!is_range) {
3957     inst->GetVarArgs(arg);
3958   }
3959   uint32_t sig_registers = (method_type == METHOD_STATIC) ? 0 : 1;
3960   for ( ; it->HasNext(); it->Next()) {
3961     if (sig_registers >= expected_args) {
3962       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3963           " argument registers, method signature has " << sig_registers + 1 << " or more";
3964       return nullptr;
3965     }
3966 
3967     const char* param_descriptor = it->GetDescriptor();
3968 
3969     if (param_descriptor == nullptr) {
3970       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3971           "component";
3972       return nullptr;
3973     }
3974 
3975     const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, param_descriptor);
3976     uint32_t get_reg = is_range ? inst->VRegC() + static_cast<uint32_t>(sig_registers) :
3977         arg[sig_registers];
3978     if (reg_type.IsIntegralTypes()) {
3979       const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3980       if (!src_type.IsIntegralTypes()) {
3981         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3982             << " but expected " << reg_type;
3983         return nullptr;
3984       }
3985     } else {
3986       if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3987         // Continue on soft failures. We need to find possible hard failures to avoid problems in
3988         // the compiler.
3989         if (flags_.have_pending_hard_failure_) {
3990           return nullptr;
3991         }
3992       } else if (reg_type.IsLongOrDoubleTypes()) {
3993         // Check that registers are consecutive (for non-range invokes). Invokes are the only
3994         // instructions not specifying register pairs by the first component, but require them
3995         // nonetheless. Only check when there's an actual register in the parameters. If there's
3996         // none, this will fail below.
3997         if (!is_range && sig_registers + 1 < expected_args) {
3998           uint32_t second_reg = arg[sig_registers + 1];
3999           if (second_reg != get_reg + 1) {
4000             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, long or double parameter "
4001                 "at index " << sig_registers << " is not a pair: " << get_reg << " + "
4002                 << second_reg << ".";
4003             return nullptr;
4004           }
4005         }
4006       }
4007     }
4008     sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
4009   }
4010   if (expected_args != sig_registers) {
4011     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
4012         " argument registers, method signature has " << sig_registers;
4013     return nullptr;
4014   }
4015   return res_method;
4016 }
4017 
4018 template <bool kVerifierDebug>
VerifyInvocationArgsUnresolvedMethod(const Instruction * inst,MethodType method_type,bool is_range)4019 void MethodVerifier<kVerifierDebug>::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
4020                                                                           MethodType method_type,
4021                                                                           bool is_range) {
4022   // As the method may not have been resolved, make this static check against what we expect.
4023   // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
4024   // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
4025   const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4026   DexFileParameterIterator it(*dex_file_,
4027                               dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
4028   VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, nullptr);
4029 }
4030 
4031 template <bool kVerifierDebug>
CheckCallSite(uint32_t call_site_idx)4032 bool MethodVerifier<kVerifierDebug>::CheckCallSite(uint32_t call_site_idx) {
4033   if (call_site_idx >= dex_file_->NumCallSiteIds()) {
4034     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Bad call site id #" << call_site_idx
4035                                       << " >= " << dex_file_->NumCallSiteIds();
4036     return false;
4037   }
4038 
4039   CallSiteArrayValueIterator it(*dex_file_, dex_file_->GetCallSiteId(call_site_idx));
4040   // Check essential arguments are provided. The dex file verifier has verified indices of the
4041   // main values (method handle, name, method_type).
4042   static const size_t kRequiredArguments = 3;
4043   if (it.Size() < kRequiredArguments) {
4044     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4045                                       << " has too few arguments: "
4046                                       << it.Size() << " < " << kRequiredArguments;
4047     return false;
4048   }
4049 
4050   std::pair<const EncodedArrayValueIterator::ValueType, size_t> type_and_max[kRequiredArguments] =
4051       { { EncodedArrayValueIterator::ValueType::kMethodHandle, dex_file_->NumMethodHandles() },
4052         { EncodedArrayValueIterator::ValueType::kString, dex_file_->NumStringIds() },
4053         { EncodedArrayValueIterator::ValueType::kMethodType, dex_file_->NumProtoIds() }
4054       };
4055   uint32_t index[kRequiredArguments];
4056 
4057   // Check arguments have expected types and are within permitted ranges.
4058   for (size_t i = 0; i < kRequiredArguments; ++i) {
4059     if (it.GetValueType() != type_and_max[i].first) {
4060       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site id #" << call_site_idx
4061                                         << " argument " << i << " has wrong type "
4062                                         << it.GetValueType() << "!=" << type_and_max[i].first;
4063       return false;
4064     }
4065     index[i] = static_cast<uint32_t>(it.GetJavaValue().i);
4066     if (index[i] >= type_and_max[i].second) {
4067       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site id #" << call_site_idx
4068                                         << " argument " << i << " bad index "
4069                                         << index[i] << " >= " << type_and_max[i].second;
4070       return false;
4071     }
4072     it.Next();
4073   }
4074 
4075   // Check method handle kind is valid.
4076   const dex::MethodHandleItem& mh = dex_file_->GetMethodHandle(index[0]);
4077   if (mh.method_handle_type_ != static_cast<uint16_t>(DexFile::MethodHandleType::kInvokeStatic)) {
4078     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4079                                       << " argument 0 method handle type is not InvokeStatic: "
4080                                       << mh.method_handle_type_;
4081     return false;
4082   }
4083   return true;
4084 }
4085 
4086 class MethodParamListDescriptorIterator {
4087  public:
MethodParamListDescriptorIterator(ArtMethod * res_method)4088   explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
4089       res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
4090       params_size_(params_ == nullptr ? 0 : params_->Size()) {
4091   }
4092 
HasNext()4093   bool HasNext() {
4094     return pos_ < params_size_;
4095   }
4096 
Next()4097   void Next() {
4098     ++pos_;
4099   }
4100 
GetDescriptor()4101   const char* GetDescriptor() REQUIRES_SHARED(Locks::mutator_lock_) {
4102     return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
4103   }
4104 
4105  private:
4106   ArtMethod* res_method_;
4107   size_t pos_;
4108   const dex::TypeList* params_;
4109   const size_t params_size_;
4110 };
4111 
4112 template <bool kVerifierDebug>
VerifyInvocationArgs(const Instruction * inst,MethodType method_type,bool is_range)4113 ArtMethod* MethodVerifier<kVerifierDebug>::VerifyInvocationArgs(
4114     const Instruction* inst, MethodType method_type, bool is_range) {
4115   // Resolve the method. This could be an abstract or concrete method depending on what sort of call
4116   // we're making.
4117   const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4118   ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
4119   if (res_method == nullptr) {  // error or class is unresolved
4120     // Check what we can statically.
4121     if (!flags_.have_pending_hard_failure_) {
4122       VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
4123     }
4124     return nullptr;
4125   }
4126 
4127   // If we're using invoke-super(method), make sure that the executing method's class' superclass
4128   // has a vtable entry for the target method. Or the target is on a interface.
4129   if (method_type == METHOD_SUPER) {
4130     dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
4131     const RegType& reference_type =
4132         reg_types_.FromDescriptor(class_loader_, dex_file_->GetTypeDescriptor(class_idx));
4133     if (reference_type.IsUnresolvedTypes()) {
4134       // We cannot differentiate on whether this is a class change error or just
4135       // a missing method. This will be handled at runtime.
4136       Fail(VERIFY_ERROR_NO_METHOD) << "Unable to find referenced class from invoke-super";
4137       VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
4138       return nullptr;
4139     }
4140     if (reference_type.GetClass()->IsInterface()) {
4141       if (!GetDeclaringClass().HasClass()) {
4142         Fail(VERIFY_ERROR_NO_CLASS) << "Unable to resolve the full class of 'this' used in an"
4143                                     << "interface invoke-super";
4144         VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
4145         return nullptr;
4146       } else if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this)) {
4147         Fail(VERIFY_ERROR_CLASS_CHANGE)
4148             << "invoke-super in " << mirror::Class::PrettyClass(GetDeclaringClass().GetClass())
4149             << " in method "
4150             << dex_file_->PrettyMethod(dex_method_idx_) << " to method "
4151             << dex_file_->PrettyMethod(method_idx) << " references "
4152             << "non-super-interface type " << mirror::Class::PrettyClass(reference_type.GetClass());
4153         VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
4154         return nullptr;
4155       }
4156     } else {
4157       const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
4158       if (super.IsUnresolvedTypes()) {
4159         Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
4160                                     << dex_file_->PrettyMethod(dex_method_idx_)
4161                                     << " to super " << res_method->PrettyMethod();
4162         VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
4163         return nullptr;
4164       }
4165       if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this) ||
4166           (res_method->GetMethodIndex() >= super.GetClass()->GetVTableLength())) {
4167         Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
4168                                     << dex_file_->PrettyMethod(dex_method_idx_)
4169                                     << " to super " << super
4170                                     << "." << res_method->GetName()
4171                                     << res_method->GetSignature();
4172         VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
4173         return nullptr;
4174       }
4175     }
4176   }
4177 
4178   if (UNLIKELY(method_type == METHOD_POLYMORPHIC)) {
4179     // Process the signature of the calling site that is invoking the method handle.
4180     dex::ProtoIndex proto_idx(inst->VRegH());
4181     DexFileParameterIterator it(*dex_file_, dex_file_->GetProtoId(proto_idx));
4182     return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
4183   } else {
4184     // Process the target method's signature.
4185     MethodParamListDescriptorIterator it(res_method);
4186     return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
4187   }
4188 }
4189 
4190 template <bool kVerifierDebug>
CheckSignaturePolymorphicMethod(ArtMethod * method)4191 bool MethodVerifier<kVerifierDebug>::CheckSignaturePolymorphicMethod(ArtMethod* method) {
4192   ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
4193   const char* method_name = method->GetName();
4194 
4195   const char* expected_return_descriptor;
4196   ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
4197   if (klass == GetClassRoot<mirror::MethodHandle>(class_roots)) {
4198     expected_return_descriptor = mirror::MethodHandle::GetReturnTypeDescriptor(method_name);
4199   } else if (klass == GetClassRoot<mirror::VarHandle>(class_roots)) {
4200     expected_return_descriptor = mirror::VarHandle::GetReturnTypeDescriptor(method_name);
4201   } else {
4202     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4203         << "Signature polymorphic method in unsuppported class: " << klass->PrettyDescriptor();
4204     return false;
4205   }
4206 
4207   if (expected_return_descriptor == nullptr) {
4208     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4209         << "Signature polymorphic method name invalid: " << method_name;
4210     return false;
4211   }
4212 
4213   const dex::TypeList* types = method->GetParameterTypeList();
4214   if (types->Size() != 1) {
4215     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4216         << "Signature polymorphic method has too many arguments " << types->Size() << " != 1";
4217     return false;
4218   }
4219 
4220   const dex::TypeIndex argument_type_index = types->GetTypeItem(0).type_idx_;
4221   const char* argument_descriptor = method->GetTypeDescriptorFromTypeIdx(argument_type_index);
4222   if (strcmp(argument_descriptor, "[Ljava/lang/Object;") != 0) {
4223     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4224         << "Signature polymorphic method has unexpected argument type: " << argument_descriptor;
4225     return false;
4226   }
4227 
4228   const char* return_descriptor = method->GetReturnTypeDescriptor();
4229   if (strcmp(return_descriptor, expected_return_descriptor) != 0) {
4230     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4231         << "Signature polymorphic method has unexpected return type: " << return_descriptor
4232         << " != " << expected_return_descriptor;
4233     return false;
4234   }
4235 
4236   return true;
4237 }
4238 
4239 template <bool kVerifierDebug>
CheckSignaturePolymorphicReceiver(const Instruction * inst)4240 bool MethodVerifier<kVerifierDebug>::CheckSignaturePolymorphicReceiver(const Instruction* inst) {
4241   const RegType& this_type = work_line_->GetInvocationThis(this, inst);
4242   if (this_type.IsZeroOrNull()) {
4243     /* null pointer always passes (and always fails at run time) */
4244     return true;
4245   } else if (!this_type.IsNonZeroReferenceTypes()) {
4246     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4247         << "invoke-polymorphic receiver is not a reference: "
4248         << this_type;
4249     return false;
4250   } else if (this_type.IsUninitializedReference()) {
4251     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4252         << "invoke-polymorphic receiver is uninitialized: "
4253         << this_type;
4254     return false;
4255   } else if (!this_type.HasClass()) {
4256     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4257         << "invoke-polymorphic receiver has no class: "
4258         << this_type;
4259     return false;
4260   } else {
4261     ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
4262     if (!this_type.GetClass()->IsSubClass(GetClassRoot<mirror::MethodHandle>(class_roots)) &&
4263         !this_type.GetClass()->IsSubClass(GetClassRoot<mirror::VarHandle>(class_roots))) {
4264       Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4265           << "invoke-polymorphic receiver is not a subclass of MethodHandle or VarHandle: "
4266           << this_type;
4267       return false;
4268     }
4269   }
4270   return true;
4271 }
4272 
4273 template <bool kVerifierDebug>
VerifyNewArray(const Instruction * inst,bool is_filled,bool is_range)4274 void MethodVerifier<kVerifierDebug>::VerifyNewArray(const Instruction* inst,
4275                                                     bool is_filled,
4276                                                     bool is_range) {
4277   dex::TypeIndex type_idx;
4278   if (!is_filled) {
4279     DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
4280     type_idx = dex::TypeIndex(inst->VRegC_22c());
4281   } else if (!is_range) {
4282     DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
4283     type_idx = dex::TypeIndex(inst->VRegB_35c());
4284   } else {
4285     DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
4286     type_idx = dex::TypeIndex(inst->VRegB_3rc());
4287   }
4288   const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
4289   if (res_type.IsConflict()) {  // bad class
4290     DCHECK_NE(failures_.size(), 0U);
4291   } else {
4292     // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
4293     if (!res_type.IsArrayTypes()) {
4294       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
4295     } else if (!is_filled) {
4296       /* make sure "size" register is valid type */
4297       work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
4298       /* set register type to array class */
4299       const RegType& precise_type = reg_types_.FromUninitialized(res_type);
4300       work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_22c(), precise_type);
4301     } else {
4302       DCHECK(!res_type.IsUnresolvedMergedReference());
4303       // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
4304       // the list and fail. It's legal, if silly, for arg_count to be zero.
4305       const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_);
4306       uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
4307       uint32_t arg[5];
4308       if (!is_range) {
4309         inst->GetVarArgs(arg);
4310       }
4311       for (size_t ui = 0; ui < arg_count; ui++) {
4312         uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
4313         work_line_->VerifyRegisterType(this, get_reg, expected_type);
4314       }
4315       // filled-array result goes into "result" register
4316       const RegType& precise_type = reg_types_.FromUninitialized(res_type);
4317       work_line_->SetResultRegisterType(this, precise_type);
4318     }
4319   }
4320 }
4321 
4322 template <bool kVerifierDebug>
VerifyAGet(const Instruction * inst,const RegType & insn_type,bool is_primitive)4323 void MethodVerifier<kVerifierDebug>::VerifyAGet(const Instruction* inst,
4324                                                 const RegType& insn_type,
4325                                                 bool is_primitive) {
4326   const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
4327   if (!index_type.IsArrayIndexTypes()) {
4328     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
4329   } else {
4330     const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
4331     if (array_type.IsZeroOrNull()) {
4332       // Null array class; this code path will fail at runtime. Infer a merge-able type from the
4333       // instruction type.
4334       if (!is_primitive) {
4335         work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), reg_types_.Null());
4336       } else if (insn_type.IsInteger()) {
4337         // Pick a non-zero constant (to distinguish with null) that can fit in any primitive.
4338         // We cannot use 'insn_type' as it could be a float array or an int array.
4339         work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), DetermineCat1Constant(1));
4340       } else if (insn_type.IsCategory1Types()) {
4341         // Category 1
4342         // The 'insn_type' is exactly the type we need.
4343         work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), insn_type);
4344       } else {
4345         // Category 2
4346         work_line_->SetRegisterTypeWide(inst->VRegA_23x(),
4347                                         reg_types_.FromCat2ConstLo(0, false),
4348                                         reg_types_.FromCat2ConstHi(0, false));
4349       }
4350     } else if (!array_type.IsArrayTypes()) {
4351       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
4352     } else if (array_type.IsUnresolvedMergedReference()) {
4353       // Unresolved array types must be reference array types.
4354       if (is_primitive) {
4355         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
4356                     << " source for category 1 aget";
4357       } else {
4358         Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aget for " << array_type
4359             << " because of missing class";
4360         // Approximate with java.lang.Object[].
4361         work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(),
4362                                                     reg_types_.JavaLangObject(false));
4363       }
4364     } else {
4365       /* verify the class */
4366       const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
4367       if (!component_type.IsReferenceTypes() && !is_primitive) {
4368         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
4369             << " source for aget-object";
4370       } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
4371         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
4372             << " source for category 1 aget";
4373       } else if (is_primitive && !insn_type.Equals(component_type) &&
4374                  !((insn_type.IsInteger() && component_type.IsFloat()) ||
4375                  (insn_type.IsLong() && component_type.IsDouble()))) {
4376         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
4377             << " incompatible with aget of type " << insn_type;
4378       } else {
4379         // Use knowledge of the field type which is stronger than the type inferred from the
4380         // instruction, which can't differentiate object types and ints from floats, longs from
4381         // doubles.
4382         if (!component_type.IsLowHalf()) {
4383           work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), component_type);
4384         } else {
4385           work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
4386                                           component_type.HighHalf(&reg_types_));
4387         }
4388       }
4389     }
4390   }
4391 }
4392 
4393 template <bool kVerifierDebug>
VerifyPrimitivePut(const RegType & target_type,const RegType & insn_type,const uint32_t vregA)4394 void MethodVerifier<kVerifierDebug>::VerifyPrimitivePut(const RegType& target_type,
4395                                                         const RegType& insn_type,
4396                                                         const uint32_t vregA) {
4397   // Primitive assignability rules are weaker than regular assignability rules.
4398   bool instruction_compatible;
4399   bool value_compatible;
4400   const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4401   if (target_type.IsIntegralTypes()) {
4402     instruction_compatible = target_type.Equals(insn_type);
4403     value_compatible = value_type.IsIntegralTypes();
4404   } else if (target_type.IsFloat()) {
4405     instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
4406     value_compatible = value_type.IsFloatTypes();
4407   } else if (target_type.IsLong()) {
4408     instruction_compatible = insn_type.IsLong();
4409     // Additional register check: this is not checked statically (as part of VerifyInstructions),
4410     // as target_type depends on the resolved type of the field.
4411     if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
4412       const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
4413       value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
4414     } else {
4415       value_compatible = false;
4416     }
4417   } else if (target_type.IsDouble()) {
4418     instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
4419     // Additional register check: this is not checked statically (as part of VerifyInstructions),
4420     // as target_type depends on the resolved type of the field.
4421     if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
4422       const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
4423       value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
4424     } else {
4425       value_compatible = false;
4426     }
4427   } else {
4428     instruction_compatible = false;  // reference with primitive store
4429     value_compatible = false;  // unused
4430   }
4431   if (!instruction_compatible) {
4432     // This is a global failure rather than a class change failure as the instructions and
4433     // the descriptors for the type should have been consistent within the same file at
4434     // compile time.
4435     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
4436         << "' but expected type '" << target_type << "'";
4437     return;
4438   }
4439   if (!value_compatible) {
4440     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4441         << " of type " << value_type << " but expected " << target_type << " for put";
4442     return;
4443   }
4444 }
4445 
4446 template <bool kVerifierDebug>
VerifyAPut(const Instruction * inst,const RegType & insn_type,bool is_primitive)4447 void MethodVerifier<kVerifierDebug>::VerifyAPut(const Instruction* inst,
4448                                                 const RegType& insn_type,
4449                                                 bool is_primitive) {
4450   const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
4451   if (!index_type.IsArrayIndexTypes()) {
4452     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
4453   } else {
4454     const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
4455     if (array_type.IsZeroOrNull()) {
4456       // Null array type; this code path will fail at runtime.
4457       // Still check that the given value matches the instruction's type.
4458       // Note: this is, as usual, complicated by the fact the the instruction isn't fully typed
4459       //       and fits multiple register types.
4460       const RegType* modified_reg_type = &insn_type;
4461       if ((modified_reg_type == &reg_types_.Integer()) ||
4462           (modified_reg_type == &reg_types_.LongLo())) {
4463         // May be integer or float | long or double. Overwrite insn_type accordingly.
4464         const RegType& value_type = work_line_->GetRegisterType(this, inst->VRegA_23x());
4465         if (modified_reg_type == &reg_types_.Integer()) {
4466           if (&value_type == &reg_types_.Float()) {
4467             modified_reg_type = &value_type;
4468           }
4469         } else {
4470           if (&value_type == &reg_types_.DoubleLo()) {
4471             modified_reg_type = &value_type;
4472           }
4473         }
4474       }
4475       work_line_->VerifyRegisterType(this, inst->VRegA_23x(), *modified_reg_type);
4476     } else if (!array_type.IsArrayTypes()) {
4477       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
4478     } else if (array_type.IsUnresolvedMergedReference()) {
4479       // Unresolved array types must be reference array types.
4480       if (is_primitive) {
4481         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
4482                                           << "' but unresolved type '" << array_type << "'";
4483       } else {
4484         Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aput for " << array_type
4485                                     << " because of missing class";
4486       }
4487     } else {
4488       const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
4489       const uint32_t vregA = inst->VRegA_23x();
4490       if (is_primitive) {
4491         VerifyPrimitivePut(component_type, insn_type, vregA);
4492       } else {
4493         if (!component_type.IsReferenceTypes()) {
4494           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
4495               << " source for aput-object";
4496         } else {
4497           // The instruction agrees with the type of array, confirm the value to be stored does too
4498           // Note: we use the instruction type (rather than the component type) for aput-object as
4499           // incompatible classes will be caught at runtime as an array store exception
4500           work_line_->VerifyRegisterType(this, vregA, insn_type);
4501         }
4502       }
4503     }
4504   }
4505 }
4506 
4507 template <bool kVerifierDebug>
GetStaticField(int field_idx)4508 ArtField* MethodVerifier<kVerifierDebug>::GetStaticField(int field_idx) {
4509   const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4510   // Check access to class
4511   const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
4512   if (klass_type.IsConflict()) {  // bad class
4513     AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
4514                                          field_idx, dex_file_->GetFieldName(field_id),
4515                                          dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
4516     return nullptr;
4517   }
4518   if (klass_type.IsUnresolvedTypes()) {
4519     // Accessibility checks depend on resolved fields.
4520     DCHECK(klass_type.Equals(GetDeclaringClass()) ||
4521            !failures_.empty() ||
4522            IsSdkVersionSetAndLessThan(api_level_, SdkVersion::kP));
4523 
4524     return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
4525   }
4526   ClassLinker* class_linker = GetClassLinker();
4527   ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);
4528 
4529   if (field == nullptr) {
4530     VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
4531               << dex_file_->GetFieldName(field_id) << ") in "
4532               << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4533     DCHECK(self_->IsExceptionPending());
4534     self_->ClearException();
4535     return nullptr;
4536   } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
4537                                                   field->GetAccessFlags())) {
4538     Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << field->PrettyField()
4539                                     << " from " << GetDeclaringClass();
4540     return nullptr;
4541   } else if (!field->IsStatic()) {
4542     Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField() << " to be static";
4543     return nullptr;
4544   }
4545   return field;
4546 }
4547 
4548 template <bool kVerifierDebug>
GetInstanceField(const RegType & obj_type,int field_idx)4549 ArtField* MethodVerifier<kVerifierDebug>::GetInstanceField(const RegType& obj_type, int field_idx) {
4550   if (!obj_type.IsZeroOrNull() && !obj_type.IsReferenceTypes()) {
4551     // Trying to read a field from something that isn't a reference.
4552     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
4553         << "non-reference type " << obj_type;
4554     return nullptr;
4555   }
4556   const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4557   // Check access to class.
4558   const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
4559   if (klass_type.IsConflict()) {
4560     AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
4561                                          field_idx, dex_file_->GetFieldName(field_id),
4562                                          dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
4563     return nullptr;
4564   }
4565   if (klass_type.IsUnresolvedTypes()) {
4566     // Accessibility checks depend on resolved fields.
4567     DCHECK(klass_type.Equals(GetDeclaringClass()) ||
4568            !failures_.empty() ||
4569            IsSdkVersionSetAndLessThan(api_level_, SdkVersion::kP));
4570 
4571     return nullptr;  // Can't resolve Class so no more to do here
4572   }
4573   ClassLinker* class_linker = GetClassLinker();
4574   ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);
4575 
4576   if (field == nullptr) {
4577     VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
4578               << dex_file_->GetFieldName(field_id) << ") in "
4579               << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4580     DCHECK(self_->IsExceptionPending());
4581     self_->ClearException();
4582     return nullptr;
4583   } else if (obj_type.IsZeroOrNull()) {
4584     // Cannot infer and check type, however, access will cause null pointer exception.
4585     // Fall through into a few last soft failure checks below.
4586   } else {
4587     std::string temp;
4588     ObjPtr<mirror::Class> klass = field->GetDeclaringClass();
4589     const RegType& field_klass =
4590         FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
4591     if (obj_type.IsUninitializedTypes()) {
4592       // Field accesses through uninitialized references are only allowable for constructors where
4593       // the field is declared in this class.
4594       // Note: this IsConstructor check is technically redundant, as UninitializedThis should only
4595       //       appear in constructors.
4596       if (!obj_type.IsUninitializedThisReference() ||
4597           !IsConstructor() ||
4598           !field_klass.Equals(GetDeclaringClass())) {
4599         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << field->PrettyField()
4600                                           << " of a not fully initialized object within the context"
4601                                           << " of " << dex_file_->PrettyMethod(dex_method_idx_);
4602         return nullptr;
4603       }
4604     } else if (!field_klass.IsAssignableFrom(obj_type, this)) {
4605       // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
4606       // of C1. For resolution to occur the declared class of the field must be compatible with
4607       // obj_type, we've discovered this wasn't so, so report the field didn't exist.
4608       VerifyError type;
4609       bool is_aot = IsAotMode();
4610       if (is_aot && (field_klass.IsUnresolvedTypes() || obj_type.IsUnresolvedTypes())) {
4611         // Compiler & unresolved types involved, retry at runtime.
4612         type = VerifyError::VERIFY_ERROR_UNRESOLVED_TYPE_CHECK;
4613       } else {
4614         // Classes known (resolved; and thus assignability check is precise), or we are at runtime
4615         // and still missing classes. This is a hard failure.
4616         type = VerifyError::VERIFY_ERROR_BAD_CLASS_HARD;
4617       }
4618       Fail(type) << "cannot access instance field " << field->PrettyField()
4619                  << " from object of type " << obj_type;
4620       return nullptr;
4621     }
4622   }
4623 
4624   // Few last soft failure checks.
4625   if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
4626                                            field->GetAccessFlags())) {
4627     Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << field->PrettyField()
4628                                     << " from " << GetDeclaringClass();
4629     return nullptr;
4630   } else if (field->IsStatic()) {
4631     Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField()
4632                                     << " to not be static";
4633     return nullptr;
4634   }
4635 
4636   return field;
4637 }
4638 
4639 template <bool kVerifierDebug>
4640 template <FieldAccessType kAccType>
VerifyISFieldAccess(const Instruction * inst,const RegType & insn_type,bool is_primitive,bool is_static)4641 void MethodVerifier<kVerifierDebug>::VerifyISFieldAccess(const Instruction* inst,
4642                                                          const RegType& insn_type,
4643                                                          bool is_primitive,
4644                                                          bool is_static) {
4645   uint32_t field_idx = GetFieldIdxOfFieldAccess(inst, is_static);
4646   ArtField* field;
4647   if (is_static) {
4648     field = GetStaticField(field_idx);
4649   } else {
4650     const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
4651 
4652     // One is not allowed to access fields on uninitialized references, except to write to
4653     // fields in the constructor (before calling another constructor).
4654     // GetInstanceField does an assignability check which will fail for uninitialized types.
4655     // We thus modify the type if the uninitialized reference is a "this" reference (this also
4656     // checks at the same time that we're verifying a constructor).
4657     bool should_adjust = (kAccType == FieldAccessType::kAccPut) &&
4658                          (object_type.IsUninitializedThisReference() ||
4659                           object_type.IsUnresolvedAndUninitializedThisReference());
4660     const RegType& adjusted_type = should_adjust
4661                                        ? GetRegTypeCache()->FromUninitialized(object_type)
4662                                        : object_type;
4663     field = GetInstanceField(adjusted_type, field_idx);
4664     if (UNLIKELY(flags_.have_pending_hard_failure_)) {
4665       return;
4666     }
4667     if (should_adjust) {
4668       bool illegal_field_access = false;
4669       if (field == nullptr) {
4670         const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4671         if (field_id.class_idx_ != GetClassDef().class_idx_) {
4672           illegal_field_access = true;
4673         } else {
4674           ClassAccessor accessor(*dex_file_, GetClassDef());
4675           illegal_field_access = (accessor.GetInstanceFields().end() ==
4676               std::find_if(accessor.GetInstanceFields().begin(),
4677                            accessor.GetInstanceFields().end(),
4678                            [field_idx] (const ClassAccessor::Field& f) {
4679                              return f.GetIndex() == field_idx;
4680                            }));
4681         }
4682       } else if (field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4683         illegal_field_access = true;
4684       }
4685       if (illegal_field_access) {
4686         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field "
4687                                           << dex_file_->PrettyField(field_idx)
4688                                           << " of a not fully initialized "
4689                                           << "object within the context of "
4690                                           << dex_file_->PrettyMethod(dex_method_idx_);
4691         return;
4692       }
4693     }
4694   }
4695   const RegType* field_type = nullptr;
4696   if (field != nullptr) {
4697     if (kAccType == FieldAccessType::kAccPut) {
4698       if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4699         Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << field->PrettyField()
4700                                         << " from other class " << GetDeclaringClass();
4701         // Keep hunting for possible hard fails.
4702       }
4703     }
4704 
4705     ObjPtr<mirror::Class> field_type_class =
4706         CanLoadClasses() ? field->ResolveType() : field->LookupResolvedType();
4707     if (field_type_class != nullptr) {
4708       field_type = &FromClass(field->GetTypeDescriptor(),
4709                               field_type_class,
4710                               field_type_class->CannotBeAssignedFromOtherTypes());
4711     } else {
4712       DCHECK_IMPLIES(CanLoadClasses(), self_->IsExceptionPending());
4713       self_->ClearException();
4714     }
4715   } else if (IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP)) {
4716     // If we don't have the field (it seems we failed resolution) and this is a PUT, we need to
4717     // redo verification at runtime as the field may be final, unless the field id shows it's in
4718     // the same class.
4719     //
4720     // For simplicity, it is OK to not distinguish compile-time vs runtime, and post this an
4721     // ACCESS_FIELD failure at runtime. This has the same effect as NO_FIELD - punting the class
4722     // to the access-checks interpreter.
4723     //
4724     // Note: see b/34966607. This and above may be changed in the future.
4725     if (kAccType == FieldAccessType::kAccPut) {
4726       const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4727       const char* field_class_descriptor = dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4728       const RegType* field_class_type =
4729           &reg_types_.FromDescriptor(class_loader_, field_class_descriptor);
4730       if (!field_class_type->Equals(GetDeclaringClass())) {
4731         Fail(VERIFY_ERROR_ACCESS_FIELD) << "could not check field put for final field modify of "
4732                                         << field_class_descriptor
4733                                         << "."
4734                                         << dex_file_->GetFieldName(field_id)
4735                                         << " from other class "
4736                                         << GetDeclaringClass();
4737       }
4738     }
4739   }
4740   if (field_type == nullptr) {
4741     const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4742     const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
4743     field_type = &reg_types_.FromDescriptor(class_loader_, descriptor);
4744   }
4745   DCHECK(field_type != nullptr);
4746   const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
4747   static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4748                 "Unexpected third access type");
4749   if (kAccType == FieldAccessType::kAccPut) {
4750     // sput or iput.
4751     if (is_primitive) {
4752       VerifyPrimitivePut(*field_type, insn_type, vregA);
4753     } else {
4754       DCHECK(insn_type.IsJavaLangObject());
4755       if (!insn_type.IsAssignableFrom(*field_type, this)) {
4756         DCHECK(!field_type->IsReferenceTypes());
4757         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
4758                                           << " to be compatible with type '" << insn_type
4759                                           << "' but found type '" << *field_type
4760                                           << "' in put-object";
4761         return;
4762       }
4763       work_line_->VerifyRegisterType(this, vregA, *field_type);
4764     }
4765   } else if (kAccType == FieldAccessType::kAccGet) {
4766     // sget or iget.
4767     if (is_primitive) {
4768       if (field_type->Equals(insn_type) ||
4769           (field_type->IsFloat() && insn_type.IsInteger()) ||
4770           (field_type->IsDouble() && insn_type.IsLong())) {
4771         // expected that read is of the correct primitive type or that int reads are reading
4772         // floats or long reads are reading doubles
4773       } else {
4774         // This is a global failure rather than a class change failure as the instructions and
4775         // the descriptors for the type should have been consistent within the same file at
4776         // compile time
4777         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
4778                                           << " to be of type '" << insn_type
4779                                           << "' but found type '" << *field_type << "' in get";
4780         return;
4781       }
4782     } else {
4783       DCHECK(insn_type.IsJavaLangObject());
4784       if (!insn_type.IsAssignableFrom(*field_type, this)) {
4785         DCHECK(!field_type->IsReferenceTypes());
4786         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
4787                                           << " to be compatible with type '" << insn_type
4788                                           << "' but found type '" << *field_type
4789                                           << "' in get-object";
4790         return;
4791       }
4792     }
4793     if (!field_type->IsLowHalf()) {
4794       work_line_->SetRegisterType<LockOp::kClear>(vregA, *field_type);
4795     } else {
4796       work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
4797     }
4798   } else {
4799     LOG(FATAL) << "Unexpected case.";
4800   }
4801 }
4802 
4803 template <bool kVerifierDebug>
UpdateRegisters(uint32_t next_insn,RegisterLine * merge_line,bool update_merge_line)4804 bool MethodVerifier<kVerifierDebug>::UpdateRegisters(uint32_t next_insn,
4805                                                      RegisterLine* merge_line,
4806                                                      bool update_merge_line) {
4807   bool changed = true;
4808   RegisterLine* target_line = reg_table_.GetLine(next_insn);
4809   if (!GetInstructionFlags(next_insn).IsVisitedOrChanged()) {
4810     /*
4811      * We haven't processed this instruction before, and we haven't touched the registers here, so
4812      * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4813      * only way a register can transition out of "unknown", so this is not just an optimization.)
4814      */
4815     target_line->CopyFromLine(merge_line);
4816     if (GetInstructionFlags(next_insn).IsReturn()) {
4817       // Verify that the monitor stack is empty on return.
4818       merge_line->VerifyMonitorStackEmpty(this);
4819 
4820       // For returns we only care about the operand to the return, all other registers are dead.
4821       // Initialize them as conflicts so they don't add to GC and deoptimization information.
4822       const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn);
4823       AdjustReturnLine(this, ret_inst, target_line);
4824       // Directly bail if a hard failure was found.
4825       if (flags_.have_pending_hard_failure_) {
4826         return false;
4827       }
4828     }
4829   } else {
4830     RegisterLineArenaUniquePtr copy;
4831     if (kVerifierDebug) {
4832       copy.reset(RegisterLine::Create(target_line->NumRegs(), allocator_, GetRegTypeCache()));
4833       copy->CopyFromLine(target_line);
4834     }
4835     changed = target_line->MergeRegisters(this, merge_line);
4836     if (flags_.have_pending_hard_failure_) {
4837       return false;
4838     }
4839     if (kVerifierDebug && changed) {
4840       LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4841                       << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4842                       << copy->Dump(this) << "  MERGE\n"
4843                       << merge_line->Dump(this) << "  ==\n"
4844                       << target_line->Dump(this);
4845     }
4846     if (update_merge_line && changed) {
4847       merge_line->CopyFromLine(target_line);
4848     }
4849   }
4850   if (changed) {
4851     GetModifiableInstructionFlags(next_insn).SetChanged();
4852   }
4853   return true;
4854 }
4855 
4856 template <bool kVerifierDebug>
GetMethodReturnType()4857 const RegType& MethodVerifier<kVerifierDebug>::GetMethodReturnType() {
4858   if (return_type_ == nullptr) {
4859     const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4860     const dex::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4861     dex::TypeIndex return_type_idx = proto_id.return_type_idx_;
4862     const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4863     return_type_ = &reg_types_.FromDescriptor(class_loader_, descriptor);
4864   }
4865   return *return_type_;
4866 }
4867 
4868 template <bool kVerifierDebug>
DetermineCat1Constant(int32_t value)4869 const RegType& MethodVerifier<kVerifierDebug>::DetermineCat1Constant(int32_t value) {
4870   // Imprecise constant type.
4871   if (value < -32768) {
4872     return reg_types_.IntConstant();
4873   } else if (value < -128) {
4874     return reg_types_.ShortConstant();
4875   } else if (value < 0) {
4876     return reg_types_.ByteConstant();
4877   } else if (value == 0) {
4878     return reg_types_.Zero();
4879   } else if (value == 1) {
4880     return reg_types_.One();
4881   } else if (value < 128) {
4882     return reg_types_.PosByteConstant();
4883   } else if (value < 32768) {
4884     return reg_types_.PosShortConstant();
4885   } else if (value < 65536) {
4886     return reg_types_.CharConstant();
4887   } else {
4888     return reg_types_.IntConstant();
4889   }
4890 }
4891 
4892 template <bool kVerifierDebug>
PotentiallyMarkRuntimeThrow()4893 bool MethodVerifier<kVerifierDebug>::PotentiallyMarkRuntimeThrow() {
4894   if (IsAotMode() || IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kS_V2)) {
4895     return false;
4896   }
4897   // Compatibility mode: we treat the following code unreachable and the verifier
4898   // will not analyze it.
4899   // The verifier may fail before we touch any instruction, for the signature of a method. So
4900   // add a check.
4901   if (work_insn_idx_ < dex::kDexNoIndex) {
4902     const Instruction& inst = code_item_accessor_.InstructionAt(work_insn_idx_);
4903     Instruction::Code opcode = inst.Opcode();
4904     if (opcode == Instruction::MOVE_EXCEPTION) {
4905       // This is an unreachable handler. The instruction doesn't throw, but we
4906       // mark the method as having a pending runtime throw failure so that
4907       // the compiler does not try to compile it.
4908       Fail(VERIFY_ERROR_RUNTIME_THROW, /* pending_exc= */ false);
4909       return true;
4910     }
4911     // How to handle runtime failures for instructions that are not flagged kThrow.
4912     if ((Instruction::FlagsOf(opcode) & Instruction::kThrow) == 0 &&
4913         !impl::IsCompatThrow(opcode) &&
4914         GetInstructionFlags(work_insn_idx_).IsInTry()) {
4915       if (Runtime::Current()->IsVerifierMissingKThrowFatal()) {
4916         LOG(FATAL) << "Unexpected throw: " << std::hex << work_insn_idx_ << " " << opcode;
4917         UNREACHABLE();
4918       }
4919       // We need to save the work_line if the instruction wasn't throwing before. Otherwise
4920       // we'll try to merge garbage.
4921       // Note: this assumes that Fail is called before we do any work_line modifications.
4922       saved_line_->CopyFromLine(work_line_.get());
4923     }
4924   }
4925   flags_.have_pending_runtime_throw_failure_ = true;
4926   return true;
4927 }
4928 
4929 }  // namespace
4930 }  // namespace impl
4931 
MethodVerifier(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,VerifierDeps * verifier_deps,const DexFile * dex_file,const dex::ClassDef & class_def,const dex::CodeItem * code_item,uint32_t dex_method_idx,bool can_load_classes,bool allow_thread_suspension,bool aot_mode)4932 MethodVerifier::MethodVerifier(Thread* self,
4933                                ClassLinker* class_linker,
4934                                ArenaPool* arena_pool,
4935                                VerifierDeps* verifier_deps,
4936                                const DexFile* dex_file,
4937                                const dex::ClassDef& class_def,
4938                                const dex::CodeItem* code_item,
4939                                uint32_t dex_method_idx,
4940                                bool can_load_classes,
4941                                bool allow_thread_suspension,
4942                                bool aot_mode)
4943     : self_(self),
4944       arena_stack_(arena_pool),
4945       allocator_(&arena_stack_),
4946       reg_types_(self, class_linker, can_load_classes, allocator_, allow_thread_suspension),
4947       reg_table_(allocator_),
4948       work_insn_idx_(dex::kDexNoIndex),
4949       dex_method_idx_(dex_method_idx),
4950       dex_file_(dex_file),
4951       class_def_(class_def),
4952       code_item_accessor_(*dex_file, code_item),
4953       // TODO: make it designated initialization when we compile as C++20.
4954       flags_({false, false}),
4955       const_flags_({aot_mode, can_load_classes}),
4956       encountered_failure_types_(0),
4957       verifier_deps_(verifier_deps),
4958       link_(nullptr) {
4959 }
4960 
~MethodVerifier()4961 MethodVerifier::~MethodVerifier() {
4962   STLDeleteElements(&failure_messages_);
4963 }
4964 
VerifyMethod(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,VerifierDeps * verifier_deps,uint32_t method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,uint32_t method_access_flags,HardFailLogMode log_level,uint32_t api_level,bool aot_mode,std::string * hard_failure_msg)4965 MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
4966                                                          ClassLinker* class_linker,
4967                                                          ArenaPool* arena_pool,
4968                                                          VerifierDeps* verifier_deps,
4969                                                          uint32_t method_idx,
4970                                                          const DexFile* dex_file,
4971                                                          Handle<mirror::DexCache> dex_cache,
4972                                                          Handle<mirror::ClassLoader> class_loader,
4973                                                          const dex::ClassDef& class_def,
4974                                                          const dex::CodeItem* code_item,
4975                                                          uint32_t method_access_flags,
4976                                                          HardFailLogMode log_level,
4977                                                          uint32_t api_level,
4978                                                          bool aot_mode,
4979                                                          std::string* hard_failure_msg) {
4980   if (VLOG_IS_ON(verifier_debug)) {
4981     return VerifyMethod<true>(self,
4982                               class_linker,
4983                               arena_pool,
4984                               verifier_deps,
4985                               method_idx,
4986                               dex_file,
4987                               dex_cache,
4988                               class_loader,
4989                               class_def,
4990                               code_item,
4991                               method_access_flags,
4992                               log_level,
4993                               api_level,
4994                               aot_mode,
4995                               hard_failure_msg);
4996   } else {
4997     return VerifyMethod<false>(self,
4998                                class_linker,
4999                                arena_pool,
5000                                verifier_deps,
5001                                method_idx,
5002                                dex_file,
5003                                dex_cache,
5004                                class_loader,
5005                                class_def,
5006                                code_item,
5007                                method_access_flags,
5008                                log_level,
5009                                api_level,
5010                                aot_mode,
5011                                hard_failure_msg);
5012   }
5013 }
5014 
5015 // Return whether the runtime knows how to execute a method without needing to
5016 // re-verify it at runtime (and therefore save on first use of the class).
5017 // The AOT/JIT compiled code is not affected.
CanRuntimeHandleVerificationFailure(uint32_t encountered_failure_types)5018 static inline bool CanRuntimeHandleVerificationFailure(uint32_t encountered_failure_types) {
5019   constexpr uint32_t unresolved_mask =
5020       verifier::VerifyError::VERIFY_ERROR_UNRESOLVED_TYPE_CHECK |
5021       verifier::VerifyError::VERIFY_ERROR_NO_CLASS |
5022       verifier::VerifyError::VERIFY_ERROR_CLASS_CHANGE |
5023       verifier::VerifyError::VERIFY_ERROR_INSTANTIATION |
5024       verifier::VerifyError::VERIFY_ERROR_ACCESS_CLASS |
5025       verifier::VerifyError::VERIFY_ERROR_ACCESS_FIELD |
5026       verifier::VerifyError::VERIFY_ERROR_NO_METHOD |
5027       verifier::VerifyError::VERIFY_ERROR_ACCESS_METHOD |
5028       verifier::VerifyError::VERIFY_ERROR_RUNTIME_THROW;
5029   return (encountered_failure_types & (~unresolved_mask)) == 0;
5030 }
5031 
5032 template <bool kVerifierDebug>
VerifyMethod(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,VerifierDeps * verifier_deps,uint32_t method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,uint32_t method_access_flags,HardFailLogMode log_level,uint32_t api_level,bool aot_mode,std::string * hard_failure_msg)5033 MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
5034                                                          ClassLinker* class_linker,
5035                                                          ArenaPool* arena_pool,
5036                                                          VerifierDeps* verifier_deps,
5037                                                          uint32_t method_idx,
5038                                                          const DexFile* dex_file,
5039                                                          Handle<mirror::DexCache> dex_cache,
5040                                                          Handle<mirror::ClassLoader> class_loader,
5041                                                          const dex::ClassDef& class_def,
5042                                                          const dex::CodeItem* code_item,
5043                                                          uint32_t method_access_flags,
5044                                                          HardFailLogMode log_level,
5045                                                          uint32_t api_level,
5046                                                          bool aot_mode,
5047                                                          std::string* hard_failure_msg) {
5048   MethodVerifier::FailureData result;
5049   uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
5050 
5051   impl::MethodVerifier<kVerifierDebug> verifier(self,
5052                                                 class_linker,
5053                                                 arena_pool,
5054                                                 verifier_deps,
5055                                                 dex_file,
5056                                                 code_item,
5057                                                 method_idx,
5058                                                 /* can_load_classes= */ true,
5059                                                 /* allow_thread_suspension= */ true,
5060                                                 aot_mode,
5061                                                 dex_cache,
5062                                                 class_loader,
5063                                                 class_def,
5064                                                 method_access_flags,
5065                                                 /* verify to dump */ false,
5066                                                 api_level);
5067   if (verifier.Verify()) {
5068     // Verification completed, however failures may be pending that didn't cause the verification
5069     // to hard fail.
5070     CHECK(!verifier.flags_.have_pending_hard_failure_);
5071 
5072     if (verifier.failures_.size() != 0) {
5073       if (VLOG_IS_ON(verifier)) {
5074         verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
5075                                                     << dex_file->PrettyMethod(method_idx) << "\n");
5076       }
5077       if (kVerifierDebug) {
5078         LOG(INFO) << verifier.info_messages_.str();
5079         verifier.Dump(LOG_STREAM(INFO));
5080       }
5081       if (CanRuntimeHandleVerificationFailure(verifier.encountered_failure_types_)) {
5082         if (verifier.encountered_failure_types_ & VERIFY_ERROR_UNRESOLVED_TYPE_CHECK) {
5083           result.kind = FailureKind::kTypeChecksFailure;
5084         } else {
5085           result.kind = FailureKind::kAccessChecksFailure;
5086         }
5087       } else {
5088         result.kind = FailureKind::kSoftFailure;
5089       }
5090     }
5091   } else {
5092     // Bad method data.
5093     CHECK_NE(verifier.failures_.size(), 0U);
5094     CHECK(verifier.flags_.have_pending_hard_failure_);
5095     if (VLOG_IS_ON(verifier)) {
5096       log_level = std::max(HardFailLogMode::kLogVerbose, log_level);
5097     }
5098     if (log_level >= HardFailLogMode::kLogVerbose) {
5099       LogSeverity severity;
5100       switch (log_level) {
5101         case HardFailLogMode::kLogVerbose:
5102           severity = LogSeverity::VERBOSE;
5103           break;
5104         case HardFailLogMode::kLogWarning:
5105           severity = LogSeverity::WARNING;
5106           break;
5107         case HardFailLogMode::kLogInternalFatal:
5108           severity = LogSeverity::FATAL_WITHOUT_ABORT;
5109           break;
5110         default:
5111           LOG(FATAL) << "Unsupported log-level " << static_cast<uint32_t>(log_level);
5112           UNREACHABLE();
5113       }
5114       verifier.DumpFailures(LOG_STREAM(severity) << "Verification error in "
5115                                                  << dex_file->PrettyMethod(method_idx)
5116                                                  << "\n");
5117     }
5118     if (hard_failure_msg != nullptr) {
5119       CHECK(!verifier.failure_messages_.empty());
5120       *hard_failure_msg =
5121           verifier.failure_messages_[verifier.failure_messages_.size() - 1]->str();
5122     }
5123     result.kind = FailureKind::kHardFailure;
5124 
5125     if (kVerifierDebug || VLOG_IS_ON(verifier)) {
5126       LOG(ERROR) << verifier.info_messages_.str();
5127       verifier.Dump(LOG_STREAM(ERROR));
5128     }
5129     // Under verifier-debug, dump the complete log into the error message.
5130     if (kVerifierDebug && hard_failure_msg != nullptr) {
5131       hard_failure_msg->append("\n");
5132       hard_failure_msg->append(verifier.info_messages_.str());
5133       hard_failure_msg->append("\n");
5134       std::ostringstream oss;
5135       verifier.Dump(oss);
5136       hard_failure_msg->append(oss.str());
5137     }
5138   }
5139   if (kTimeVerifyMethod) {
5140     uint64_t duration_ns = NanoTime() - start_ns;
5141     if (duration_ns > MsToNs(Runtime::Current()->GetVerifierLoggingThresholdMs())) {
5142       double bytecodes_per_second =
5143           verifier.code_item_accessor_.InsnsSizeInCodeUnits() / (duration_ns * 1e-9);
5144       LOG(WARNING) << "Verification of " << dex_file->PrettyMethod(method_idx)
5145                    << " took " << PrettyDuration(duration_ns)
5146                    << (impl::IsLargeMethod(verifier.CodeItem()) ? " (large method)" : "")
5147                    << " (" << StringPrintf("%.2f", bytecodes_per_second) << " bytecodes/s)"
5148                    << " (" << verifier.allocator_.ApproximatePeakBytes()
5149                    << "B approximate peak alloc)";
5150     }
5151   }
5152   result.types = verifier.encountered_failure_types_;
5153   return result;
5154 }
5155 
CalculateVerificationInfo(Thread * self,ArtMethod * method,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,uint32_t dex_pc)5156 MethodVerifier* MethodVerifier::CalculateVerificationInfo(
5157       Thread* self,
5158       ArtMethod* method,
5159       Handle<mirror::DexCache> dex_cache,
5160       Handle<mirror::ClassLoader> class_loader,
5161       uint32_t dex_pc) {
5162   std::unique_ptr<impl::MethodVerifier<false>> verifier(
5163       new impl::MethodVerifier<false>(self,
5164                                       Runtime::Current()->GetClassLinker(),
5165                                       Runtime::Current()->GetArenaPool(),
5166                                       /* verifier_deps= */ nullptr,
5167                                       method->GetDexFile(),
5168                                       method->GetCodeItem(),
5169                                       method->GetDexMethodIndex(),
5170                                       /* can_load_classes= */ false,
5171                                       /* allow_thread_suspension= */ false,
5172                                       Runtime::Current()->IsAotCompiler(),
5173                                       dex_cache,
5174                                       class_loader,
5175                                       *method->GetDeclaringClass()->GetClassDef(),
5176                                       method->GetAccessFlags(),
5177                                       /* verify_to_dump= */ false,
5178                                       // Just use the verifier at the current skd-version.
5179                                       // This might affect what soft-verifier errors are reported.
5180                                       // Callers can then filter out relevant errors if needed.
5181                                       Runtime::Current()->GetTargetSdkVersion()));
5182   verifier->interesting_dex_pc_ = dex_pc;
5183   verifier->Verify();
5184   if (VLOG_IS_ON(verifier)) {
5185     verifier->DumpFailures(VLOG_STREAM(verifier));
5186     VLOG(verifier) << verifier->info_messages_.str();
5187     verifier->Dump(VLOG_STREAM(verifier));
5188   }
5189   if (verifier->flags_.have_pending_hard_failure_) {
5190     return nullptr;
5191   } else {
5192     return verifier.release();
5193   }
5194 }
5195 
VerifyMethodAndDump(Thread * self,VariableIndentationOutputStream * vios,uint32_t dex_method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,uint32_t method_access_flags,uint32_t api_level)5196 MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self,
5197                                                     VariableIndentationOutputStream* vios,
5198                                                     uint32_t dex_method_idx,
5199                                                     const DexFile* dex_file,
5200                                                     Handle<mirror::DexCache> dex_cache,
5201                                                     Handle<mirror::ClassLoader> class_loader,
5202                                                     const dex::ClassDef& class_def,
5203                                                     const dex::CodeItem* code_item,
5204                                                     uint32_t method_access_flags,
5205                                                     uint32_t api_level) {
5206   impl::MethodVerifier<false>* verifier = new impl::MethodVerifier<false>(
5207       self,
5208       Runtime::Current()->GetClassLinker(),
5209       Runtime::Current()->GetArenaPool(),
5210       /* verifier_deps= */ nullptr,
5211       dex_file,
5212       code_item,
5213       dex_method_idx,
5214       /* can_load_classes= */ true,
5215       /* allow_thread_suspension= */ true,
5216       Runtime::Current()->IsAotCompiler(),
5217       dex_cache,
5218       class_loader,
5219       class_def,
5220       method_access_flags,
5221       /* verify_to_dump= */ true,
5222       api_level);
5223   verifier->Verify();
5224   verifier->DumpFailures(vios->Stream());
5225   vios->Stream() << verifier->info_messages_.str();
5226   // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
5227   // and querying any info is dangerous/can abort.
5228   if (verifier->flags_.have_pending_hard_failure_) {
5229     delete verifier;
5230     return nullptr;
5231   } else {
5232     verifier->Dump(vios);
5233     return verifier;
5234   }
5235 }
5236 
FindLocksAtDexPc(ArtMethod * m,uint32_t dex_pc,std::vector<MethodVerifier::DexLockInfo> * monitor_enter_dex_pcs,uint32_t api_level)5237 void MethodVerifier::FindLocksAtDexPc(
5238     ArtMethod* m,
5239     uint32_t dex_pc,
5240     std::vector<MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs,
5241     uint32_t api_level) {
5242   StackHandleScope<2> hs(Thread::Current());
5243   Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
5244   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
5245   impl::MethodVerifier<false> verifier(hs.Self(),
5246                                        Runtime::Current()->GetClassLinker(),
5247                                        Runtime::Current()->GetArenaPool(),
5248                                        /* verifier_deps= */ nullptr,
5249                                        m->GetDexFile(),
5250                                        m->GetCodeItem(),
5251                                        m->GetDexMethodIndex(),
5252                                        /* can_load_classes= */ false,
5253                                        /* allow_thread_suspension= */ false,
5254                                        Runtime::Current()->IsAotCompiler(),
5255                                        dex_cache,
5256                                        class_loader,
5257                                        m->GetClassDef(),
5258                                        m->GetAccessFlags(),
5259                                        /* verify_to_dump= */ false,
5260                                        api_level);
5261   verifier.interesting_dex_pc_ = dex_pc;
5262   verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
5263   verifier.FindLocksAtDexPc();
5264 }
5265 
CreateVerifier(Thread * self,VerifierDeps * verifier_deps,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,uint32_t method_idx,uint32_t access_flags,bool can_load_classes,bool verify_to_dump,bool allow_thread_suspension,uint32_t api_level)5266 MethodVerifier* MethodVerifier::CreateVerifier(Thread* self,
5267                                                VerifierDeps* verifier_deps,
5268                                                const DexFile* dex_file,
5269                                                Handle<mirror::DexCache> dex_cache,
5270                                                Handle<mirror::ClassLoader> class_loader,
5271                                                const dex::ClassDef& class_def,
5272                                                const dex::CodeItem* code_item,
5273                                                uint32_t method_idx,
5274                                                uint32_t access_flags,
5275                                                bool can_load_classes,
5276                                                bool verify_to_dump,
5277                                                bool allow_thread_suspension,
5278                                                uint32_t api_level) {
5279   return new impl::MethodVerifier<false>(self,
5280                                          Runtime::Current()->GetClassLinker(),
5281                                          Runtime::Current()->GetArenaPool(),
5282                                          verifier_deps,
5283                                          dex_file,
5284                                          code_item,
5285                                          method_idx,
5286                                          can_load_classes,
5287                                          allow_thread_suspension,
5288                                          Runtime::Current()->IsAotCompiler(),
5289                                          dex_cache,
5290                                          class_loader,
5291                                          class_def,
5292                                          access_flags,
5293                                          verify_to_dump,
5294                                          api_level);
5295 }
5296 
Fail(VerifyError error,bool pending_exc)5297 std::ostream& MethodVerifier::Fail(VerifyError error, bool pending_exc) {
5298   // Mark the error type as encountered.
5299   encountered_failure_types_ |= static_cast<uint32_t>(error);
5300 
5301   if (pending_exc) {
5302     switch (error) {
5303       case VERIFY_ERROR_NO_CLASS:
5304       case VERIFY_ERROR_UNRESOLVED_TYPE_CHECK:
5305       case VERIFY_ERROR_NO_METHOD:
5306       case VERIFY_ERROR_ACCESS_CLASS:
5307       case VERIFY_ERROR_ACCESS_FIELD:
5308       case VERIFY_ERROR_ACCESS_METHOD:
5309       case VERIFY_ERROR_INSTANTIATION:
5310       case VERIFY_ERROR_CLASS_CHANGE: {
5311         PotentiallyMarkRuntimeThrow();
5312         break;
5313       }
5314 
5315       case VERIFY_ERROR_LOCKING:
5316         PotentiallyMarkRuntimeThrow();
5317         // This will be reported to the runtime as a soft failure.
5318         break;
5319 
5320       // Hard verification failures at compile time will still fail at runtime, so the class is
5321       // marked as rejected to prevent it from being compiled.
5322       case VERIFY_ERROR_BAD_CLASS_HARD: {
5323         flags_.have_pending_hard_failure_ = true;
5324         break;
5325       }
5326 
5327       case VERIFY_ERROR_RUNTIME_THROW: {
5328         LOG(FATAL) << "UNREACHABLE";
5329       }
5330     }
5331   } else if (kIsDebugBuild) {
5332     CHECK_NE(error, VERIFY_ERROR_BAD_CLASS_HARD);
5333   }
5334 
5335   failures_.push_back(error);
5336   std::string location(StringPrintf("%s: [0x%X] ", dex_file_->PrettyMethod(dex_method_idx_).c_str(),
5337                                     work_insn_idx_));
5338   std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
5339   failure_messages_.push_back(failure_message);
5340   return *failure_message;
5341 }
5342 
LogVerifyInfo()5343 ScopedNewLine MethodVerifier::LogVerifyInfo() {
5344   ScopedNewLine ret{info_messages_};
5345   ret << "VFY: " << dex_file_->PrettyMethod(dex_method_idx_)
5346       << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
5347   return ret;
5348 }
5349 
FailureKindMax(FailureKind fk1,FailureKind fk2)5350 static FailureKind FailureKindMax(FailureKind fk1, FailureKind fk2) {
5351   static_assert(FailureKind::kNoFailure < FailureKind::kSoftFailure
5352                     && FailureKind::kSoftFailure < FailureKind::kHardFailure,
5353                 "Unexpected FailureKind order");
5354   return std::max(fk1, fk2);
5355 }
5356 
Merge(const MethodVerifier::FailureData & fd)5357 void MethodVerifier::FailureData::Merge(const MethodVerifier::FailureData& fd) {
5358   kind = FailureKindMax(kind, fd.kind);
5359   types |= fd.types;
5360 }
5361 
5362 }  // namespace verifier
5363 }  // namespace art
5364